CS342 Computer Security Handout # 5
Prof. Lyn Turbak Monday, Oct. 04, 2010
Wellesley College

Lab 4: Introduction to x86 Assembly

Reading:
Hacking, 0x250, 0x270

Overview

Today, we continue to cover low-level programming details that are essential for understanding software
vulnerabilities like buffer overflow attacks and format string exploits. You will get exposure to the following;:

e Understanding conventions used by compiler to translate high-level programs to low-level assembly code
(in our case, using Gnu C Compiler (gcc) to compile C programs).

e The ability to read low-level assembly code (in our case, Intel x86).
e Understanding how assembly code instructions are represented as machine code.

e Being able to use gdb (the Gnu Debugger) to read the low-level code produced by gcc and understand
its execution.

In tutorials based on this handout, we will learn about all of the above in the context of some simple
examples.

Intel x86 Assembly Language

Since Intel x86 processors are ubiquitous, it is helpful to know how to read assembly code for these
processors.

We will use the following terms: byte refers to 8-bit quantities; short word refers to 16-bit quantities;
word refers to 32-bit quantities; and long word refers to 64-bit quantities.

There are many registers, but we mostly care about the following;:

e EAX, EBX, ECX, EDX are 32-bit registers used for general storage.
e ESI and EDI are 32-bit indexing registers that are sometimes used for general storage.

e ESP is the 32-bit register for the stack pointer, which holds the address of the element currently at the
top of the stack. The stack grows “up” from high addresses to low addresses. So pushing an element
on the stack decrements the stack pointer, and popping an element increments the stack pointer.

e EBP is the 32-bit register for the base pointer, which is the address of the current activation frame on
the stack (more on this below).

e EIP is the 32-bit register for the instruction pointer, which holds the address of the next instruction to
execute.

At the end of this handout is a two-page “Code Table” summarizing Intel x86 instructions. The Code
Table uses the standard Intel conventions for writing instructions. But the GNU assembler in Linux uses
the so-called AT&T conventions, which are different. Some examples:

AT&T Format

Intel Format

Meaning

movl $4, %eax

movl eax, 4

Load 4 into EAX.

addl %ebx, Y%eax

addl eax, ebx

Put sum of EAX and EBX into EAX.

pushl $X pushl [X] Push the contents of memory location
named X onto the stack.
popl %ebp popl ebp Pop the top element off the stack and put

it in EBP.

movl %ecx, -4(%esp)

movl [esp - 4] ecx

Store contents of ECX into memory at an
address that is 4 less than the contents of
ESP.

leal 12(%ebp), Y%eax

leal eax [ebp + 12]

Load into EAX the address that is 12 more
than the contents of EBP.

movl (%ebx,%esi,4), %eax

movl eax [ebx + 4x*esi]

Load into EAX the contents of the mem-
ory location whose address is the sum of
the contents of EBX and four times the
contents of ESI.

cmpl $0, 8(%ebp)

cmpl [ebp + 8] O

Compare the contents of memory at an
address 8 more than the contents of EBP
with 0. (This comparison sets flags in the
machine that can be tested by later in-
structions.)

jg L1 jg L1 Jump to label L1 if last comparison indi-
cated “greater than”.
jmp L2 jmp L2 Unconditional jump to label L2.

call printf

call printf

Call the printf subroutine.

We will focus on instructions that operate on 32-bit words (which have the 1 suffix), but there are ways
to manipulate quantities of other sizes (the b suffix operates indicates byte operations and the w suffix
indicates 16-bit-word operations).

Typical Calling Conventions for Compiled C Code

The stack is typically organized into a list of activation frames. Each frame has a base pointer that
points to highest address in the frame; since stacks grow from high to low, this is at the bottom of the
frame:!

<local vars for F>
<local vars for F>

<base pointer>: <old base pointer (of previous frame)>
—----Bottom of frame for F----
<return address for call to F>
<arg 1 for F>
<arg 2 for F>

<arg n for F>
<local vars for caller of F>

<local vars for caller of F>
<old base pointer>: <older base pointer>
—-—--Bottom of frame for caller of F----

To maintain this layout, the calling convention is as follows:

1. The caller pushes the subroutine arguments on the stack from last to first.

2. The caller uses the call instruction to call the subroutine. This pushes the return address (address
of the instruction after the call instruction) on the stack and jumps to the entry point of the called
subroutine.

3. In order to create a new frame, the callee pushes the old base pointer and remembers the current stack
address as the new base pointer via the following instructions:

pushl Yebp # \ Standard callee entrance
movl %esp, %ebp # /

4. The callee then allocates local variables and performs its computation.
When the callee is done, it does the following to return:

1. It stores the return value in the EAX register.

2. It pops the current activation frame off the stack via:
movl %ebp, %esp
popl %ebp
This pair of instructions is often written as the leave pseudo-instruction.

3. It returns control to the caller via the ret instruction, which pops the return address off the stack and
jumps there.

4. The caller is responsible for removing arguments to the call from the stack.

'"We will follow the convention of displaying memory on the page increasing from low to high addresses.

Writing Assembly Code by Hand for the SOS Program

Following the above conventions, we can write assembly code by hand for the sum-of-squares program
we studied last time:

/* Contents of the file sos.c */
#include <stdio.h>

/* Calculates the square of integer x */
int sq (int x) {
return x*x;

}

/* Calculates the sum of squares of a integers y and z */
int sos (int y, int z) {

return sq(y) + sq(z);
}

/* Reads two integer inputs from command line
and displays result of SOS program */
int main (int argn, char**x argv) {
int a = atoi(argv[1]);
int b = atoi(argv[2]);
printf ("sos(%i,%i)=%i\n", a, b, sos(a,b));
}

HANDWRITTEN ASSEMBLY CODE FOR THE SOS PROGRAM (in the file sos.s)

.section .rodata # Begin read-only data segment

.align 32 # Address of following label will be a multiple of 32
.fmt: # Label of SOS format string

.string "sos(%i,%1i)=%i\n" # SOS format string

.text # Begin text segment (where code is stored)

.align 4 Address of following label will be a multiple of 4
sq: Label for sq() function

pushl %ebp \ Standard callee entrance

movl hesp, %hebp /

movl 8(%ebp), %heax result <- x

imull 8(%ebp), %eax result <- x*result

leave \ Standard callee exit

ret /

.align 4 Address of following label will be a multiple of 4
sos: Label for sos() function

\ Standard callee entrance

/

push y as arg to sq()

heax <- sq(y)

save sq(y) in %ebx

pop v off stack (not really necessary)
push z as arg to sq()

heax <- sq(z)

pop z off stack (not really necessary)
%heax <- %eax + %ebx

pushl Y%ebp

movl %hesp, %hebp
pushl 8(%ebp)
call sq

movl heax, %ebx
addl $4, Yesp
pushl 12(%ebp)
call sq

addl $4, Yesp
addl %hebx, ‘heax

H OH H H H H HEHEHHEHHHEHEHHHEHHHEHEH A

leave \ Standard callee exit
ret /
.align 4 Address of following label will be a multiple of 4

.globl main # Main entry point is visible to outside world
main: # Label for main() function
pushl Y%ebp # \ Standard callee entrance
movl %hesp, %ebp #/
int a = atoi(argv([1])
subl $8, Y%esp # Allocate space for local variables a and b
movl 12(%ebp), %eax # Y%eax <- argv pointer
addl $4, ‘heax # Y%eax <- pointer to argv[1]
pushl (%eax) # push string pointer in argv[l] as arg to atoi()
call atoi # Yeax <- atoi(argv[1])
movl heax, -4(%ebp) # a <- Yeax
addl $4, Yesp # pop arg to atoi off stack

int b = atoi(argv([2])
movl 12(%ebp), %eax # %eax <- argv pointer
addl $8, Yeax # Yieax <- pointer to argv[2]
pushl (Yeax) # push string pointer in argv[2] as arg to atoi()
call atoi # Yeax <- atoi(argv[2])
movl heax, -8(%ebp) # b <- Jeax

#

addl $4, Yesp pop arg to atoi off stack

printf ("sos(%i,%i)=%d\n", a, b, sos(a,b))#
First calculate sos(a,b) and push it on stack

pushl -8(%ebp) # push b

pushl -4 (%ebp) # push a

call sos # Yeax <- sos(a,b)

addl $8, Y%esp # pop args to sos off stack
pushl %eax # push sos(a,b)

Push remaining args to printf

pushl -8(%ebp) # push b

pushl -4 (%ebp) # push a

pushl $.fmt # push format string for printf

Now call printf
call printf

addl $16, %esp # pop args to printf off stack (not really necessary)
leave # \ Standard callee exit
ret # /

END OF ASSEMBLY CODE FILE
Here’s how to compile and run our hand-written code:

[cs342@localhost assembly-intro] gcc -o sos-by-hand sos-by-hand.s
[cs342@localhost assembly-intro] sos-by-hand 3 4

sos(3,4)=25

[cs3420@localhost assembly-intro] sos-by-hand 10 5

sos(10,5)=125

Compiling sos.c to Assembly Code

Writing assembly code by hand is tedious and error prone. This is why compilers were invented! They
automatically translate code that’s written at a higher level than assembly? into assembly instructions.
These instructions can be assembled into even lower level machine code — the bits that can actually be
executed on a processor like an x86.

We can use gcc to compile sos.c into assembly code as follows:?

[cs3420@localhost assembly-intro] gcc -S sos.c

This creates the file sos.s shown below. Note that the code is a bit different than what we generated
by hand.

Contents of the assembly file sos.s created by gcc -S sos.c

.file "sos.c"
.text
.globl sq
.type sq, @function
sq:
pushl Jebp
movl %esp, %ebp
movl 8(%ebp), 'heax
imull 8(%ebp), ‘heax
popl %ebp
ret
.size sq, .-sq
.globl sos
.type sos, @function
Sos:
pushl ’ebp
movl %esp, %ebp
pushl hebx
subl $4, Yesp
movl 8(%ebp), 'heax
movl %heax, (%hesp)
call sq
movl Y%eax, %ebx
movl 12 (%ebp), heax
movl %heax, (%hesp)
call sq
leal (%ebx,%eax), %eax
addl $4, Yesp
popl %hebx
popl %ebp
ret
.size sos, .-sos
.section .rodata
.LCO:

.string "sos(%i,%i)=%d\n"
.text

20f course, we know that C is not at that much higher a level than assembly, but I digress ...
3These are the results we get if we compile the code on a 32-bit machine like those in the Linux microfocus cluster. We
get very different results if we compile the code on a 64-bit machine like puma.

.globl main

.type main, @function
main:

pushl Jebp

movl %esp, ‘hebp

andl $-16, %esp

subl $32, Yesp

movl 12 (%ebp), %heax

addl $4, Yeax

movl (heax), ‘heax

movl %heax, (%esp)

call atoi

movl heax, 24(%esp)

movl 12 (%ebp), %heax

addl $8, Yeax

movl (heax), ‘heax

movl %heax, (%esp)

call atoi

movl %heax, 28(%esp)

movl 28 (Yesp), heax

movl %heax, 4(%esp)

movl 24 (Yesp), heax

movl %heax, (%hesp)

call sos

movl $.LCO, %edx

movl heax, 12(%esp)

movl 28 (Yesp), heax

movl %heax, 8(%esp)

movl 24 (Yesp), heax

movl %heax, 4(%esp)

movl %edx, (%esp)

call printf

leave

ret

.size main, .-main

.ident "GCC: (GNU) 4.4.1 20090725 (Red Hat 4.4.1-2)"
.section .note.GNU-stack,"",@progbits

Even though the code looks different, it behaves the same way, as demonstrated by compiling it to
machine code:

[cs342Q@localhost assembly-intro] gcc -o sos-from-assembly sos.s
[cs342@localhost assembly-intro] sos-from-assembly 3 4
sos(3,4)=25

Optimizing sos.c
Invoking gcc with an optimization flag (-01, -02, -03) can create more compact code by using clever
optimizations.

[cs342@localhost assembly-intro] gcc -S -03 -o sos_03.s sos.c

Part of the contents of sos_03.s created by gcc -8 -03 -o s0s_03.s sos.c
.globl sq
.type sq, @function

sq:
pushl Jebp
movl %esp, %ebp
movl 8(%ebp), 'heax
popl lhebp
imull %heax, ‘heax
ret
.size sq, .-sq
.p2align 4,,15
.globl sos
.type sos, @function
s0s:
pushl Jebp
movl %esp, %ebp
movl 8(%ebp), 'heax
movl 12 (%ebp), %edx
popl %ebp
imull %heax, ‘heax
imull hedx, %hedx
leal (%edx,%eax), %eax
ret

Using GDB to Disassemble Code

What if we don’t have the source code to generate assembly code, but only the binary code? Then we
can use the GNU Debugger (gdb) to disassemble the binary, as shown below:

[cs3420@localhost assembly-intro] gdb sos-from-assembly

GNU gdb (GDB) Fedora (6.8.50.20090302-40.fc11)

Copyright (C) 2009 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "i586-redhat-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>. ..

(gdb) disassemble sq

Dump of assembler code for function sq:
0x080483f4 <sq+0>: push Y%ebp
0x080483f5 <sq+1>: mov hesp, hebp
0x080483f7 <sq+3>: mov 0x8 (%ebp) ,%eax
0x080483fa <sq+6>: imul 0x8(%ebp),%eax
0x080483fe <sq+10>: pop %ebp
0x080483ff <sqt+11>: ret

End of assembler dump.

(gdb) disassemble 0x080483f4

Dump of assembler code for function sq:
0x080483f4 <sq+0>: push Y%ebp
0x080483f5 <sq+1>: mov hesp, hebp
0x080483f7 <sq+3>: mov 0x8 (%ebp) ,%eax
0x080483fa <sq+6>: imul 0x8(%ebp),%eax
0x080483fe <sq+10>: pop %ebp
0x080483ff <sq+11>: ret

End of assembler dump.

(gdb) disassemble sos

Dump of assembler code for function sos:
0x08048400 <sos+0>: push %ebp
0x08048401 <sos+1>: mov %hesp, hebp
0x08048403 <sos+3>: push %ebx
0x08048404 <sos+4>: sub $0x4,%esp
0x08048407 <sos+7>: mov 0x8 (%ebp) , heax
0x0804840a <sos+10>: mov %eax, (hesp)
0x0804840d <sos+13>: call 0x80483f4 <sq>
0x08048412 <sos+18>: mov %eax, %hebx
0x08048414 <so0s+20>: mov Oxc (%ebp) , heax
0x08048417 <sos+23>: mov %heax, (hesp)
0x0804841a <sos+26>: call 0x80483f4 <sqg>
0x0804841f <sos+31>: lea (hebx,%eax,1) ,%eax
0x08048422 <sos+34>: add $0x4,%esp
0x08048425 <sos+37>: pop %hebx
0x08048426 <so0s+38>: pop %ebp
0x08048427 <sos+39>: ret

End of assembler dump.

(gdb)

A Recursive Factorial Program

Below is a C program for recursively calculating factorials.

/* This is the contents of the file fact.c */
int fact (int n) {
if (n <= 0)
return 1;
} else {
return n*fact(n-1);
}
}

int main (int argn, char** argv) {

int x = atoi(argv[il);

printf ("fact(%i)=%i\n", x, fact(x));
}

Let’s compile it and take it for a spin!

[cs3420@localhost assembly-intro] gcc -o fact fact.c
[cs3420@localhost assembly-intro] fact 3

fact(3)=6

[cs3420@localhost assembly-intro] fact 4

fact(4)=24

10

Hand-written x86 Assembly for Recursive Factorial Program

Below is the result of hand-compiling the factorial program using the calling conventions studied earlier:

This is the contents of the file fact-by-hand.s

.section

.align 32
.fmt:

.string "fact(%i)=%i\n"
.text

.align 4
fact:

pushl %ebp
movl %esp, %ebp
cmpl $0, 8(%ebp)
jg factGenCase
call print_stack
movl $1, %eax
jmp factRet
.align 4
factGenCase:
movl 8(%ebp), %eax
subl $1, %eax
pushl Yeax
call fact
imull 8(%ebp), %eax
.align 4
factRet:
leave
ret
.align 4
.globl main
main:
pushl %ebp
movl %esp, %ebp
subl $4, %esp
movl 12(%ebp), %eax
addl $4, %eax
pushl (%eax)
call atoi
movl %eax, -4 (%ebp)
pushl Yeax
call fact
pushl Yeax
pushl -4(%ebp)
pushl $.fmt
call printf
leave
ret

.rodata # Begin read-only data segment

Address of following label will be a multiple of 32
Label of fact program format string

fact program format string

Begin text segment (where code is stored)

Address of following label will be a multiple of 4
Label for factorial function

\ Standard callee entrance

/

Compare n and O

Jump if greater to general case

Base case: show the stack state using Lyn’s stack walker
result <- 1

Jump to shared return code

Address of following label will be a multiple of 4
Label for general case

%eax <- n

heax <- (n-1)

push (n-1) for recursive call to factorial

call fact(n-1)

result <- n*result

Address of following label will be a multiple of 4
Shared return code for factorial

\ Standard callee exit

/

Address of following label will be a multiple of 4
Main entry point is visible to outside world
Label for main() function

\ Standard callee entrance

/

Allocate space for local variable x

%eax <- argv pointer

%heax <- pointer to argvl[1]

push string pointer in argv[1l] as arg to atoi()
%eax <- atoi(argv[i])

Save x for later printf

Push x for fact call

Call fact(x)

Push result of fact(x) for printf

push x for printf

push format string for printf

Call printf("fact(%i)=%i\n", n, fact(n))

\ Standard callee exit

/

H OH H HHHEHHEHHHEHHEHHEHHHEHHEHHEHRHR

H OH OHFEHHFEHHHEHHEHHEHEHHEHRH

We can compile and run this as follows:

[cs3420@1localhost assembly-intro] gcc -o fact-by-hand fact-by-hand.s
[cs3420@localhost assembly-intro] fact-by-hand 5

fact(5)=120

11

Using GDB again

Suppose we uncomment the line in fact-by-hand.s containing call print _stack and recompile as
follows:

[cs342@localhost assembly-intro] gcc -c print_stack.c
[cs342@localhost assembly-intro] gcc -o fact-by-hand fact-by-hand.s

Here, the -c option creates a .o object file for the function print_stack defined in print_stack.c (not
shown here). This function displays a representation of the stack when invoked.
Let’s use gbd to disassemble fact-by-hand:

[cs3420@localhost assembly-intro] gdb fact-by-hand

GNU gdb (GDB) Fedora (6.8.50.20090302-40.fc11)

Copyright (C) 2009 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "i586-redhat-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>. ..

(gdb) disassemble main

Dump of assembler code for function main:
0x08048480 <main+0>: push Y%ebp

0x08048481 <main+1>: mov hesp, hebp

0x08048483 <main+3>: sub $0x4,%esp

0x08048486 <main+6>: mov Oxc (%ebp) , heax
0x08048489 <main+9>: add $0x4, %heax

0x0804848c <main+12>: pushl (%eax)

0x0804848e <main+14>: call 0x8048374 <atoi@plt>
0x08048493 <main+19>: mov %heax,-0x4 (%ebp)
0x08048496 <main+22>: push Jeax

0x08048497 <main+23>: call 0x8048454 <fact>
0x0804849c <main+28>: push Jeax

0x0804849d <main+29>: pushl -0x4(%ebp)
0x080484a0 <main+32>: push $0x8048a00
0x080484ab <main+37>: call 0x8048364 <printf@plt>
0x080484aa <main+42>: leave

0x080484ab <main+43>: ret

End of assembler dump.

(gdb) disassemble fact

Dump of assembler code for function fact:
0x08048454 <fact+0>: push Y%ebp

0x08048455 <fact+1>: mov hesp, hebp

0x08048457 <fact+3>: cmpl $0x0,0x8(%ebp)
0x0804845b <fact+7>: jg 0x804846¢c <factGenCase>
0x0804845d <fact+9>: call 0x80486fa <print_stack>
0x08048462 <fact+14>: mov $0x1, %heax

0x08048467 <fact+19>: jmp 0x804847c <factRet>
0x08048469 <fact+21>: lea 0x0(%esi) ,%esi

End of assembler dump.

(gdb)

12

Displaying the Stack

The hand-compiled factorial program uses a stack display program named print_stack that displays
the state of the stack when it’s called. Let’s see what it does in the case of invoking the factorial program
on 3:4

bfc2e688: bfc2e690
bfc2e68c: 08048462
bfc2e690: bfc2e69c
bfc2e694: 08048478
bfc2e698: 00000000
bfc2e69c: bfc2eba8
bfc2e6a0: 08048478
bfc2e6ad: 00000001
bfc2e6a8: bfc2e6bd
bfc2ebac: 08048478
bfc2e6b0: 00000002
bfc2eb6b4d: bfc2e6c8
bfc2e6b8: 0804849c
bfc2eb6bc: 00000003
bfc2e6c0: bfc2f647 ->3
bfc2e6cd: 00000003
bfc2e6c8: bfc2e748 ->
bfc2ebcc: 0014da86
bfc2e6d0: 00000002
bfc2e6d4: bfc2e774
bfc2e6d8: bfc2e780
bfc2eb6dc: 0045b000
bfc2e6e0: 00000000
bfc2ebed: ffffffff
bfc2e6e8: 00133fc4
bfc2ebec: 0804826e
bfc2e6£0: 00000001
bfc2e6f4: bfc2e730 ->
bfc2e6£8: 00122de6
bfc2e6fc: 00134818
bfc2e700: 0045b2d8
bfc2e704: 002a2ff4
bfc2e708: 00000000
bfc2e710: bfc2e748 ->
bfc2e714: 58fc02d6
bfc2e718: £48535a9
bfc2e71c: 00000000
bfc2e728: 00000002
bfc2e72c: 080483a0
bfc2e730: 00000000
bfc2e734: 00128fd0
bfc2e738: 0014d9ab
bfc2e73c: 00133fc4
bfc2e740: 00000002
bfc2e744: 080483a0
bfc2e748: 00000000
bfc2e74c: 080483cl
bfc2e750: 08048480

4A problem in the print_stack function prevents it from printing the whole stack and returning the value. But you get
the idea ...

13

bfc2e754:
bfc2e758:
bfc2e75c:
bfc2e760:
bfc2e764:
bfc2e768:
bfc2e76c¢:
bfc2e770:
bfc2e774:
bfc2e778:
bfc2e77c:
bfc2e780:
bfc2e784:
bfc2e788:
bfc2e78c:
bfc2e790:
bfc2e794:
bfc2e798:
bfc2e79c:
bfc2e7al:
bfc2e7a4:
bfc2e7a8:
bfc2e7ac:
bfc2e7b0:
bfc2e7b4:
bfc2e7b8:
bfc2e7bc:
bfc2e7c0:
bfc2e7c4:
bfc2e7c8:
bfc2e7cc:
bfc2e7d0:
bfc2e7d4:
bfc2e7d8:
bfc2e7dc:
bfc2e7e0:
bfc2e7e4:
bfc2e7e8:
bfc2e7ec:
bfc2e7£0:
bfc2e7f4:
bfc2e7£8:
bfc2e7fc:
bfc2e800:
bfc2e804:
bfc2e808:
bfc2e80c:
bfc2e810:
bfc2e814:
bfc2e818:
bfc2e8ic:
bfc2e820:
bfc2e824:
bfc2e828:
bfc2e82c:
bfc2e830:
bfc2e834:

00000002
bfc2e774
08048930
08048920
001237e0
bfc2e76¢c
00134660
00000002
bfc2f63a
bfc2f647
00000000
bfc2f649
bfc2f674
bfc2£709
bfc2f72e
bfc2f74d
bfc2£792
bfc2f7a2
bfc2f7ac
bfc2f7c7
bfc2f7d5
bfc2f7£8
bfc2£823
bfc2f839
bfc2£857
bfc2f86a
bfc2f875
bfc2£87d
bfc2f888
bfc2f891
bfc2f89¢c
bfc2f8b7
bfc2f98c
bfc2f9b4
bfc2f9ch
bfc2f9f8
bfc2fcd3
bfc2fcdb
bfc2fcec
bfc2fcfa
bfc2fd08
bfc2fd22
bfc2fd2e
bfc2feb53
bfc2fe89
bfc2fec2
bfc2feed
bfc2ff95
bfc2ffac
bfc2ffc7
bfc2ffdc
00000000
00000020
003b9414
00000021
003b9000
00000010

Segmentation fault

->fact-by-hand
->3

->BIBINPUTS=: /home/fturbak/church/1lib/bibtex

->DVIPSHEADERS=. : /usr/share/texmf/dvips//:/home/fturbak/lib/tex/psfonts/cmpsfont/pfb: /home/fturbak/1
->TWHOMEDIR=/home/cs307/public_html/tw

->HOSTNAME=1ocalhost.localdomain

->BSTINPUTS=: /home/fturbak/church/1ib/bibtex: /home/fturbak/lib/tex/jfp

->SHELL=/bin/bash

->TERM=dumb

->CATALINA_HOME=/home/tomcat

->HISTSIZE=1000

->SSH_CLIENT=149.130.163.181 4858 22

->0LDPWD=/home/cs342/download/assembly-intro

->QTDIR=/usr/1ib/qt-3.3

->QTINC=/usr/lib/qt-3.3/include

->SSH_TTY=/dev/pts/1

->USER=cs342

->EMACS=t

->LS_COLORS=

->TERMCAP=

->COLUMNS=80

->MAIL=/var/spool/mail/cs342

->PATH=/usr/java/sdk/bin: /usr/network/bin: /usr/local/smlnj/bin: /usr/1ib/qt-3.3/bin: /usr/kerberos/sbi
->PWD=/home/cs342/download/assembly-intro

->LANG=en_US.UTF-8

->SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass

->TEXINPUTS=: /home/cs230/1lib/tex: /home/cs342/1ib/tex: /home/fturbak/1lib/tex: /home/cs230/1ib/tex: /home
->SHLVL=2

->HOME=/home/cs342

->LOGNAME=cs342

->PRINTER=minil

->QTLIB=/usr/lib/qt-3.3/1ib

->CVS_RSH=ssh

->CLASSPATH=: /home/cs230/download/HiLo: /home/cs230/download/TextFun: /home/cs230/download/TextStats:/
->SSH_CONNECTION=149.130.163.181 4858 149.130.136.42 22
->NPX_PLUGIN_PATH=/usr/java/j2sdk1.4.0/jre/plugin/i386/ns4

->LESSOPEN=| /usr/bin/lesspipe.sh s

—->TWLOADPATH=. : /home/cs307/public_html/tw/textures:/home/cs307/public_html/tw/objects:/home/cs307/pu
->DISPLAY=1localhost:11.0

->INSIDE_EMACS=23.1.1,comint

->G_BROKEN_FILENAMES=1

->_=./fact-by-hand

[~ee~e]

[fe~e~a!]

14

