
Network Attacks

CS342, Handout 10

Tuesday, Oct. 3rd , 2006
Wellesley College
Daniel Bilar

Today’s class goals

� Finish Anatomy of An Attack

� Some selected attacks against
�Network and transport layer: TCP/IP
protocol design and implementation

�Application layer: Network services like DNS

� Appreciate how various trust assumptions
are pre-conditions for these network
attacks

Attack classifications
� Effect

� Bandwidth depletion: Flood
the victim network with
unwanted traffic that prevents
legitimate traffic from reaching
the victim system

� Resource depletion: Tie up
the resources of a victim host

� Vector
� Direct: attacking host sends

directly to victim machine
� Reflector (indirect):

Intermediate nodes are used as
attack hosts

� Mechanism
� Protocol design
� Protocol implementation

Direct:

Reflector:

IP concepts needed this lecture

1. IP Spoofing
Pretend to be host C when you are host A

2. ICMP packets
Feedback mechanism/diagnostic message in IP

networks

3. Fragmentation and (subsequent) packet
reassembly
Break up IP packets into smaller chunks when

necessary for network relay

IP Spoofing

�Nothing prevents you from physically mailing a letter with
an invalid return address, or someone else’s, or your own.

�Likewise, packets can be inserted in the network with
invalid or other IP addresses.

Any node can send packets pretending
to be from any IP address

Attacker might not get replies if
spoofing a host on a different subnet

For some attacks this is not
important
For others, like TCP hijacking
attacks, it is important

Refinement: IP Spoofing with
Reflection

�Use broadcasts pretending to originate from
victim

�All replies go back to victim

�Class B broadcast: 253^2 = 64 009 replies
�Assuming class C subnetting

�This may use any IP protocol (ICMP, TCP, UDP)
�Any application or service that replies using these
protocols

�Famous attack: Smurf (using ICMP) DoS

ICMP (Internet Control
Message Protocol)

� IP network “feedback” messages

�Used to report problems with delivery of IP packets
within IP networks, also for queries

�Encapsulated in an IP packet

�Not authenticated!

Basic ICMP Message Types

ETime-to-live is zero during transit
(see traceroute)

011

QEcho request e.g. ping08

EPort unreachable (see traceroute)33

EHost unreachable13

QEcho reply e.g. ping00

Query/ErrorDescCodeType

Message types: 40 assigned,
255 possible, ~ 25 in use

ICMP Echo

�a.k.a. Ping

�Destination replies (using the "source IP"
of the original message) with "echo reply"

�Data received in the echo message must be
returned in the echo reply

�How can this be abused?

Fragmentation
�Networks have different frame sizes

�“MTU” is the "Maximum Transmission Unit"

�Fragmentation allows oversized packets to be
split to fit on a smaller network

�Reassembly is difficult
Have to keep track of all fragments until packet is
reassembled
Resource allocation is necessary before all validation is
possible
Lots of fragments from different packets can exhaust
available memory

�Perfect grounds for resource exhaustion attacks

Important Fields for Fragmentation

�Fragment ID
�All fragments have the same ID

�More Fragments bit flag
�0 if last fragment
�1 otherwise

�Fragment offset
�Where this data goes

�Data length
�For how long

Fragmentation situations

�What do you do if you never get the last missing
piece?
�What do you do when you get packets out-of-
order?

�This is a legitimate situation as per RFCs

�What do you do if you get overlapping fragments?
�What do you do if the last byte of a fragment
would go over the maximum size of an IP packet,
i.e., if the size of all reassembled fragments is
larger than the maximum size of an IP packet?

Implementation Attack: Ping of
Death

� Attack: Send ICMP echo with fragmented packets :
ping -L 65510 <victim IP address>

� Maximum legal size of an ICMP echo packet:
65535 - 20 - 8 = 65507

� Fragmentation allows bypassing the maximum size:
(offset + size) > 65535

� Reassembled packet would be larger than 65535 bytes
� Goal: OS crash

See http://insecure.org/sploits/ping-o-
death.html

Implementation Attack: Teardrop

� IP packet can be broken, is called ‘fragmentation’
Fragmented (i.e. broken) packet is reassembled using offset fields

� Attack: Send fragments that overlap

� Goal: Crash, reboot and hang machine

See http://attrition.org/security/denial/w/teardrop.dos.html

Normal fragment concatenation: Overlapping fragments:

Teardrop: Overview

We see two IP packets with Frag 242, the fragment ID of an
IP packet that was broken up.

Send Fragment 1 with offset = 0, payload size N, More
Fragments bit on
Send Fragment 2 with offset + payload size < N, More
Fragments bit off � Fragment 2 fits entirely inside
Fragment 1

evilfrag.com.139 > target.net.139: udp 28 (frag 242:36@0+)
evilfrag.com.139 > target.net.139: (frag 242:4@24)

OS has to
reassemble
packets …

Teardrop: Mechanism
Deep in the protocol implementation

if (prev != NULL && offset < prev->end)
// if there are overlapping fragments

{
i = prev->end - offset;
offset += i; /* ptr into datagram */
ptr += i; /* ptr into fragment data

*/
//advance to the end of the previous

fragment
}

end

First
Second

prev->end
offset (before)

offset (after)
Copy this

In ip_fragment.c@531 (ca. 1997)

Teardrop: Result

�Offset now points outside of the second
datagram's buffer!

�Program calculates the number of bytes to copy

�fp->len = end - offset;
�very large unsigned number... What can we do with
this?
�We’ll see more when we get to software vulnerabilities

First
Second

prev->end

offset

end

Protocol Attack: SYN Flood
Attack: Initiate, but do not finish 3-

way handshake - don’t send final
Ack

Every TCP connection establishment
requires an allocation of
significant memory resources.

Goal: By sending overdosed connection requests with spoofed source addresses
to the victim, an attacker can disable all successive connection establishment
attempts including those of legitimate users.

Bandwidth Attack: Smurf

� One level of indirection

� Attack: Ping a broadcast address, with the
(spoofed) IP of a victim as source address

All hosts on the network respond to the victim

� Goal: Overwhelm the victim

� Mechanism: Reflection, IP spoofing and
protocol vulnerability
� implementation can be “patched” by violating the
protocol specification, to ignore pings to broadcast
addresses

Smurf: Overview

Echo request with spoofed source
address 172.20.20.250 to
192.168.1.255 (broadcast address
of subnet 192.168.1.x)

All live hosts at subnet
192.168.1.x respond with echo
reply .. to 172.20.20.50

Bandwidth Attack: UDP Ping-
Pong

� ‘Bootstrapping’ SMURF

� Attack: Spoof a packet from
host A's chargen service to
host B's echo service
chargen service replies with a UDP

packet to any incoming packet

� Goal: Computers keep
replying to each other as fast
as they can

Victim 1 Victim 2

Attacker

08:08:16.155354 spoofed.pound.me.net.echo > 172.31.203.17.chargen: udp
08:21:48.891451 spoofed.pound.me.net.echo > 192.168.14.50.chargen: udp
08:25:12.968929 spoofed.pound.me.net.echo > 192.168.102.3.chargen: udp
08:42:22.605428 spoofed.pound.me.net.echo > 192.168.18.28.chargen: udp

Evolution of DoS Attacks: DDoS
� DDoS: Distributed Denial

Of Service
� Attack against bandwidth

and/or resources (like
before) using two (or
more) levels of
indirection!

Attacker: used to
coordinate attack
Handler: controls
subservient computers
Agents: Actually do the
attack

DDoS examples
TRINOO

Sends UDP floods to random destination port numbers on victim

TFN
Sends UDP flood, TCP SYN Flood, ICMP Echo Flood, or a SMURF Attack
Master communicates to daemon using ICMP echo reply, changes IP

identification number and payload of ICMP echo reply to identify
type of attack to launch

TFN2k
First DDOS for windows. Communication between master and agents can

be encrypted over TCP, UDP, or ICMP with no identifying ports

STACHELDRAHT
Combination of Trinoo and TFN

Authority on analysis of DDoS is Diettrich at University of Washington
http://staff.washington.edu/dittrich/misc/ddos

DDoS: Trinoo (1998/1999)

� All C source (Linux, Solaris, Irix)

� UDP packet flooder, no source address forgery

� Full control features, control traffic on TCP and
UDP

� Menu operated

� Agent passwords are sent in plain text form
(not encrypted)

DDoS: Tribe Flood Network
(1999)

� Limited control features, control traffic via ICMP
Echo Reply

� UDP packet flood ("trinoo emulation"), but also
TCP SYN flood, ICMP Echo flood

� IP Spoofing: Either randomizes all 32 bits of
source address, or just last 8 bits

� Handler keeps track of its agents in “Blowfish”
(encryption algorithm) encrypted file

DDoS: TFN2k (1999)

� Improved version of TFN
� Runs on *nix, Windows NT

� Encrypted control traffic uses UDP, TCP, or ICMP

� Same source address forgery features as TFN

� Agent can randomly alternate between the TFN types of
attack

� Agent is completely silent - handler sends the same
command several times, hoping that agent will receive at
least one

� IP Spoofing: Random source IP address and port
number

� Decoy packets (sent to non-target networks)

DDoS: Stacheldraht 2.6 (2000)

� Evolved TFN/TFN2k

� Several levels of protection:
� Hard-coded password in client

� Password is needed to take control over handler

� Encrypted traffic: TCP for communication between client and
handler, and ICMP_ECHOREPLY for communication between
handler and agent

� Same basic attacks as TFN2k, adds TCP ACK flood
("stream") and TCP NULL (no flags) flood

� New: Adds "smurf" attack w/16,702 amplifiers (already
inet_aton()d for speed!

� New: Automated update of agents (via rpc)

More attack modes

� Attacks against address translation
services

�DNS cache poisoning

Tricks a DNS server into believing it has received
authentic URL->IP translation information

Difficult and serious problem (a form of semantic
hacking)

http://www.lurhq.com/cachepoisoning.html

Summary

� The ‘glue’ of the Internet (TCP/IP protocol and
associated services like DNS) was predicated towards
communication (and limited recovery from random
errors, i.e. noise)
� Security (confidentiality, authentication, recovery from

deliberate errors, i.e attacks) was an afterthought

� As such, strong assumptions were made while
designing, implementing and running the protocols

� This makes attacks against the TCP/IP protocol and
implementation, as well as network services such as
DNS, realtively easy and feasible

Acknowledgments

Some materials/slides from

Pascale Meunier, Purdue U. (CERIAS)

Dave Dittrich, U. Washington

Steven Northcutt “Network Intrusion
Detection”, 3rd Edition

For Friday

� Review notes and look at actual traces
in attacks (posted as additional
material in lecture notes)

Additional material

Review: Protocol Stack

Application

Transport

Network

Link

Application
data

TCP
header

Application
data

TCP
header

IP
header

Application
data

TCP
header

IP
header

Ethernet
header

TCP/IP Stack Example Use

Application
data

Resulting message structure

telnet, email, web

Ethernet, Token Ring

TCP, UDP

IP, ICMP, IGMP

TCP segment

IP datagram

frame
Ethernet
trailer

Packet construction from recipient’s point of view (up
the protocol stack)

Defines the version of IP being used.

Normal: 4 (current) and 6 (emerging).

Abnormal: any values other than 4 or 6.

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

4

version 4

Represents the number of 32-bit (4-byte)
words in the header. The minimum value
is 5 (20 bytes) and the maximum value is
f (60 bytes)

Normal: 5 (a 20 byte length), no options

Abnormal: values 0-4. values 0-f when not
followed by the corresponding amount of
data.

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45

a 20 byte header

Options for special case handling of data-
grams.

Normal:
normal service 0x00
minimize delay 0x10
maximize throughput 0x08
maximize reliability 0x04
minimize monetary cost 0x02

Abnormal: values other than the 5 shown
above (there can be only one turned on
at a time)

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45 10

minimize delay

Total length of the datagram including IP
header, transport layer header, and any
data.

Normal: minimum length is 0x0014
(20 bytes) and maximum is 0xffff (65535).
The maximum is actually limited by the
link’s MTU, which is 1500 on an Ethernet.

Abnormal: a value inconsistent with the
actual number of bytes in the message.
A value larger than the networks path MTU
thus causing fragmentation.

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45 10 00 3c

a 60 byte total length

Uniquely identifies each datagram sent by
a host. It normally increments by one each
time a datagram is sent.

Normal: integers between 1-65535

Abnormal: repeated datagrams from a
single source using the same id number
(no frags and no timeout & retransmission).
Datagrams from 1+ sources using the same
ID suggesting it is hard coded into an
exploit (high false posItives)

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45 10 00 3c 27 a7

IP ID 10151

Provides the information IP needs to re-
order fragmented messages.

Normal: 0x4 sets don’t fragment (DF) bit.
0x2 sets more fragments (MF) bit.

MF bit Frag. Offset Meaning
Not set zero packet not fragmented
Set zero first fragment
Set non-zero middle fragment
Not set non-zero last fragment

Abnormal: mismatched, overlapping, out
of spec, or gapping fragment offsets.

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45 10 00 3c 27 a7 40 00

don’t fragment

Initialized to some value and decremented
by one by every router that handles the
datagram. When the field reaches 0 it is
thrown away, effectively limiting the lifetime
of the datagram (preventing an infinite loop)

Normal: at least 64 (initially), 128, 255

Abnormal: contextual.

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45 10 00 3c 27 a7 40 00 40

64 hop TTL

Which protocol is encapsulated in IP.

Normal: (see /etc/protocols)

ICMP 0x01
IGMP 0x02
IP 0x04
TCP 0x06
UDP 0x11

Abnormal: Values 0x88 – 0xfe are un-
assigned and 0xff is reserved. Others may
or may not be valid depending on which
protocol a network is intended to use.

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45 10 00 3c 27 a7 40 00 40 06

TCP data follows the IP header

Calculated over IP header only – it does
not cover any data that follows the header
because UDP, TCP, ICMP, and IGMP all
have a checksum of their own to cover their
header and data.

Normal: a correct checksum

Abnormal: contextual (errors in trans-
mission do occur but not very often)

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45 10 00 3c 27 a7 40 00 40 06 8f 56

checksum is 0x8f56 (dummy figures)

The alleged sender of the message.

Normal: contextual

Abnormal: contextual. Non-routable,
reserved, internal, or vacant addresses
approaching an external interface should
raise suspicion.

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01

source address is 0xc0a80101, which translates to
192.168.1.1

The IP address of the machine intended to
receive this message.

Normal: contextual.

Abnormal: contextual. messages
to a network’s broadcast address from the
outside (i.e. smurf), consecutive messages
to all or part of a networks range of
addresses.

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64

destination address is 0xc0a80164, which translates to
192.168.1.100

Options: record route, timestamp, loose
source routing, strict source routing.

Normal: contextual. timestamp is most
common.

Abnormal: loose and strict source routing
can be used by attackers to manually route
packets (evasion technique)

The variable length data field in this case
is actually the start of the TCP header

How do we distinguish?

20 bytes

8-bit type of
service (TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Options (if any)

Variable length data field (if any)

0 15 16 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64

no options

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

The port through which the host will
transmit this message.

Normal: contextual. acting as server, the
source port should be that of which the
process is listening on. acting as client, the
source port should be an ephemeral port
above 1023.

Abnormal: datagrams to ports that are
closed (trojan & service scanning),
datagrams to open ports from untrusted
sources.

See /etc/services

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab

an ephemeral client port, 25894, sends the message

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

The port at which this message is directed.

Normal: contextual. acting as server, the
destination port should be that of which the
process is listening on. acting as client, it
should be an ephemeral port above 1023.

Abnormal: datagrams to ports that are
closed (trojan & service scanning),
datagrams to open ports from untrusted
sources.

See /etc/services

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17

port 23, the telnet server, will receive the message

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

An initial sequence number (ISN) is chosen
at random for each new TCP connection.
Similar to how fragment offsets are used to
reorder fragments into packets, sequence
numbers are used to reorder packets into
the data stream.

Normal: random ISN that increases by the
number of bytes this host has sent since
the beginning of the connection.

Abnormal: one of the values known to be
coded into exploits. values that report in-
accurate amounts of data have been sent.

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17 a2 cf a9 10

sequence number is 2731518224

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

The acknowledgement number contains the
next sequence number that the sender of
the acknowledgement expects to receive.

Normal: AN = SN +1

Abnormal: any non-zero value when the Ack
flag is not set.

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17 a2 cf a9 10 d5 6d b7 2d

acknowledgement number is 3580737325

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

Length of the TCP header.

Normal: minimum is 0x5 (20 bytes). When
options are set, the value can be 0xf (60
bytes) at maximum.

The 6-bit reserved field should always be
zero.

Abnormal: header length values in-
consistent with the actual size. Non-zero
reserved bit field.

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17 a2 cf a9 10 d5 6d b7 2d
50

header length is 20 bytes, reserved bits are 0

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

URG the urgent pointer
ACK the acknowledgement number is set
PSH pass the data to the app. ASAP
RST reset the connection
SYN begin a connection
FIN finished sending data

Normal: contextual. Possibly valid comb-
inations: S, SA, A, R, RA, F, FA, FPA,
UA, PA.

Abnormal: contextual – “out of spec
Packets,” SF (syn-fin), UAPRSF (xmas
tree, nastygram, kamikaze, etc), 21******
(reserved bits set).

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17 a2 cf a9 10 d5 6d b7 2d
50 18

Ack and Psh flags are set

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

This value tells the transmitting host how
much data it may transmit before it must
stop and wait for acknowledgements from
the receiver. It allows the receiver to control
the flow of data.

Normal: if the receiver’s input buffer is
currently full, this value may be 0 telling the
transmitter to discontinue data flow until
further notice. Maximum window size is
65535.

Abnormal: contextual. an aggressive flow of
data after advertising a window size of 0
should be suspicious.

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17 a2 cf a9 10 d5 6d b7 2d
50 18 16 d0

5480 bytes of data can fit into the input buffer

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

A mandatory checksum covering the TCP
header and contents that is calculated by
the sender and verified by the receiver.

Normal: a correct checksum

Abnormal: an abundance of incorrect
checksums

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17 a2 cf a9 10 d5 6d b7 2d
50 18 16 d0 ae ee

checksum is 0xaaee (dummy figures)

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

This value, when added to the sequence
number in the packet, points to the last byte
of urgent data.

Normal: contextual. The URG flag is
common when a telnet user presses the
interrupt key or an FTP user aborts a file
transfer.

Abnormal: a non-zero value when the URG
(U) flag is not set.

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17 a2 cf a9 10 d5 6d b7 2d
50 18 16 d0 ae ee 00 00

the Urg flag is not set, so the urgent pointer field is 0

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

Possible options include:

MSS maximum segment size
SackOK selective acknowledgement
Timestamp
NOP no operation
wscale window scale

Normal: contextual.

Abnormal: contextual. MSS, SackOK, and
wscale may only be set in connection
establishment packets (the first three).

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17 a2 cf a9 10 d5 6d b7 2d
50 18 16 d0 ae ee 00 00

no options

20 bytes

15 16

U
4-bit header

length

reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

Options (if any)

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

0 31

Application
data

TCP
header

IP
header

Ethernet
header

Ethernet
trailer

Variable length data field (application
data).

In this example we are logging into telnet
with the password “reveal77”

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17 a2 cf a9 10 d5 6d b7 2d
50 18 16 d0 ae ee 00 00 72 65 76 65 61 6c 37 37

an 8-byte string, reveal77

8-bit type of service
(TOS)

4-bit
version

4-bit header
length

16-bit total length field

16-bit identification field
3-bit
flags

13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

20 bytes

0 15 16 31

IP header

U
4-bit header

length
reserved
(6 bits)

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

32-bit sequence number

32-bit acknowledgement number

16-bit source port number 16-bit destination port number

A P R S F

Variable length data field (if any)

20 bytes TCP header

App. data

complete message format: template before

104 5 00 3c

27 a7 4- -000

40 06 8f 56

c0 a8 01 01

c0 a8 01 64

20 bytes

0 15 16 31

IP header

05 00- 16 d0

ae ee 00 00

a2 cf a9 10

D5 6d b7 2d

80 ab 00 17

1 1 0 0 0

72 65 76 65 61 6c 37 37

20 bytes TCP header

App. data

complete message format: template after

Interpretation

• IP

– Version: 4
– Header length: 20
– TOS: minimize delay
– Total length: 60
– Identification: 10151
– Flags: DF – Don’t Fragment
– TTL: 64
– Protocol: TCP
– Checksum: 36694
– Source address: 192.168.1.1
– Destination address: 192.168.1.100

• TCP

– Source port: 32939
– Destination port: 23
– Sequence number: 2731518224
– Acknowledgement number: 3580737325
– Header length: 20
– Flags: Ack, Psh
– Window: 5480
– Checksum: 44782
– Urgent pointer: 0

• Application data

– reveal77

45 10 00 3c 27 a7 40 00 40 06 8f 56 c0 a8 01 01
c0 a8 01 64 80 ab 00 17 a2 cf a9 10 d5 6d b7 2d
50 18 16 d0 ae ee 00 00 72 65 76 65 61 6c 37 37

example message

(Resource starvation DoS): Snork Attack

45 03 00 4a 96 ac 00 00 40 11 15 c7 c0 a8 26 6e
c0 a8 26 6e 00 87 00 87 00 36 84 33 69 23 61 6d
20 6c 61 6d 65 20 64 6f 73 20 6b 69 64 20 62 75

Observations:

192.168.38.110:135 > 192.168.38.110:135 UDP 46 [tos 0x3]

the TOS is 0x03 which UDP has no legitimate use for

the source and destination IP are identical (Land Attack)

the source and destination port are identical, creating a socket that loops messages back and forth
infinitely.

(Application crash DoS): WinNuke Attack

When a Windows system receives a packet with the URG flag set, it expects data will follow that flag.

The exploit consists of setting the URG flag but not following it with data; and then sending a RST to

tear down the connection. Not only will it tear down the connection but the victim would experience

BSOD.

(Application crash DoS): Small Footprint Attack

Certain versions of TCPdump cannot process the packet so they crash and dump core.

00 00 04 b4 00 01 00 00 92 04 00 00 ac 17 85 63
Ac 17 85 04 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[snip]

this indicates an IP version 0 – there was never an IPv0

172.23.133.99 > 172.23.133.4 IP 1204 [ttl 146]

Observations:

this indicates a header length of 0 – the minimum is 5

(Resource starvation DoS): Boink Fragment Attack

45 00 00 38 04 55 20 00 ff 11 7e 80 19 19 19 19
c0 a8 26 05 00 14 00 14 00 24 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

25.25.25.25:20 > 192.168.38.5:20 udp 28 (frag 1109:36@0+)

25.25.25.25 > 192.168.38.5 (frag 1109:4@32)

45 00 00 18 04 55 00 04 ff 11 7e 80 19 19 19 19
c0 a8 26 05 00 14 00 14

this is the first fragment because the MF bit is set (0x2) and the offset field is zeroed out (0x000)

Observations:

the fragment ID (1109) is taken from the IP ID field – all fragments will have the same value

this is the last fragment because neither the DF bit nor the MF bit is set and the offset field is non-zero

IP stack has no concept of negative math – it cannot backspace into memory. Negative numbers are
Interpreted as large positive numbers, and thus the data will be written somewhere far away (probably
system crash).

(Resource starvation DoS): Teardrop Attack

45 00 00 38 00 f2 20 00 40 11 84 04 0a 0a 0a 0a
c0 0a 01 03 00 35 00 35 00 24 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

10.10.10.10:53 > 192.168.1.3:53 udp 28 (frag 242:36@0+)

10.10.10.10 > 192.168.1.3 (frag 242:4@24)

45 00 00 18 00 f2 00 03 40 11 a4 21 0a 0a 0a 0a
c0 a8 01 03 00 35 00 35 00 24 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00

this is the first fragment because the MF bit is set (0x2) and the offset field is zeroed out (0x000)

Observations:

the fragment ID (242) is taken from the IP ID field – all fragments will have the same value

this is the last fragment because neither the DF bit nor the MF bit is set and the offset field is non-zero

The second (and last) fragment is completely contained within the first. A bug in the fragment reassembly
code of older TCP/IP stacks cause the system to crash. No room to mention this before – a non-terminal
fragment size of 36 is actually illegal, it must be a multiple of 8.

(bandwidth consumption DoS): Smurf Attack

45 00 00 1c c0 14 40 00 1e 01 61 72 b3 87 a8 2b
c0 a8 1e ff 08 00 f7 ff 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00

179.135.168.43 > 192.168.30.255 icmp: echo request (DF)

68.90.226.250 > 192.168.30.255 icmp: echo request (DF)

45 00 00 1c c0 15 40 00 1e 01 95 cf 44 5a e2 fa
c0 a8 1e ff 08 00 f7 ff 00 00 00 00 31 36 38 03
31 33 35 03 31 37 39 07 69 6e 2d 61 64 64

0xff as the last two digits refers to the broadcast address x.x.x.255

Observations:

0x01 indicates ICMP protocol, 0x0800 indicates a type 8 code 0 message (better known as echo request)

evidence of forged source IP

The broadcast address is used to amplify a single packet into many.

