Virtual Machines

Readings: Chapter 14

Reasons for virtualization

- Legacy hardware
- Rapid deployment
- Versatility
- Consolidation
- Aggregating
- Dynamics
- Ease of management
- Increased availability

Virtual Machines

- A Virtual Machine is a software construct that mimics the characteristics of a physical server
- A VM instance is defined in files

- The principal functions performed by a hypervisor are:
 - Execution management of VMs
 - Devices emulation and access control
 - Execution of privileged operations by hypervisor for guest VMs
 - Management of VMs (also called VM lifecycle management)
 - Administration of hypervisor platform and hypervisor software

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
Container Virtualization

Container virtualization is a relatively recent approach to virtualization. In this approach, software, known as a virtualization container, runs on top of the host OS kernel and provides an isolated execution environment for applications.

Unlike hypervisor-based VMs, containers do not aim to emulate physical servers; instead, all containerized applications on a host share a common OS kernel. This eliminates the resources needed to run a separate OS for each application and can greatly reduce overhead.
Figure 14.5 Data Flow for I/O Operation via Hypervisor and Container

Processor Issues

- In a virtual environment there are two main strategies for providing processor resources:
 - Emulate a chip as software and provide access to that resource
 - Examples of this method are QEMU and the Android Emulator in the Android SDK
 - Provide segments of processing time on the physical processors (pCPUs) of the virtualization host to the virtual processors of the virtual machines hosted on the physical server
 - This is how most of the virtualization hypervisors offer processor resources to their guests

- Since hypervisor manages page sharing, the virtual machine operating systems are unaware of what is happening in the physical system

 - Ballooning
 - The hypervisor activates a balloon driver that (virtually) inflates and presses the guest operating system to flush pages to disk
 - Once the pages are cleared, the balloon driver deflates and the hypervisor can use the physical memory for other VMs

 - Memory overcommit
 - The capability to allocate more memory than physically exists on a host

- An advantage of virtualizing the workload's I/O path enables hardware independence by abstracting vendor-specific drivers to more generalized versions that run on the hypervisor
- This abstraction enables:
 - Live migration, which is one of virtualization's greatest availability strengths
 - The sharing of aggregate resources, such as network paths

- The memory overcommit capability is another benefit of virtualizing the I/O of a VM
- The trade-off for this is that the hypervisor is managing all the traffic and requires processor overhead

 - This was an issue in the early days of virtualization but now faster multicore processors and sophisticated hypervisors have addressed this concern

Memory Management

- Since hypervisor manages page sharing, the virtual machine operating systems are unaware of what is happening in the physical system

I/O Management

- An advantage of virtualizing the workload's I/O path enables hardware independence by abstracting vendor-specific drivers to more generalized versions that run on the hypervisor
- This abstraction enables:
 - Live migration, which is one of virtualization's greatest availability strengths
 - The sharing of aggregate resources, such as network paths

- The memory overcommit capability is another benefit of virtualizing the I/O of a VM
- The trade-off for this is that the hypervisor is managing all the traffic and requires processor overhead

 - This was an issue in the early days of virtualization but now faster multicore processors and sophisticated hypervisors have addressed this concern