
CS342 Computer Security

Department of Computer Science
Wellesley College

Cryptographic Tools:
Shared-Key Cryptography,

Hashes, and Digital Signatures
Monday, November, 2012

Reading: S&M Secs. 7.1 – 7.4, 7.6; Ch. 8
Schneier Applied Cryptography, Chs. 1, 7-12 (parts, optional)

 Cryptographic Tools 22-2

Cast of Characters

Alice wants to send a message M to Bob.

Eve may be eavesdropping on the communication (passive attacker)

Mallory may be able to change the message (active attacker)

M = “one if by land two if by sea”

Alice Bob

Eve

Mallory

22-3

Eve’s Lament

http://xkcd.com/177/
 Cryptographic Tools

22-4

Goals of Cryptography
Confidentiality: No one can read M except
 Alice and Bob (e.g., whispering, locked box);

Authentication: Bob knows M comes from Alice,
 not someone masquerading as Alice
 (e.g., wax seal, watermark paper, signature);

Integrity: Bob can verify that M has not be
 altered after it was sent by Alice
 (e.g., tamperproof packaging);

Nonrepudiation: Alice should not be able to
 falsely deny sending M.

message
authentication,
digital
signatures

encryption/
decryption

First topic!

 Cryptographic Tools

22-5

Terminology
Cryptography = scrambling messages: converting messages into

"gibberish" that can be converted back to message.

Cryptanalysis = breaking secret codes.

Cryptology = cryptography + cryptanalysis (in practice cryptography is
often used for cryptology).

Steganography = hiding messages, ``security through obscurity''.
E.g., under wax, under hair, invisible ink, in lower order bits
of images, in whitespace (http://compsoc.dur.ac.uk/whitespace)

Note: Can combine steganography and cryptography.
 Cryptographic Tools

22-6

The Basic Scenario

Encrypt Decrypt M

plaintext
(text,image, voice, …)

ciphertext
(Eve can see

Mallory can see/alter)

plaintext

Alice’s key

KA

Bob’s key

KB

M = D(KB, C) C = E(KA,M)

E(key, msg) is the encryption (enciphering) function

D(key, msg) is the decryption (deciphering) function

Need D(KB, E(KA , M)) = M for all M.

 Cryptographic Tools

22-7

Kerkhoffs’s Principle
o  Separate cryptography into public algorithms

 and private keys
 (Dutch linguist Auguste Kerckhoffs, 1883)

o  Private algorithm is an example of security
through obscurity, which is usually not secure,
at least once algorithm is known
(e.g., Navajo code talkers in WW2).

o  Proprietary algorithms often contain holes; public algorithms are
analyzed by lots of smart people to find potential problems.

o  People (rightly) suspicious of private algorithms, so hard to
adopt on widespread basis.

 Cryptographic Tools

22-8

Symmetric vs. Public-Key Cryptography
Symmetric (a.k.a. shared-key, secret-key, private-key):

o  Alice and Bob share the same key (or they have different keys
that can be easily calculated from one another).

o  Communicating keys is a big problem. (How to do e-commerce?)

o  Our topic for this lectures

Asymmetric (public-key):

o  Bob can publish a public key that anyone (including Alice) can use
to encrypt a message, but only Bob has a private key that can
decrypt the message. The private key cannot easily be determined
from the public key.

o  Alice can contact Bob without exchanging keys with him! But
public-key management is still a problem.

o  Upcoming topic!
 Cryptographic Tools

22-9

Symmetric Cryptography Algorithms
For simplicity, often assume messages & keys use 26-letter alphabet.
(in reality, typically use 8-bit = 256-character bytes or raw bits).

In each of the following examples: What is the key? How many keys
are there? (Modern crypto relies on computational intractability.)

o  Shift cipher

o  Vigenere cipher

o  One-Time pad

o  Substitution cipher

o  Transposition cipher

o  Rotor Machines

o  Block Cipher

o  Stream Cipher

 Cryptographic Tools

22-10

Shift Cipher
shift message

0 ibm

1 jcn

2 kdo

… …

25 hal

o  Idea: “shift” the letter in each
plaintext position by the same amount

o  Caesar cipher: shift by 3

o  Rot13: shift by 13 (doing twice is id)

o  How easy is it to break an
encrypted message?

 Cryptographic Tools

22-11

Shift Cipher: JavaScript Malware, 2010
In a spam .html message sent to Takis:

Shift cipher of 1 for

<meta http-equiv="refresh" content="0;url=http://
blacklefilm.com/x.html" />

which redirects to what appears to be a drive-by download site.

 Cryptographic Tools

22-12

Vigenere Cipher
Idea: “shift” the letter in each plaintext position
as determined by repeating key

 Plaintext: oneifbylandtwoifbysea
 Key: cabcabcabcabcabcabcab
Ciphertext: qnfkfcalbpduyojhbzueb

o  The same plaintext at different positions may be
encrypted to different ciphertext (e.g. “ifby”).

o  How secure is Vigenere? Check out
 http://cs.wellesley.edu/~fturbak/codman-archive/codman-nov-02-2007/

 Cryptographic Tools

Most common digrams (in order):
th, he, in, en, nt, re, er, an, ti, es, on, at, se, nd,
or, ar, al, te, co, de, to, ra, et, ed, it, sa, em, ro.

The most common trigrams (in order):
the, and, tha, ent, ing, ion, tio, for, nde, has, nce, edt, tis, oft, sth, men

See http://pages.central.edu/emp/LintonT/classes/spring01/cryptography/letterfreq.html
 22-13

Frequency Analysis

English letter frequencies:

 Cryptographic Tools

22-14

XOR Operation (⊕) On Bits

⊕ 0 1
0 0 1
1 1 0

plaintext o n e i f
ascii 111 110 101 105 102
bits 0110 1111 0110 1110 0110 0101 0110 1001 0110 0110

key 1011 0101 0101 1010 1110 1111 0100 0000 0110 1101

ciphertext 1101 1010 0011 0100 1000 1010 0010 1001 0000 1011

key 1011 0101 0101 1010 1110 1111 0100 0000 0110 1101

bits 0110 1111 0110 1110 0110 0101 0110 1001 0110 0110

ascii 111 110 101 105 102
plaintext o n e i f

Properties
•  Associativity: (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)
•  Commutativity: x ⊕ y = y ⊕ x
•  Identity: x ⊕ 0 = x = 0 ⊕ x
•  Invertability: x ⊕ x = 0

Consequence: (p ⊕ k) ⊕ k = p

 Cryptographic Tools

22-15

One-Time Pad

k1

p1

c1

p1

… plaintext
message as bits

⊕

⊕ k1

 k2

p2

c2

p2

⊕

⊕ k2

k3

p3

c3

p3

⊕

⊕ k3

k4

p4

c4

p4

⊕

⊕ k4

key

key

…

…

View message as n bits and have n-bit random “pad” as key.
Effectively Vigenere with key as long as message.

 Cryptographic Tools

22-16

Evaluating One-Time Pad
o  If used properly, one-time pad is perfectly secure.

Ciphertext C for message M can decrypt to any message
M’ with some key.

o  New key must be chosen for every message:

•  Reusing keys breaks security by opening messages to analysis
(e.g., Russian Venona ciphers).

• How to communicate such long keys securely?
(Why not send messages the same way?)

o  If pad isn’t really random but psuedo-random generated by seed,
 this is a stream cipher .

 Cryptographic Tools

22-17

One-Time Pads in the News this Month

http://www.nytimes.com/2012/11/02/world/europe/world-war-ii-pigeons-message-a-mystery.html
 Cryptographic Tools

22-18

Stream Cipher

ks1

p1

c1

p1

…
plaintext message as bits

⊕

⊕ ks1

ks2

p2

c2

p2

⊕

⊕ ks2

ks3

p3

c3

p3

⊕

⊕ ks3

ks4

p4

c4

p4

⊕

⊕ ks4

keystream
generator key

keystream
generator key

Basic architecture is like one-time pad, except XORing is done
with key stream generated by key. E.g., key is seed to
psuedo-random number generator (PRNG). Example: RC4.

 Cryptographic Tools

22-19

Evaluating Stream Ciphers

A simple way to encrypt long/infinite streams of data
(e.g., a network link).

Security of stream cipher depends entirely on details
of keystream generator.

 Cryptographic Tools

22-20

Substitution Cipher
Idea: replace plaintext letters according to alphabet permutation.

A “key” is one such permutation. E.g.:

a b c d e f g h i j k l m n o p q r s t u v w x y z
j d u s c l n f r h a g z w k y i p t m x b v q o e

plaintext:
ciphertext:

o n e i f b y l a n d t w o i f b y s e a
k w c r l d o g j w s m v k r l d o t c j

plaintext:
ciphertext:

Encrypt a message via this permutation. E.g.:

o  Same plaintext at different positions
encrypts to same ciphertext.

o  Can implement by rotors (e.g. WWII Enigma)

o  How many keys are there?
 Cryptographic Tools

22-21

Breaking Substitution Ciphers
There are 26! = 4x1026 keys.

So substitution ciphers must be very secure, right? J

L Oops! How are
substitution ciphers
broken?

 Cryptographic Tools

22-22

Transposition Cipher
Idea: shuffle chunks of the plaintext message

A “key” is one such shuffling. E.g.:

o n e i f b y l a n d t w o i f b y s e a x y z

n b i o f l e y n o t a w f d i y x e b a z s y

o  Same plaintext at different positions can be shuffled differently.

o  May need to “pad” end of message. Pads must be chosen carefully!

o  How many keys are there for shuffle blocks of length n?

o  How can transposition ciphers be broken?

 Cryptographic Tools

22-23

Block Cipher

key

… Fixed-length plaintext block (e.g. 64 bits)

Fixed-length ciphertext block
…

key

…
Fixed-length plaintext block

E

D

How many different
blocks with n bits?

In theory, how many
different encryption
functions?

In practice far fewer,
depending on key size.
How many encryption
functions for key size k?

Examples: DES, AES.
 Skipjack, IDEA,
 Blowfish, RC5

 Cryptographic Tools

22-24

Block Cipher: Electronic Codebook Mode (ECB)

k E

k D

P1

C1

P1

k E

k D

P2

C2

P2

k E

k D

P3

C3

P3

k E

k D

P4

C4

P4

…

…

…

plaintext message as blocks
(may need padding at end)

 Cryptographic Tools

Advantages:
•  Easy to parallelize

•  Can modify part of encrypted file without re-encrypting whole file.

•  Ciphertext bit errors in one block don’t propagate to other blocks.

Disadvantages:

•  Can make “codebook” of any decrypted blocks.

•  Can perform statistical attacks on blocks. Stereotyped beginnings
 and endings of messages especially problematic.

•  Adding or losing a ciphertext bit (synchronization error)
 throws everything off if no frames.

•  Block replay: Mallory can replace, remove, repeat,
 interchange blocks (e.g. modify bank transfers to other
 accounts to move money to his account).

22-25

Evaluating ECB

 Cryptographic Tools

22-26

Block Cipher: Cipher-Block Chaining Mode (CBC)

k E

k D

P2

C2

P2

…

…

… ⊕

⊕

k E

k D

P1

C1

P1

⊕

⊕

k E

k D

P3

C3

P3

⊕

⊕

k E

k D

P4

C4

P4

⊕

⊕

Initialization
Vector (IV)

 Cryptographic Tools

Why Initialization Vectors?

 Same message (or message prefix) won’t yield same ciphertext
 for different IVs (like password hashing salt). IVs chosen randomly.

Advantages of CBC:

 Resistant to “codebooks”, statistical attacks, and block replay.

Disadvantages of CBC:

•  Inherently sequential.

•  Error problems:
o  Changed bit in ciphertext block garbles current plaintext block and
 changes one bit of subsequent block .

o  Adding/removing single bit in ciphertext block garbles rest of
 plaintext message.

22

22-27

Evaluating CBC

 Cryptographic Tools

22-28

Data Encryption Standard (DES)
o  In 1972, National Bureau of Standards issued request for standard

crypto algorithm.

o  Data Encryption Standard (DES) was adopted as federal standard
in 1977 and ANSI standard in 1981.

o  Grew out of IBM Lucifer system and evaluated by the National
 Security Agency (NSA). People worried that NSA reduced key size
from 128 to 56 bits and may have introduced a trapdoor.

o  DES is a block cipher --- maps 64-bit plaintext block to 64 bit
ciphertext block controlled by 56-bit key. Uses 16 rounds of the
same substitution/permutation operation.

 Cryptographic Tools

22-29

Encryption/Decryption with openssl Command

[cs342@puma] cat secret.txt
One if by land, two if by sea.

[cs342@puma] openssl enc -des -nosalt -pass pass:foobar -in secret.txt -out
secret.enc

[cs342@puma] cat secret.enc
S\3725\337*|^T\341\345^^\366\316\207\370\261\351d\371^D^A#
\245^V1>\240Gy\230\256

[cs342@puma] openssl enc -d -des -nosalt -pass pass:foobar -in secret.enc
One if by land, two if by sea.

 Cryptographic Tools

22-30

Brute Force Attacks on DES
Although denied by US govt. (esp. NSA) people suspected DES was
breakable by brute force (i.e., try all possible keys) with enough
computing power.

Shown in series of RSA-Labs-sponsored challenges to break DES keys:

o  Jun. 1997: 140 days by DESCHALL project
(distributed.net), as described in Matt Curtin’s
Brute Force: Cracking the Data Encryption Standard

o  Feb. 1998: 39 days by distributed.net

o  Jul. 1998: 56 hours by Electronic Frontier
Foundation's (EFF) "Deep Crack" machine

o  Jan. 1999, key broken in 22 hours and 15
minutes by Deep Crack + distributed.net

Moral: Key size matters!

 Cryptographic Tools

National Institute of Standards and Technology (NIST) requested
 proposals for new encryption standard in 1997; winner in 2000
 was dubbed Advanced Encryption Standard (AES) . Minimum of
 128-bit keys; up to 256-bit keys.

Other block ciphers:

o  Skipjack (Clipper chip/Fortezza program, 80-bit keys)

o  Triple-DES (TDES) = three rounds of DES with 3 different keys;
 2*56 = 112 effective bits of security with 3*56 = 168-bit keys.

o  IDEA (128-bit keys)

o  Blowfish (Schneier, up to 448-bit keys).

o  RC5 (Rivest, parameterized over key & block size)

22-31

Other Block Ciphers

 Cryptographic Tools

Brute force attack: Try all possible keys. Feasability depends on key size,
available computrons.

Information theoretic attacks: Letter frequency information can break shift &
substitutions cipher quickly. (To reduce redundancy of messages, some crypto
implementations first compress message.)

Algorithm/implementation attacks: take advantage of details in algorithm or its
implementation – e.g. choice of randomness, padding functions . Examples:
•  Netscape SSL “random” session key easily guessable with time/process info.
•  Kerberos v.4 DES 56-bit session key only had 20 bits of info.

Side channel attacks: determine key from timing, memory usage, power,
 electromagnetic field, etc.

Keyjacking: Hijack calls to cryptographic API.

Other approaches we’ve seen: information leakage (find keys on stack, in
memory pages, etc.) and social engineering (shoulder surfing, dumpster diving,
etc.)

22-32

Breaking Cryptography (S&M Ch. 8)

 Cryptographic Tools

22-33

Cryptanalytic Attack Classification
Add ciphertext-only: given only encrypted messages, deduce messages/key.

known-plaintext: given plaintext messages & encryptions, deduce key/algorithm

chosen-plaintext: deduce key from black-box encrypter.

chosen-ciphertext: deduce key from black-box decrypter.

purchase-key/rubber-hose: bribe/threaten key holder until s/he gives up key

 Cryptographic Tools

22-34

Change of Focus: Message Authentication
Confidentiality: No one can read M except
 Alice and Bob (e.g., whispering, locked box);

Authentication: Bob knows M comes from Alice,
 not someone masquerading as Alice
 (e.g., wax seal, watermark paper, signature);

Integrity: Bob can verify that M has not be
 altered after it was sent by Alice
 (e.g., tamperproof packaging);

Nonrepudiation: Alice should not be able to
 falsely deny sending M.

message
authentication,
digital
signatures

encryption/
decryption

 Cryptographic Tools

22-35

Message Authentication via Digital Signatures
With encryption scenario, nothing prevents Eve from recording and
replaying messages and Mallory from modifying messages (e.g. splicing
parts of different messages together).

Want a way to determine that an plaintext message is authentic --
it’s really from who it says it's from, and has not been changed.

If Alice sends Bob (unencrypted) M, want it accompanied with a
digital signature SA,M that has the following properties:

o Authenticity: Bob confident M is from Alice (only she signs SA,M).

o Integrity of signed document. Changing M invalidates SA,M

o Unforgeability: no one but Alice knows how to sign SA,M.

o Unreusabilty: SA,M depends on M, so can’t be used with another msg.

o Nonrepudiation of signature: Alice can’t claim she didn’t send M.

 Cryptographic Tools

o  For untampered message, M = M’ and S = S’ = S’’. Otherwise, Bob thinks
message has been changed and/or is not from Alice.

o  Replay still a problem, but can be solved with sequence #s/timestamps.

o  MAC provides no confidentiality by itself. M could be plaintext.

o  MAC can be combined with encryption, but authentication key should be
unrelated to encryption key. 22-36

Message Authentication Code (MAC)

MAC

MAC

M

Authentication key K

S = MAC(K,M)

M’ S’’ = MAC(K,M’)

S’ S’

M’

 Cryptographic Tools

22-37

CBC-MAC
Idea: Break message into n fixed-sized blocks (padding if necessary)
and encrypt with block cipher in CBC mode. MAC is final cipher block.

Ferguson, Schneier, and Kohno (FSK) warn:

o  Never use same key for encryption and authentication.

o  Collision attacks limit security to half the length of block size.

o  Not recommended, because difficult to use correctly.

K E

M2

…
⊕

K E

M1

⊕
K E

Mn

MAC

⊕

Initialization
Vector (IV)

discard discard

padded

 Cryptographic Tools

22-38

CMAC
Idea: Like CBC-MAC, but XOR key-dependent value in input to final
block to disrupt some CBC-MAC attacks

K E

M2

…
⊕

K E

M1

⊕

Mn

MAC

⊕

Initialization
Vector (IV)

discard discard

padded

K E

⊕ f

 Cryptographic Tools

22-39

Cryptographic Hash Functions
A cryptographic hash function H(M) returns a fixed-length hash
value h for any size message M. This value h is known as a
cryptographic checksum, fingerprint, message digest.
Well see they’re very handy to use in MAC.s

Hash Function Bits in Fingerprint
MD5 (Message Digest, Rivest) 128

SHA-1 (Secure Hash Algorithm, NSA) 160
SHA-2 (NSA) 224, 256, 384, 512

SHA-3 (NIST) under design

01011010001
01011101101
100110110…

M (arbitrarily large)

H(M) = h (fixed size)
H 11010011010110…110

 Cryptographic Tools

22-40

Desirable Crypto Hash Function Properties
One-way (a.k.a. Pre-image Resistance):
• Easy to compute H(M) = h.
• Given h’, hard to find an M‘ such that H(M') = h’ (even though
there are ∞ such values, by the pigeon-hole principle).
• Implies that, given M, hard to find M’ such that H(M) = H(M’).

Collision Resistance:
• Practically difficult to find (M1, M2) that collide: H(M1) = H(M2).

Seemingly Random Behavior:
• H behaves like a random mapping: changing a single bit in M should
change about half the bits in H(M), in an unpredictable way

Note: do note confuse cryptographic hash functions with much
simpler hash functions used in hash tables!

 Cryptographic Tools

22-41

Hashing Examples Using openssl

[cs342@puma] echo "One if by land, two if by sea." | openssl dgst -md5
fe66cbf9d929934b09cc7e8be890522e

[cs342@puma] echo "One if by land, two if by sea." | openssl dgst -md5 -c
fe:66:cb:f9:d9:29:93:4b:09:cc:7e:8b:e8:90:52:2e

[cs342@puma] echo "One if by land, two if by sea" | openssl dgst -md5 -c
78:4b:61:4a:66:98:17:82:18:d9:25:ca:c9:64:c5:56

[cs342@puma] echo "One if by land, Two if by sea." | openssl dgst -md5 -c
96:07:e8:69:cd:97:59:98:ad:21:8e:46:a8:c0:4f:0e

[cs342@puma] echo "One if by land, two if by sea." | openssl dgst -sha1 -c
28:47:d1:e5:9a:96:83:bf:2f:2a:91:b8:f3:ec:21:63:d3:be:5a:6b

[cs342@puma] echo "One if by land, two if by sea" | openssl dgst -sha1 -c
24:e2:d1:19:44:c2:17:49:1f:d8:9c:23:d0:9d:d2:d9:87:87:11:f1

 Cryptographic Tools

22-42

More Hashing Examples

[cs342@puma ~] echo "One if by land, two if by sea." | openssl dgst -sha256 -c
67:82:97:b4:e2:4f:95:28:b7:f1:cf:37:dc:8b:49:83:3f:94:d6:45:50:eb:1c:4f:79:86:
56:0a:59:8e:e1:ed

[cs342@puma ~] echo "One if by land, two if by sea" | openssl dgst -sha256 -c
94:09:b6:88:06:44:df:e8:47:28:e2:9c:5e:99:0c:16:76:5c:ad:1d:32:36:25:ef:2b:c3:
0e:d8:7a:ed:38:95

[cs342@puma ~] echo "One if by land, two if by sea." | openssl dgst -sha512 -c
93:fc:e3:a3:07:6a:90:ec:51:29:be:71:da:bf:47:dd:d0:67:ed:89:c6:b4:f9:27:ba:f6:
c8:8c:a1:78:d2:53:ac:92:bc:3d:a5:52:06:98:d5:40:14:9f:2e:ad:fe:ab:55:ae:6f:d7:
67:cf:1e:b4:85:0a:01:9c:78:8f:97:22

[cs342@puma ~] echo "One if by land, two if by sea" | openssl dgst -sha512 -c
8c:89:d6:ad:9e:30:09:53:00:70:bd:a0:4c:1a:62:34:7c:5e:f2:a3:c0:25:02:99:e2:7a:
89:b0:ac:2f:a5:fc:7c:44:72:a7:a6:69:75:45:c9:3f:18:f9:12:e0:a7:50:bf:73:c4:f8:
61:42:fd:90:78:3d:06:28:7b:f0:48:8c

 Cryptographic Tools

One-wayness of hashes is useful for storing passwords.

Example: suppose user gdome has password foogle.

o Crypt (DES) style /etc/shadow entry for gdome (first 2 chars are “salt”):
gdome:MATk8HeMV.5yk:14151:0:99999:7:::
[cs342@puma ~] openssl passwd -salt Wf foogle
 rNR3vCevfquRw
[cs342@puma ~] openssl passwd -salt Wf foogle
Wf1x7fz3kpBrg
[cs342@puma ~] openssl passwd -salt MA foogle
MATk8HeMV.5yk

o MD5 style /etc/shadow entry for gdome (“salt” between 2nd and 3rd $)
gdome:1TCClG4D0$GTUC6geaYRIq8BnhIo5n81:14151:0:99999:7:::
[cs342@puma ~]$ openssl passwd -1 -salt TCClG4D0 foogle
1TCClG4D0$GTUC6geaYRIq8BnhIo5n81

 22-43

Hashes in Practice: Passwords

 Cryptographic Tools

22-44

Hashes in Practice: Safe Downloads
Safe downloads from untrusted sites (as long as have file hash from trusted
site).

Can use hashes to guarantee file integrity.

E.g., http://www.safer-networking.org/en/download/index.html

[lynux@localhost ~]$ openssl dgst -md5 Desktop/spybotsd160.exe
MD5(Desktop/spybotsd160.exe)= 0e7fbf50f87b3b7c384a2471154a7558

 Cryptographic Tools

22-45

Hashes in Practice: Intrusion Detection
o  Intrusion detection: use hash (possibly combined with key) to fingerprint all

important system files.

Can use hashes to guarantee file integrity.

E.g., http://www.safer-networking.org/en/download/index.html

[lynux@localhost ~]$ openssl dgst -md5 Desktop/spybotsd160.exe
MD5(Desktop/spybotsd160.exe)= 0e7fbf50f87b3b7c384a2471154a7558

 Cryptographic Tools

22-46

Hashes Aren’t Digital Signatures!

One-way hashes can be used for integrity in some cases (e.g., code
fingerprint from ``reputable'' website), but by themselves they're
not suitable for signing messages from Alice to Bob.

Why?

 Cryptographic Tools

22-47

Hash-Based MACs
A MAC combine hashes with keys to so that only key-holders can authenticate.
Useful for authenticating files between users and determining if user files have
changed

Basic idea: send pair <M, S> of message M and signature S, where the S is
calculated from M and key K. Some possible signatures:

•  encrypt hash value of M with key: S = E(K, H(M)).

•  hash encrypted value of M: S = H(E(K, M)).

•  hash result of concatenating key and message: (1) S = H(K @ M) or
 (2) S = H(M @ K).

Schneier & FSK mention some vulnerabilties of these approaches.

 Cryptographic Tools

Generic Hash Attacks
Recall: want hash function H to have both the following properties:

 Pre-Image Resistance: given h, hard to find M s.t. H(M) = h

 Collision Resistance: hard to find M1 and M2 s.t. H(M1) = H(M2)

For k-bit hashes:

•  given h, about how many messages M do we expect to examine in
 a brute force attack on h?

•  about how many messages M do we expect to examine to find
 a collision?

To figure these out, let’s think about birthdays …
22-48 Cryptographic Tools

22-49

Birthday Problems

The following two problems are very different:

1. Alice is in a room of n people. What’s the smallest n for which there’s a
50% probability that someone else shares Alice’s birthday?

2. (Birthday Paradox) There are n people in a room. What’s the smallest
n for which there’s a 50% probability that at least one pair share the
same birthday?

 Cryptographic Tools

Solution to Birthday Problem #1:

Let B(n) = at least one of n people shares Alice’s birthday
and NB(n) = not one of the n people shares Alice’s birthday

Then p(B(n)) + p(NB(n)) = 1, so p(B(n)) = 1 – p(NB(n)).

p(NB(n)) = (364/365)n

Note: expected number of
people to have first match
is 365.

Consequence: for k-bit hash,
expect to find a message with
a given hash value h after
2k hashes.

 22-50

Birthday Problem #1: Details

n p(NB(n)) p(B(n))
50 .872 .128
100 .760 .240
150 .663 .337
200 .578 .422
250 .504 .496
253 .500 .500
300 .439 .561
400 .334 .666
500 .254 .746
750 .128 .872
1000 .064 .936

 Cryptographic Tools

22-51

Birthday Paradox: Details
Solution to Birthday Problem #2 (Birthday Paradox)

Let B(n) = at least two of n people share same birthday
and NB(n) = no two people share the same birthday.

Then p(B(n)) + p(NB(n)) = 1, so p(B(n)) = 1 – p(NB(n)).

p(NB(n)) = (365/365)*(364/365)*(363/365)* … * ((366 – n)/365)

 = 365! / ((365 – n)! * 365n)

n p(NB(n)) p(B(n))
10 .883 .117
15 .747 .253
20 .589 .411
23 .493 .507
30 .294 .706
40 .109 .891
50 .03 .97
60 .006 .994
70 .001 .999

 Cryptographic Tools

22-52

Birthday Paradox: Results
Suppose a system generates a random sequence of n values in [1 .. L].

There are (n * (n-1))/2 pairs of sequence elements (ignoring order).

There is a 1/L chance that any pair has equal values.

So the probability of a collision is (n * (n-1))/2L ~ n2/2L.

When is the collision probability about 50%?

What does this imply about the number of messages that need to be
examined to find collisions for a hashing function with a k-digit fingerprint?

 Cryptographic Tools

22-53

Birthday Paradox: Practical Consequences
MD5 hash (128 bits)

o Expect to find collisions after 264 ~ 18x1018 messages. Once unthinkably
large, but now very thinkable.

o Cryptanalytic advances starting in 2005 allow finding collisions in much
fewer than 264 computations.

o “While the existence of such efficent collision finding attacks may not
immediately break all uses of MD5, it is safe to say that MD5 is very weak
and should no longer be used.” (FSK, Ch. 5)

SHA-1 hash (160 bits)

o Expect to find collisions after 280 ~ 1.2x1024 messages. Within the realm of
thinkability.

o Algorithm details make it possible to finding collisions in much fewer than
280 computations.

o “It is no longer safe to trust SHA-1”. (FSK, Ch. 5)

 Cryptographic Tools

22-54

Iterative Hash Functions
In practice, a hash function H on fixed size blocks (typically 512 bits)
is applied iteratively to message blocks starting with a fixed value.

H

M2

h2

…
⊕

H

M1

h1

⊕

H

Mn

hn

⊕

h0

h0 (fixed)

= H(M)

Properties:
•  Easy to implement.
•  Can compute as soon as part of message received, so works well on stream of data.
•  But, subject to some attacks.

padded

 Cryptographic Tools

22-55

Attacks on Iterative Hash Functions

Length Extension Attack:

o Knowing H(M1 @ M2 … @ Mn), we know a lot about H(M1 @ M2 … @ Mn @ Mn+1).

o E.g., Consider MAC(K,M) = H(K @ M) = h. Mallory can add an extra block
to the end of M without changing h.

Partial-Message Collisions:

o Consider MAC(K,M) = H(M @ K) = h, where K is a multiple of a block size.
Then if Mallory finds M’ such that H(M’) = H(M), she can replace M by M’
without changing h.

FSK suggest the hash function H’(M) = H(H(M) @ M) to fix these problems.

 Cryptographic Tools

