
CS342 Computer Security Handout # 3
Profs. Daniel Bilar and Lyn Turbak September 12, 2006
Wellesley College

Problem Set 1
Due: Midnight Friday, September 22

Overview:
The purpose of this assignment is to give you experience with basic cryptography and Linux

system administration.

Working Together:
There are three problems on this assignment:

1. Problem 1 is an individual problem that you must solve on your own.

2. Problem 2 is a group problem that you may work on in groups of up to three people. It is
strongly recommended that you work in a large group. Your partners for this problem need
not be the same as for Problem 3 – indeed, it would be good to choose different partners for
Problems 2 and 3.

3. Problem 3 is a lab problem in which you will become the system administrators for a Linux
machine in 121B. You must work in pairs on this problem; because there are an odd number
of students in the class, we will also allow one three-person team. Students with a strong
systems background should not work with each other, but should choose partners with less
systems background.

Submission:

1. For Problem 1, each student should submit a hardcopy of a solution by sliding it under Lyn’s
door.

2. For Problem 2, each group should submit a softcopy to the drop directory

~cs342/drop/ps1/username

where username is the username of one of the group members. The softcopy should include:
(1) six files m1.txt–m6.txt that are the decoded versions of the binary files m1.bin–m6.bin
from the problem; and (2) a description of how you paired the files and decoded them. If you
are not able to decode all the files, turn in whatever work you have done, including partially
decoded files and a description of your experiments.

3. For Problem 3, there is nothing to turn in, but Daniel and Lyn will check that the guest

account is configured appropriately on your machine.

1



Individual Problem [15]: Cryptography with Unshared Keys
This is an individual problem. Each student must solve this problem on her own without con-

sulting any other person (except Daniel and Lyn).
Alice and Bob have been using symmetric-key cryptography to protect the confidentiality of

their communications, but they think that exchanging shared keys is a hassle.
Inspired by the bicycle transfer protocol that will be discussed in Sep. 12’s class1, they have

developed their own unshared-key protocol that allows them to communicate without exchanging
a shared key. In their new protocol, here’s how Alice sends a message M to Bob:

1. Alice chooses a new key KA that is the same length as M , and sends M2 = M ⊕ KA to Bob.

2. Bob chooses a new key KB that is the same length as M2, and sends M3 = M2 ⊕ KB to
Alice.

3. Alice sends M4 = M3 ⊕ KA to Bob.

4. Bob calculates M4 ⊕ KB to extract M .

Alice and Bob reason that KA and KB are like their own personal locks in the bicycle transfer
protocol, so they never have to meet to exchange keys.

a. Using algebra involving ⊕, show that the protocol does indeed send M from Alice to Bob.
Recall that ⊕ has the following algebraic properties:

associativity : X ⊕ (Y ⊕ Z) = (X ⊕ Y ) ⊕ Z

commutativity : X ⊕ Y = Y ⊕ X

identity : X ⊕ 0 = X

invertibility : X ⊕ X = 0

You should show that M4 ⊕ KB simplifies to M , explicitly using the above properties to justify
each step of your simplification.

b. Show that Alice can determine Bob’s key and Bob can determine Alice’s key. Does this
make the protocol insecure?

c. Suppose Eve is monitoring all the communications between Alice and Bob. Can she determine
the message M? Explain.

1You can solve this problem before you see the bicycle transfer protocol.

2



Group Problem 1 [75]: Two-Timing Pads
This is a group problem. Each student may solve this problem in a group of up to three people.
Until she resigned recently, Malificent (Mali) Cracker was an employee at Mad Hatters, Inc.,

a computer security startup in the Boston area founded by former CS342 students. Mad Hatters’
Chief Security Officer, Benny Hacker, suspects that Mali was a spy from JetCap, a rival company,
and that she used the company’s email system to send encrypted messages to JetCap.

Benny suspects that Mali used one-time pads to encrypt her messages. When used correctly,
a one-time pad provides perfect confidentiality. However, Benny also knows that Mali tended cut
corners and suspects that she used her pads more than once — a practice that could be her downfall.

Because he trusts CS342 students, Benny has hired you as interns to help him uncover Mali’s
perfidy. Benny has collected six of the encrypted messages he intercepted from Mali’s emails and
put the first 512 bytes of each message into the files m1.bin through m6.bin in the CS342 download
directory: cs342@cs.wellesley.edu:/home/cs342/download/ps1. He believes that these six files
were encrypted using three different pads, where each pad was used to encrypt two files. Your task
is to figure out which files are paired and to decrypt all of the files.

Benny has developed some programs that will be useful for your project; these can also be found
in the above directory. He has described these in a memo, which is included as Appendix B at the
end of this problem set. You should read his memo carefully before proceeding.

Benny has also collected the following information from reliable sources:

• One of the messages is a Java program.

• One of the messages is a web page expressed in HTML.

• Each pair of messages includes one message that is either a quotation from literature or lyrics
from a song. So if you figure out a few key words from the message, you can use a Google
search to flesh out the rest of the message.2

• Mali had an unusual level of interest in the Wellesley Computer Science department. She
liked music and TV shows from the 1960’s. She also liked to hike and swim at Walden pond.

Hints

• Assume that all six plaintext files contain only “regular” characters whose ASCII values
only include tab (9) newline (10) and characters in the range 32 – 126. In particular, the
highest-order bit of each such character is 0. (See http://www.asciitable.com.)

• You can determine which pairs of files were encrypted with the same pad just using cat in
conjunction with Benny’s xor program. How?

• Benny’s check program should be your main tool for decoding the messages. Decoding with
check will require lots of trial and error. You can reduce your time by thinking carefully
about what you’re looking for.

• Java and HTML files have a lot of structure. Using Benny’s check program, how can you
determine which pair contains the Java program? the HTML page?

• It’s helpful to look for common English words, like and¸ , have, that, the, which, will, with.
It often helps to put a space before and after such words — e.g., search for " and " rather
than "and".

• You shouldn’t need to write any additional programs, but you can if you want to.

2In practice, it would be unusual for a spy to send a message whose contents could be easily found on the Web.
Why not just send the URL instead? But here, this fact simplifies your problem tremendously.

3



Group Problem 2 [10]: Linux System Administration

Please do not start this problem until Daniel and Lyn say it’s OK to do so.

You *must* work in a group on this problem with your Linux buddy. You will work with the
same Linux buddy all semester. You need not work with the same person as on Problem 2.

In this problem, you will choose a buddy and a machine in the Security Lab (SCI 121B) and
become system adminstrators (sysadmins) of that machine. You and your buddy will “own” that
machine for the rest of the semester.

There are seven machines in SCI 121B that are “named” by their static IP addresses, which
are in the range 192.168.0.1 – 192.168.0.7. We will refer to this network of machines as the
security lab network (SLN). Since the SLN has no nameserver, the machines will not recognize the
English names carp, sole, etc., that appear on the processor boxes; you will have to use the IP
numbers to refer to other machines.

Below, we will use the last number in each address (in the range 1–7) to uniquely identify a
machine.

There are three kinds of machines:

• #1 is a firewall that interfaces between the other six machines and the main network.

• #2 is the instructor machine, reserved for Daniel and Lyn.

• #3–#7 are reserved for students.

a. : Choose a Machine

Choose one of machines #3–#7 in 121B, putting a note on it to indicate it is “yours”.

b. : Log into Your Machine

You can log into your machine with superuser privileges via the username root and password
toober.

c. : Change the Root Password

You wouldn’t want anyone else to log into your machine with superuser privileges, would you?
One of the first things you should do is change the root password using the passwd program.

d. : Create A Guest Account

Next, you should use the useradd program to create a guest account with password "Ewe

guessed it!" (without the quote marks). You can set the password for this account using
the passwd program and/or the -p option to the useradd or usermod programs. If you wish, you
can create accounts other than the guest account.

e. : Play with Linux

As system administrators, you need to gain familiarity with lots of Linux commands. Appendix
A lists some of the commands you should be familiar with. The list is by no means exhaustive!
Many of the commands have lots of options; some of the common options ones are listed. To get
documentation on this commands, use man and info, browse on-line resources, and refer to the
many Linux books in the Security Lab. You should also play with pipes (|) and input/output
redirection (<, >) and learn a little bit about shell scripts.

4



Appendix A: Linux Commands you Should Know

cat

cd

chmod (-R)

chown (-R)

chgrp (-R)

cp (-R)

du

df

echo

find

grep

gunzip

gzip

info

less

ln (-s)

ls

man

mkdir

more

mount

nice

passwd

popd

ps (-ef)

pushd

pwd

rm (-rf)

scp (-r)

ssh

source

su (-)

tar (-cvf, -xvf)

telnet

top

touch

umount

useradd

usermod

wc

which

whoami

5



Appendix B: Benny’s Memo

Character Representations
To understand encryption/decryption with one-time pads, you first need to understand char-

acter representations. Recall that characters are often expressed as 8-bit bytes with ASCII values
ranging between 0 and 255 (see http://www.asciitable.com). Fig. 1 shows the printed represen-
tations of these characters as they appear in an Emacs file buffer. Because character representations
are not consistent across different environments, I recommend that you always view arbitrary binary
files within Emacs to get results that resemble the ones you see in this memo.

The figure was obtained3 by executing the following C4 program and storing the results in a
file:

int main () {

int i;

for (i = 0; i<=255; i++) {

printf("%d:%c\t", i, (char) i);

if (i%4 == 3) printf("\n");

}

}

Some features of Fig. 1 deserve explanation:

• Characters in ASCII range 0 – 31 and ASCII 127 are control characters. Most are represented
as a caret symbol (^) (pronounced “control”) followed by another character. But a few
actually cause interesting effects in the text:

– ASCII 9 (control-I) is the tab character;

– ASCII 10 (control-J) is the newline character, which moves to the next line;

• ASCII characters c in the range 128–255 are represented as \ddd , where ddd is the octal
representation of c. For example, ASCII value 205 = 3 · 83 +1 · 81 +5 · 80, so it is represented
ad \315.

• We will use the term regular text characters for characters that are the tab character (ASCII
value 9), the newline character (ASCII value 10), and characters in the ASCII range 32–126.
All regular text characters have 0 as their high bit, so they are completely determined by
their lower 7 bits.

3But some mopping up was done to make the columns better aligned.
4In CS342, you’ll need to have a working understanding of C programming, which you’re expected to “pick up”

largely on your own (but be sure to ask your instructors any questions you have along the way). A good place to
start is Scott Anderson’s C/C++ for Java Programmers, linked from the CS342 home page.

6



0:^@ 1:^A 2^B 3:^C 4:^D 5:^E 6:^F 7:^G

8:^H 9: 10:

11:^K 12:^L 13:^M 14:^N 14:^0

16:^P 17:^Q 18:^R 19:^S 20:^T 21:^U 22:^V 23:^W

24:^X 25:^Y 26:^Z 27:^[ 28:^\ 29:^] 30:^^ 31:^_

32: 33:! 34:" 35:# 36:$ 37:% 38:& 39:’

40:( 41:) 42:* 43:+ 44:, 45:- 46:. 47:/

48:0 49:1 50:2 51:3 52:4 53:5 54:6 55:7

56:8 57:9 58:: 59:; 60:< 61:= 62:> 63:?

64:@ 65:A 66:B 67:C 68:D 69:E 70:F 71:G

72:H 73:I 74:J 75:K 76:L 77:M 78:N 79:O

80:P 81:Q 82:R 83:S 84:T 85:U 86:V 87:W

88:X 89:Y 90:Z 91:[ 92:\ 93:] 94:^ 95:_

96:‘ 97:a 98:b 99:c 100:d 101:e 102:f 103:g

104:h 105:i 106:j 107:k 108:l 109:m 110:n 111:o

112:p 113:q 114:r 115:s 116:t 117:u 118:v 119:w

120:x 121:y 122:z 123:{ 124:| 125:} 126:~ 127:^?

128:\200 129:\201 130:\202 131:\203 132:\204 133:\205 134:\206 135:\207

136:\210 137:\211 138:\212 139:\213 140:\214 141:\215 142:\216 143:\217

144:\220 145:\221 146:\222 147:\223 148:\224 149:\225 150:\226 151:\227

152:\230 153:\231 154:\232 155:\233 156:\234 157:\235 158:\236 159:\237

160:\240 161:\241 162:\242 163:\243 164:\244 165:\245 166:\246 167:\247

168:\250 169:\251 170:\252 171:\253 172:\254 173:\255 174:\256 175:\257

176:\260 177:\261 178:\262 179:\263 180:\264 181:\265 182:\266 183:\267

184:\270 185:\271 186:\272 187:\273 188:\274 189:\275 190:\276 191:\277

192:\300 193:\301 194:\302 195:\303 196:\304 197:\305 198:\306 199:\307

200:\310 201:\311 202:\312 203:\313 204:\314 205:\315 206:\316 207:\317

208:\320 209:\321 210:\322 211:\323 212:\324 213:\325 214:\326 215:\327

216:\330 217:\331 218:\332 219:\333 220:\334 221:\335 222:\336 223:\337

224:\340 225:\341 226:\342 227:\343 228:\344 229:\345 230:\346 231:\347

232:\350 233:\351 234:\352 235:\353 236:\354 237:\355 238:\356 239:\357

240:\360 241:\361 242:\362 243:\363 244:\364 245:\365 246:\366 247:\367

248:\370 249:\371 250:\372 251:\373 252:\374 253:\375 254:\376 255:\377

Figure 1: A table showing the representation of characters in an Emacs file buffer.

7



Suppose that the file containing the characters in Fig. 1 is named chartable.bin.5 Then using
the Linux cat command to display the contents of this file in an Emacs shell6 yields a result that
is almost like Fig. 1 except for the first few lines:

[cs342@puma] cat chartable.bin

0:^@ 1:^A 2^B 3:^C 4:^D 5:^E 6:^F 7:^G

8 9: 10:

14:^N 15:^0

16:^P 17:^Q 18:^R 19:^S 20:^T 21:^U 22:^V 23:^W

The differences are due to the fact that the Emacs shell performs actions for some of the control
characters:

• ASCII 8 (control-H) is treated as backspace, so it erases the colon after the 8;

• ASCII 13 (control-M) is treated as a carriage return, which erases all that precedes it on the
current line (in this case, 11:^K 12:^L 13:).

I have written a utility program name showall that shows printed representations for all of the
characters, including ^H, ^I, ^J, and ^M. For example:

[cs342@puma] cat chartable.bin | head | showall

0:^@^I1:^A^I2:^B^I3:^C^I4:^D^I5:^E^I6:^F^I7:^G^I^J8:^H^I9:^I^I10:^J^I11:^K^I12:^L

^I13:^M^I14:^N^I15:^O^I^J16:^P^I17:^Q^I18:^R^I19:^S^I20:^T^I21:^U^I22:^V^I23:^W^I

^J24:^X^I25:^Y^I26:^Z^I27:^[^I28:^\^{}I29:^]^I30:^^^I31:^_^I^J32: ^I33:!^I34:"^I35:

#^I36:$^I37:%^I38:&^I39:’^I^J40:(^I41:)^I42:*^I43:+^I44:,^I45:-^I46:.^I47:/^I^J48

:0^I49:1^I50:2^I51:3^I52:4^I53:5^I54:6^I55:7^I^J56:8^I57:9^I58::^I59:;^I60:<^I61:

=^I62:>^I63:?^I^J64:@^I65:A^I66:B^I67:C^I68:D^I69:E^I70:F^I71:G^I^J

(The Linux head command returns the first ten lines of a file.)

Encrypting/Decrypting with Pads
A one-time pad of length n is a sequence of n random characters. Fig. 2 presents a C program

that approximates a one-time pad using a pseudorandom number generator with a seed determined
by the system clock.

Suppose the program is named pad. Here is an example where > redirects the output of pad

into a file named pad200.bin for later use and cat is used to display the contents of this file:

[cs342@puma] pad 200 > pad200.bin

[cs342@puma] cat pad200.bin | showall

^E\374\253c\275hw^K \212\221\357\337C\251\261\354[^DC]9\203S*\362,\367\274g^O\301

c\273$ #\233+C%\2743^D\377\334\265\3538\272/\225\363\262\350^]\244^T^U‘{$"\337\33

7F\377^B\342+F^G\347y^L\347U\301\322\215{^A"n\263^K\214X^_\241\270\233\305\332z\2

45!y\247^C\244\355^J\214f^Vs\274\330EISGl\302\372wNR\226\357^K1\264\345\253Y^F%^A

^I\311\356^TUU*\310^Q^B^NZVU\306^XO=f\242\324U\255^E^I\222\261c\231\326d\242\237R

\266\365\247\341\275\270\343\313^S9 \331Qp^W\267^R\353^L\277\360^VQ\241y\352w\335

\215^W/C^L\327$\311

A file can be encrypted/decrypted with a pad by XOR-ing the characters in the file with those
in the pad. I have written an xor program (Fig. 3) for XORing two files that can be used for this
purpose.

5We will use the convention that files with the .bin extension contain arbitrary characters while those with the
.txt extension contain only regular text characters.

6To start a shell within Emacs, use M-x shell. All shell examples in this memo are from an Emacs shell. You
will see different behavior if you use a shell outside of Emacs, so executing all shell commands within an Emacs shell
is recommended.

8



/* Benny’s program to illustrate pad generation.

It writes to standard output a psuedorandom sequence of N

characters, where N is specified as the program argument.

The seed for the psuedorandom generator is the current time.

Since all the generator’s information is in a small, and possibly

guessable, seed, this is *not* an effective way to generate

a one-time pad. But it is helpful for illustrating how

such pads are used. */

#include <stdio.h> /* Include standard I/0 constants and operations */

#include <stdlib.h> /* Include standard library, which includes pseudorandom

number generator */

#include <time.h> /* Include time functions for initializing seed

of pseudorandom number generator */

/* Generate a random character */

char randomChar() {

/* Take remainder of random number relative to 256

(A character in C is an unsigned int in range 0--255) */

return (rand() % 256);

}

int main (int argc, char* argv[]) {/* argc = number of args;

argv[0] = program name;

argv[1] = int specifying number of chars */

if (argc != 2) { /* complain if unexpected number of arguments */

printf("%s expects one argument", argv[0]);

exit(1); /* terminate program with error code */

}

int n = atoi(argv[1]); /* store integer representation of arg in n;

stores 0 for string in which no prefix is an int. */

if (n < 0) {

printf("%s expects a non-negative integer but %d is not", argv[0], n);

exit(1); /* terminate program with error code */

}

int i;

srand((unsigned) time (NULL)); /* initialize seed of pseudorandom number generator

using the current time */

for (i = 0; i < n; i++) {

printf("%c", randomChar()); /* write random character to stdout */

}

exit(0); /* terminate program with normal code */

}

Figure 2: A C program generating an approxiation to a one-time pad.

9



/* Benny’s program that XORs the contents of two files.

It writes to stdout the XOR on the character contents of two files:

(1) stdin

(2) the file named by the single program argument.

If one file is shorter than the other, ignores the characters

of the longer file. */

#include <stdio.h> /* Include standard I/0 constants and operations */

int main (int argc, char* argv[]) {/* argc = number of args;

argv[0] = program name;

argv[1] = filename */

FILE* f; /* holds pointer to file */

int i1, i2; /* character variables */

if (argc != 2) { /* complain if unexpected number of arguments */

printf("%s expects one argument", argv[0]);

exit(1); /* terminate program with error code */

}

f = fopen(argv[1], "r"); /* open named file for reading */

if (f == NULL) { /* complain if file not found */

printf("File %s not found!\n", argv[1]);

exit(1); /* terminate program with error code */

}

i1 = fgetc(stdin); /* read first character from stdin */

i2 = fgetc(f); /* read first character from file */

/* printf("| c1 = %c (%d); c2 = %c (%d);\n", i1, i1, i2, i2); */

while ((i1 != EOF) && (i2 != EOF)) { /* while both files nonempty, */

/* printf("c1^c2 = %c (%d)\n", (char) (i1^i2), (char) (i1^i2)); */

printf("%c", (char) (i1^i2)); /* write xor of corresponding characters to stdout */

i1 = fgetc(stdin); /* read next character from stdin */

i2 = fgetc(f); /* read next character from file */

/*printf("| c1 = %c (%d); c2 = %c (%d);\n", i1, i1, i2, i2);*/

}

/* printf("\n"); */ /* Print a newline to flush print buffer */

exit(0); /* terminate program with normal code */

}

Figure 3: A C program for XORing two files.

10



For example, suppose that tiger.txt contains the following poem from Kurt Vonnegut’s book
Cat’s Cradle:

[cs342@puma ps1] cat tiger.txt

Tiger got to hunt,

Bird got to fly;

Man got to sit and wonder, "Why, why, why?"

Tiger got to sleep,

Bird got to land;

Man got to tell himself he understand.

The Linux word count program wc tells us that tiger.txt has 7 lines, 32 words and 158 characters:

[cs342@puma] wc tiger.txt

7 32 158 tiger.txt

We can use the xor program to combine tiger.txt with the pad in pad200.bin to create the
file tiger.bin:

[cs342@puma] cat pad200.bin | xor tiger.txt > tiger.bin

[cs342@puma] cat tiger.bin | showall

Q\225\314^F\317H^PdT\252\345\200\377+\334\337\230w^N^A4K\347sM\235X\327\310^H/\24

7^O\302^_*n\372EcB\323G$\213\263\225\230Q\316^O\364\235\326\310j\313zq^E^I^H^B\37

5\210.\206.\302\.^\313Y{\217,\376\360\207qUK^I\326y\254?p\325\230\357\252\372^I\

311D^\\327/\256\257c\376^B6^T\323\254e=<g^@\243\224^SuX\333\216e^Q\323\212\337yrJ

!}\254\202xu=C\245bgb<v=\2438:S^B\307\246&\331dg\366\237i

To see how this works, let’s examine the operation on the first few characters of tiger.txt and
pad200.bin:

File Chars ASCII Bits
tiger.txt Tige 84 105 103 101 01010100 01101001 01100111 01100101

pad200.bin ^E\374\253c 5 252 171 99 00000101 11111100 10101011 01100011

XOR of the two files Q\225\314^F 81 149 204 6 01010001 10010101 11001100 00000110

The xor program generates a file whose size is that of the smaller of its two inputs. So the
ciphtertext file tiger.bin has the same number of characters as the plaintext file tiger.txt (158).
The wc program shows this:

[cs342@puma] wc tiger.bin

wc: tiger.bin:1: Invalid or incomplete multibyte or wide character

0 4 158 tiger.bin

The wc program also indicates that tiger.bin has no newline character (^J), so it has 0 lines.
Of course, tiger.bin can be decoded by XORing it with the same pad that created it:

[cs342@puma] cat pad200.bin | xor tiger.bin

Tiger got to hunt,

Bird got to fly;

Man got to sit and wonder, "Why, why, why?"

Tiger got to sleep,

Bird got to land;

Man got to tell himself he understand.

11



Tiger got to hunt,

We do, doodley do,

Bird got to fly;

doodley do, doodl

Man got to sit and wonder, "Why, why, why?"

ey do, What we must, muddily must, muddily m

Tiger got to sleep,

ust, muddily must, M

Bird got to land;

uddily do, muddily

Man got to tell himself he understand.

do, muddily do, muddily do, Until we b

Figure 4: The interleaving of two poems, one in regular font and one in italics.

The check Program
I have create a program named check that helps to find text from two files that have been

XORed. To motivate this program, consider another poem from Cat’s Cradle:

[cs342@wampeter] cat doodley.txt

We do, doodley do, doodley do, doodley do,

What we must, muddily must, muddily must, muddily must,

Muddily do, muddily do, muddily do, muddily do,

Until we bust, bodily bust, bodily bust, bodily bust.

Suppose that we XOR the contents of tiger.txt and doodley.txt. The resulting file, which
well call mixed.bin, looks like gibberish:

[cs342@puma] cat doodley.txt | xor tiger.txt > mixed.bin

[cs342@puma] cat mixed.bin | showall

^C^LG^A^]^LG^K^[O^P^CE^QU^J^[^@*&^F^]^@L^B^VTD^[C^@^B^C^V_f(^XND^HC~w^\^NTS^^^Q^@

^L^[^WT[O^C^Q^A^VEL[w^E^L_T[H^TYD^S^A^UF^Bg^?’^]KE^_U^C^K^]L^MOM^F^_^QIza^?&^M^[^

HYG^K^[^LT^BU^H^E^G^HB*)^NB^@^J^Z^PD^]^CYT^A^C@^@^E^\^I^W^L^@^_^@^L^J^L^?;^J^Q^[^

_T^V^KDL^?

How could we ever hope to decipher this? Observe that the mixed.bin is the result of XORing
corresponding letters from the two poems, as suggested by the interleaving in Fig. 4. Note that
the word muddily appears several times in the italic poem. If we moved a “sliding window” of this
word over mixed.bin and XORed it at every position, then in the spots where muddily appear in
doodley.txt we we see the corresponding characters of tiger.txt.

This is exactly what the check program does, as shown in the example in Appendix C. The
input file (in this case, mixed.bin) is broken up into lines of 32 characters (in this case, five of
them), and a sliding window of the given text (in this case, muddily) is “slid” over each line and
XORed with its contents. Characters in the lines that do not participate in the XORing process
are shown as asterisks. Because there are 32 characters in each of five lines, the result is 32 blocks
with five lines each.

Most of the non-asterisk positions contain gibberish. But the spots where muddily appears in
doodley.txt do not contain gibberish. Here are the relevant lines culled from Appendix C:

12



*******y, why?******************

*************************nder, "

***^L

Bird **********************

***************o land;**********

*********************r got t****

*******himself****************

Using this information, we know something about the contents of tiger.txt.
Of course, in practice, we’re unlikely to pick muddily as a word to test for. It would make more

sense to look for common words like the, and, that, which, and so on. We must also be careful
with the results of checking such words, since “uncovered” words could come from either of the two
source texts. Nevertheless, using trial and error, check can be used to uncover many words from
the original texts. If a source text is searchable via Google, then sometimes a few choice words can
help decode the whole text!

Appendix C: Example of the check Program

This is an example of Benny’s check program in action. Six “interesting” lines have been hand-
marked with <==.

[cs342@puma] cat mixed.bin | check muddily

ny#et‘>*************************

nc;^BAt7*************************

^Zph;=71*************************

|<^^^E^VJt*************************

n,0ej,y***********************

*a2eye+r************************

*{*^BLq"=************************

*hy;02$m************************

*$^O^E^[Oab************************

*4!eg)l|**********************

***tyh.gb***********************

**2^SL|’(q***********************

**a*0?!x ***********************

**^W^T^[Bdwq***********************

**9tg$iie*********************

***lhh#bw6**********************

***^K]|*-d:**********************

***2!?,}5=**********************

***^L

Bird ********************** <==

***lv$dlpp********************

13



****py#or#i*********************

****Em* a/^G*********************

****9.,p0(j*********************

****^RSi^?a5>*********************

****n5dauen*******************

*****a2o^?&|z********************

*****u; l*^R^N********************

*****6=p=-^?x********************

*****Kx^?l0+r********************

*****-uax‘{u******************

*******^^?+yo<*******************

******#1l’^W^[e*******************

******%a= zml*******************

******‘nl=.gb*******************

******mpxm^‘y*****************

*******fn+tj)h******************

*******)}’^Z^^pw******************

*******y, why?****************** <==

*******v}=#bwu******************

*******himself**************** <==

********v:tg,},*****************

********e6^Z^Sub-*****************

********41we|*{*****************

********e,#or‘-*****************

********q|shisy***************

*********"eg!x9s****************

*********.^K^Sxg8*****************

*********)feq/n^^****************

*********42o^?e8{****************

*********dbhdvlu**************

**********}v!u<fb***************

**********^S^Bxj=?g***************

**********^tq"k^K^F***************

***********^^?h=n,***************

**********zyd{i‘s*************

***********n0u1cwy**************

***********^Zij0:rh**************

***********l‘"f^N^S^**************

***********fnh0k9q**************

***********au{defu************

************(d1nrlS*************

************q{07w}y*************

************x3f^C^VKd*************

************vy0f<d|*************

************mjdhc‘^F***********

*************| n^??iF_************

*************c!7zxlu************

*************+w^C^[Nq2************

*************a!f1ai^************

14



*************ruhne^SB**********

**************8^?^?dCJ^?***********

**************9&zui‘b***********

**************o^R^[Ct’<***********

**************9w1llkq***********

**************mynh^VWs*********

***************gndNOjd**********

***************>kudewn**********

***************

Cy")f**********

***************o land;********** <==

***************a^?h^[Rfh********

****************vuNBoqy*********

****************sddhr{-*********

****************^RRy/,s,*********

****************8}aca.S*********

****************gy^[_c}b*******

*****************m_Bbtl5********

*****************|uh^?^8"********

*****************Jh/!v9z********

*****************epcl+FP********

*****************a

_nxwf******

******************GSbyi {*******

******************my^?s=76*******

******************p>!{<or*******

******************hrl&CEw*******

******************^RNnurs-*****

*******************Ksyd%no******

*******************ans02#z******

*******************&0{1jgd******

*******************j}&N@b;******

*******************V^?u^?v8o****

********************khd(kz-*****

********************vb0?&oh*****

********************(j1gbq5*****

********************e7NMg.y*****

********************gd^?{=zr***

*********************pu(f^?8=****

*********************z!?+j}x****

*********************r got t****

*********************/_Mj+ls****

*********************|n{0^?g=**

**********************m9fr=(b***

**********************9.+gxmo***

**********************8voy%a6***

**********************G\j&ifc***

**********************vj0rb(5*

15



***********************!wr0-w:**

***********************6:guhz<**

***********************n^y(d#4**

***********************D{&dcvi**

***********************r!ro- ^F

************************oc0 r/y*

************************"vue^?)5*

************************fh(i&!^?*

************************c7dns|=*

************************9co %^S

*************************{! ^?*l{

*************************nder, " <==

*************************p9i+$jf

*************************/un^y(d

*************************{^ (^V

z*************************91^?’in

z*************************|tr!%7

^N*************************!x+)os

h*************************m^?^t-q

z*************************f1(^[

ou*************************)n’dk

oo*************************lc!(2

^[|*************************‘:)bv

}0*************************got t <==

o *************************)9^[

j‘>*************************v6df

jz&*************************{0(?

^^iu*************************"8b{

x%^C*************************we y

j5-*************************!

ge+x*************************.uf

g^?3^_*************************(9?

^Sl‘&************************* s{

u ^V^X*************************}1y

g08x*************************^R

gh.md*************************mw

gr6

Q*************************!.

^Sae3-*************************kj

^F*************************)h

g==mz*************************

vh#hqu*************************o

vr;^ODa*************************6

^Bah68"*************************r

d-^^^H^S_*************************p

v=0ho9************************

16


