
1

Malware 1: Viruses

CS342 Computer Security

Monday, November 22, 2010
Sources: see final slide

CS342 Computer Security

Department of Computer Science
Wellesley College

Goals

o Introduction to malware taxonomy

o Appreciating the evolution of viruses
Encryption polymorphism metamorphismEncryption, polymorphism, metamorphism

o General Anti-Virus (AV) detection techniques

o Understanding the arms race between virus writers
and anti-virus detectors.

o Appreciate that: if you take your time, use a few patterns, and
use many levels of indirection, you are very hard to beat

22-2Malware 1: Viruses

2

Malware (MALicious softWARE)

o A generic term increasingly being used to describe any form of
malicious software like:

viruses worms Trojan horses rootkits spywareviruses, worms, Trojan horses, rootkits, spyware,
malicious mobile code, backdoors, dialers, ransomware

o Combinations are common
Some malware are actually combinations of more basic malware
(e.g., a rootkit can be viewed as Trojan horse backdoor tool)

o Broadly classified according to:
• Infection technique: “how does it propagate?”• Infection technique: how does it propagate?

• Impact on target: “what does it do?”

• Type of exploited vulnerability: “ How (by violating which
assumption) did it get in?”

22-3Malware 1: Viruses

Malware TaxonomyType Characteristics

Virus Self-replicating code that infects a host file.
Usually requires human interaction to spread.
Sometimes used as generic term for all malware.

Worm Self-replicating code that spreads across a network.
Usually does not require human interaction to spread.

Rabbit Virus or worm that multiplies without bound

Trojan Horse Disguises itself as a useful program while masking
hidden malicious purpose.

Backdoor/Trapdoor Bypasses normal security controls to give attacker access

User-level Rootkit Replaces or modifies executable programs used by system administrators and
users

Kernel-level Rootkit Manipulates the OS kernel to hide and create backdoors

Spyware Monitors user interaction and collects information (e.g., via keylogger)

Logic Bomb Dormant malicious code triggered by date or event.

22-4

Logic Bomb Dormant malicious code triggered by date or event.

Easter Egg Cute but harmless behavior triggered by special input.

Malicious Mobile Code Small programs downloaded and executed locally with minimal user intervention.
Typically written in Javascript, VBScript, Java, or ActiveX

Combination Malware Combines techniques to increase effectiveness

Malware 1: Viruses

3

Malware evolution
Themes:
o Increasing complexity/sophistication
o Acceleration of rate of

tool/technique release
o Movement from viruses -> worms

-> kernel level exploits kernel level exploits

22-5

Figure from Skoudis Malware, p.16.

Malware 1: Viruses

Virus Basics
o Frederick B. Cohen’s definition:

A virus is a program that can ‘infect’ other programs by
modifying them to include a, possibly evolved, version of itself.

Vi d th t tt h s its lf t h st p mso Virus = code that attaches itself to host programs
and runs when host program executes. Running the
host program usually requires user intervention.

o Self-replication: when the virus runs, it copies (a possibly
mutated version of) itself to other host programs.

• Self-replicating mutating code is a cornerstone of artificial life
research.

o A virus needs a target location method to find other hosts.

o A running virus may also execute a payload = mischievous or
malicious action.

22-6Malware 1: Viruses

4

How do Viruses Spread?

Uninfected program
owned by user 2

Infected program
owned by user 1

virus v

User 2 simply executes user 1’s infected program.
Unlike buffer overflow, setuid not necessary!

22-7Malware 1: Viruses

Infected program
owned by user 2

Infected program
owned by user 1

virus v virus v’

Highly Destructive Malicious Viruses

o Delete all/many files.
Michelangelo virus deleted a partition on Michelangelo’s birthday.

o Consume resources (processor, memory, bandwidth …) (p y)
 denial of service.

o Such viruses can have trouble spreading.
Why is Ebola relatively uncommon in apes/humans?

22-8Malware 1: Viruses

5

Somewhat Destructive Malicious Viruses
o Install backdoors for botnots, other attacks.
o Data-diddling: modify one bit of randomly selected file, swap digits

in phone numbers, spreadsheets, etc. (hard to track to virus).
o Wazzu virus: randomly scramble words and insert “wazzu”
o Typo virus: introduce typing errors for fast typists.
o Random deletion: delete randomly chosen file not recently

accessed.
o Protection changing: change ownership and protection bits on files.
o Executive error virus: underling installs virus that makes

supervisor incompetent.
C t h nn l i s: in nfid nti lit l tti n l ssifi d s o Covert channel virus: in confidentiality lattice, unclassified user
introduces virus to copy secret information through covert
channel.

o Ken Thompson, Reflections on Trusting Trust: insert login Trojan
into C compiler object code that can’t be detected in source!

22-9Malware 1: Viruses

Nondestructive Viruses
Many viruses spread without doing damage, but can still be

annoying or do accidental damage.

o Elk Cloner: first microcomputer virus (Apple II) displayed poem:

ELK CLONERELK CLONER:

THE PROGRAM WITH A PERSONALITY

IT WILL GET ON ALL YOUR DISKS
IT WILL INFILTRATE YOUR CHIPS
YES IT’S CLONER
IT WILL STICK TO YOU LIKE GLUE
IT WILL MODIFY RAM TOO
SEND IN THE CLONERS C O

o Marburg virus: drew random icons on desktop.

o Spanska virus: displayed animations

o Haiku virus displayed randomly generated haiku.

22-10Malware 1: Viruses

6

Benevolent Viruses
The payload of a virus can do good as well as bad. E.g.

o Antivirus virus: good virus that deletes bad viruses.

o Compression virus: automatically compress files to save space (but
th ’s tim /sp t d ff) there s a time/space tradeoff).

o Maintenance virus: install system updates, clean up undeleted
temporary files, reset incorrect protection bits, defragment disk,
etc.

o Distributed database virus: make copies of information across
multiple machines and modify old copies to be consistent with
recent changes. g

Ethical questions:

o Is it OK to distributed “good” viruses?

o What if good virus goes has unexpected bad consequences – e.g.,
accidentally consumes lots of resources.

22-11Malware 1: Viruses

Viruses Infection Techniques
o Overwriting

• Overwrite host program, changing behavior (easy to discover)
• Typically overwrite beginning, but can overwrite later (in which case

virus may not be executed).

Appendingo Appending
• Add virus code to end of program, and jump to virus.
• Typically virus jumps back to program to evade detection.

o Prepending
• Add virus code to front of host program.
• Parastic virus: variant that overwrites start of program, but moves

starting code later.g

o Cavity Virus
• Squirreled away in “holes” in program
• doesn’t change program size

o Compressing Virus
o Compresses program and inserts self so as not to change program size.

22-12Malware 1: Viruses

7

Viruses Propagation Methods
o Insert a copy into every executable (.COM, .EXE)

o Insert a copy into boot sectors of disks

• “Stoned” virus infected PCs booted from infected floppies • Stoned virus infected PCs booted from infected floppies,
stayed in memory and infected every floppy inserted into PC

o Infect TSR (terminate-and-stay-resident) routines

• By infecting a common OS routine, a virus can always stay in
memory and infect all disks, executables, etc.

o Infect macros in documents/spreadsheets, etc.

• A virus in MS Word Normal.dot file can infect all documents.

o Infect shell scripts and other source code.

22-13Malware 1: Viruses

Virus Propagation Vectors
o Removable storage

• Floppies, writable CDs/DVDs, USB flash drives

o Email Attachments o Email Attachments
• Can contain executable parts

o Downloads

o Shared Directories
Multi-user systems, networked file system (e.g., puma),

peer-to-peer (P2P) networks

22-14Malware 1: Viruses

8

Basic Anti-Virus (AV) Techniques
o Signature-based detection

• signature = pattern/fingerprint matching virus
• AV engine checks files against database of signatures to (1) identify

and (2) disinfect file containing virus,
• On-demand scanning (user explicitly requests) vs. on-access scanning

(done every time a file is opened, modified, and/or closed).
• Need to update signature database frequently

o Heuristic detection
• Check program for virus-like behavior (access boot sector, find all

files in current directory, write to .EXE file, delete files)
• Emulate behavior before executing or execute in sandboxEmulate behavior before executing or execute in sandbox.

o Integrity checking
• Record file fingerprints (sizes, checksums, hashes) in pristine system

and check later (e.g. Tripwire).
• Used by some AV scanners to avoid more detailed scanning
• Must store fingerprints carefully!

22-15Malware 1: Viruses

Signature-Based Scanning

o Hex strings from virus variants
• 67 33 74 20 73 38 6D 35 20 76 37 6167 33 74 20 73 38 6D 35 20 76 37 61

• 67 36 74 20 73 32 6D 37 20 76 38 61

• 67 39 74 20 73 37 6D 33 20 76 36 61

o Hex string for detecting virus
• 67 ?? 74 20 73 ?? 6D ?? 20 76 ?? 61

• ?? = wildcard

22-16Malware 1: Viruses

9

Anti-Virus Problems
o False Positives: one version of McAfee flagged Excel!

o False Negatives: fail to detect malware

o Long detection times slows down machines

o Developing signatures/keeping databases current: > 100K new
viruses/week!

o What to do when virus detected: Delete vs. quarantine

o Vendors focus on big clients, not individual users

o Bad guys can disable/intercept AV scans
• turn off AV scansturn off AV scans
• make infected file appear “normal” to AV detector
• block access to AV websites/downloads/updates

o Arms race
• Bad guys test new viruses against AV
• Stealth techniques for hiding/changing viruses

22-17Malware 1: Viruses

Arms Race between Virus Writers/Detectors
o Encrypted virus: virus consists of a constant decryptor, a key (that

changes between copies), and the encrypted virus body.
• Detector finds decryptor and key & uses it to decrypt/identify virus

Oli hi i d li h l b io Oligomorphic virus: mutate decryptor slightly by using
several decryptors or build decryptors out of simple patterns.

o Polymorphic virus: mutate decryptors into millions of forms via
obfuscation techniques (reordering and junk instructions), but keep
(unencrypted) body same

o Metamorphic virus: mutate virus bodies via obfuscation techniques,
b k f i libut keep functionality

o shuffle registers
o reorder instructions
o insert junk instructions
o change source code and recompile

22-18Malware 1: Viruses

10

Benign Code Can be Encrypted/Obfuscated
Q: Why not just flag all encrypted/obfuscated code as viruses?

A: Because these techniques are commonly used in benign code to
protect intellectual property by complicating reverse engineering. p p p y y p g g g

Especially used in cases where code otherwise easy to inspect:

• machine code

• virtual machine code (e.g., JVM, .NET)

• HTML

• Javascript

• Source code of interpreted languages (Python, PERL, shell
scripts, etc.)

22-19Malware 1: Viruses

Detecting Oligomorphic/Polymorphic Viruses

1. Run suspect program in an emulator

2. Wait until it decrypts

3. Decrypted code will be identical for various copies

4. Use signature scanning on decrypted virus body

22-20Malware 1: Viruses

11

Virus Detection by Emulation

Randomly generates a new key
and corresponding decryptor code

Mutation A

Decrypt and execute

Virus body

Mutation C

Mutation B

To detect an unknown mutation of a known virus ,

emulate CPU execution of until the current sequence of
instruction opcodes matches the known sequence for virus body

22-21Malware 1: Viruses

Detecting Polymorphic Viruses: Challenges
o Determining when decryption is complete.

o Doesn’t work very well against viruses not located near beginning
of infected executable.

o Some viruses use random code block insertion or insert millions of
NOPs at the entry point prior to the main virus body.

• Emulator executes code for a while, does not see virus body and
decides the code is benign. When main virus body is finally executed,
virus propagates

o Decryptor may be able to determine whether it’s running in an
emulator and behave differently in this case. y

22-22Malware 1: Viruses

12

Metamorphic Viruses
o Obvious next step: mutate the virus body, too!

o Virus can carry its source code (which deliberately contains some
useless junk) and recompile itself

Apparition virus (Win32)• Apparition virus (Win32)
• Virus first looks for an installed compiler (Unix machines have C

compilers installed by default)
• Virus changes junk in its source and recompiles itself
• New binary mutation looks completely different!

o Many macro and script viruses evolve and mutate their code
• Macros/scripts are usually interpreted, not compiledp y p p

22-23Malware 1: Viruses

Metamorphic Virus [Szor, 2001]

o An early generation
c7060F000055 mov dword ptr [esi], 550000Fh
c746048BBC5151 mov dword ptr [esi+0004] 5151BCBBhc746048BBC5151 mov dword ptr [esi+0004], 5151BCBBh

o A later generation

BF0F000055 mov edi, 550000Fh
893E mov [esi], edi
5F pop edi
52 push edx
B640 mov dh 40B640 mov dh, 40
BA8BEC5151 mov edx, 5151EC8Bh
53 push ebx
8BDA mov ebx, ebx
895E04 mov [esi+0004], ebx

22-24Malware 1: Viruses

13

Metamorphic Mutation Techniques
o Same code, different register names

• Regswap (Win32)

S m d diff nt s b tin do Same code, different subroutine order

• BadBoy (DOS), Ghost (Win32)

• If n subroutines, then n! possible mutations

o Decrypt virus body instruction by instruction, push instructions
on stack, insert and remove jumps, rebuild body on stack

• Zmorph (Win95)p ()

• Can be detected by emulation because the rebuilt body has a
constant instruction sequence

22-25Malware 1: Viruses

Example of Zperm Mutation

“Hunting for Metamorphic” at
www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

o Body makeup not constant
o Detect by running suspect program in an emulator and analyze

behaviour while running
o Can also disassemble and look for virus-like instructions
 Hard problem!

22-26Malware 1: Viruses

14

Mutation Engines
o Real Permutating Engine/RPME (introduced in Zperm virus),

ADMutate, many others

o Employ a large set of obfuscating techniques
Inst ti ns d d b n h nditi ns s d• Instructions are reordered, branch conditions reversed

• Jumps and NOPs inserted in random places
• Garbage opcodes inserted in unreachable code areas
• Instruction sequences replaced with other instructions that have

the same effect, but different opcodes
• SUB EAX, EAX  XOR EAX, EAX
• PUSH EBP; MOV EBP ESP  PUSH EBP; PUSH ESP; POP EBP• PUSH EBP; MOV EBP, ESP  PUSH EBP; PUSH ESP; POP EBP

o There is no constant, recognizable virus body!

22-27Malware 1: Viruses

Virus-Specific Detection
o Many viruses can’t be detected by simple scanning. Instead, need

more complex analysis and/or emulation.

o AV software includes programs written in virus detection languages
for detecting specific viruses for detecting specific viruses.

o Special-case detection is time-consuming, so rely on filtering to
identify cases where it’s likely to be productive.

22-28Malware 1: Viruses

15

How Hard Is It to Write a Virus?
o Can be challenging to write a virus from scratch

(just ask Audrey & Era!)

o In practice study and modify existing viruses o In practice, study and modify existing viruses.

o Many virus construction kits available.

• AV vendors familiar with such kits and defend against the kinds of
viruses they create.

22-29Malware 1: Viruses

Resources
o Daniel Bilar, Intro To Malware, CS342 slides, Oct. 6, 2006
o Frederick B. Cohen, A Short Course on Computer Viruses. John

Wiley, 1994.
o Ed Skoudis Malware: Fighting Malicious Code Pearson Edcation o Ed Skoudis, Malware: Fighting Malicious Code. Pearson Edcation,

2004
o Sean Smith and John Marchesini, The Craft of System Security,

Chapter 6: Implementation Security.
o Peter Szor, The Art of Computer Virus Research and Defense.

Addison Wesley, 2005.
o John Viega, The Myths of Computer Security: What the Computer

Security Industry Doesn’t Want you to Know. O’Reilly Media, 2009.
o John Viega,”Why Anti-Virus Sucks, and How to Fix It”, Talk to

Harvard’s Center for Research on Computation and Society (CRCS),
Wed. Oct. 8, 2008 (see video of talk at
http://crcs.seas.harvard.edu/2008/09/24/wednesday-october-8-
2008-john-viega-on-tbd/

22-30Malware 1: Viruses

