
CS342 Computer Security Handout # 3
Prof. Lyn Turbak September 8, 2014
Wellesley College Revised September 14, 2014

Problem Set 1
Due: 11:59pm, Thursday September 18

Revisions: Sep 14 : In Problem 2, clarify that (1) search for “vulnerabilities” should be case insensitive and (2) symbolic

links should note be followed.

Overview:
The purpose of this assignment is to get you to get you in the mindset of thinking about computer

security and getting you familiar with some concepts and tools you will need.

Working Together:
The basic rule of collaboration in this class is that you can talk with anyone about how to solve any

problem but you can’t take away anything (notes, programs, etc.) from such a discussion and must write
up all programs and solutions completely on your own. This is essentially Yoshi Kohno’s “Gilligan’s
Island Rule” described at

https://www.cs.washington.edu/education/courses/cse484/12sp/administrivia/overview.html,

whose purpose is to ensure that you truly understand everything you write up. You must also explicitly
list your collaborators on every problem (Kohno’s “Freedom of Information Rule”).

Submission:
You will submit all your work for this pset in a single PS1 Google doc linked from your CS342

Portfolio doc that you create in Problem 1. Follow these guidelines:

1. In your course Blog (see Problem 1) you should summarize any issues you encountered while working
on the problems, insights you gained, resources you consulted, etc.

2. At the beginning of each problem, indicate the time you spent on that problem.

3. For Problem 2, submit a transcript of the Linux command and its results.

4. For Problem 3, submit the the decoded T-shirt message and explain how you decoded it.

5. For Problem 4, submit the Unicode codepoint sequence and an image of how the characters should
look. Also explain how you determined these.

6. For Problem 5, submit (1) a transcript of your REPL interaction that culminates with the desired
result and (2) a companion explanation of why you chose the commands you did.

7. For Problem 6, submit the report described in the problem description.

Problem 1 [5]: Creating your portfolio doc and starting your course blog
Create a Google doc entitled your name CS342 Portfolio that you share with me with commenting

privileges. You will use this Portfolio doc to submit all your work for this course. This doc will simply
contain a list of links to docs of your submitted work. For starters, it will have a link to your Blog doc
(see below) and your PS1 doc (see above.)

Create a second Google doc entitled your name CS342 Blog that you share with me with com-
menting privileges and that you link from your Portfolio doc. You will use this Blog doc to record your
journey through the course. Every day you work on the course, you should add a dated entry to the
top of this page summarizing your work for the day, emphasizing insights you gained, difficulties you
encountered, resources you discovered, and security-related news/articles you read. Include images when
appropriate. Put all your entries in a single document in reverse chronological order.

1

https://www.cs.washington.edu/education/courses/cse484/12sp/administrivia/overview.html

cat gunzip popd telnet

cd gzip ps (-ef) top

chmod (-R) info pushd touch

chown (-R) less pwd umount

chgrp (-R) ln (-s) rm (-rf) useradd

cp (-R) ls (-al) scp (-r) usermod

df mkdir ssh wc

du more source which

echo mount su (-) whoami

find nice tar (-cvf, -xvf, xargs

grep passwd (and the file -cvzf, -xvzf,

/etc/password) -cvjf, -xvjf)

Figure 1: Some Linux commmands with which you should be familiar.

Problem 2 [15]: Linux Skills
In this course, you will be doing a lot of work with Linux. So it’s important to gain familiarity with

lots of Linux commands. Figure 1 lists some of the commands you should be familiar with. The list is by
no means exhaustive! Many of the commands have lots of options; some of the common options ones are
listed. To get documentation on this commands, use man and info, browse on-line resources, and refer to
the many Linux books on the security bookshelves in SCI 160A.

You should also play with pipes (|) and input/output redirection (<, >, >>) and learn a little bit about
shell scripts (which we will cover soon in a lab or lecture). You can learn about Linux commands and
shell scripts by consulting the Linux resources on the CS342 Resources page.

For this problem, you should play around with Linux commmands and shell programming. The only
thing you need to submit for this problem is the following:

In your account on cs.wellesley.edu (tempest), write a single Linux command that lists every line
containing the word “vulnerabilities” in every publicly readable text (non-binary) file in the direc-
tory /home/cs342. Each line should have the form filename:line, where line is the contents of the
line containing the word and filename is the name of the file containing that line. The find and
grep commands are very useful for this problem. The 2> error redirection mechanism is helpful for
suppressing annoying error messages.

Your command should ignore case. E.g., it should list lines containing strings like “Vulnerabilities”,
“VULNERABILITIES”, and “vulneraBiliTies”.

Your command should also not follow symbolic links. This will greatly reduce the number of
matching lines. Using the find command in conjunction with grep is helpful in this regard.

Submit a transcript of the command and the results of executing it.

Problem 3 [15]: Decoding a T-shirt
Margaret Ligon ’14, a student in the 2012 CS342 class, designed a T-shirt for the Wellesley participants

in the Lincoln Laboratory Capture the Flag (CTF) contest. The back of the T-shirt is shown in figure 2.
The binary digits and decimal numbers on the shirt stand for a message. What is the message?

Guidelines/hints

• An ASCII table such as the one at http://www.asciitable.com/ is very helpful in this problem.

• For full credit, you must not only specify the message, but describe the details by which you decoded
it.

2

http://www.asciitable.com/

Figure 2: Design on the 2012 Lincoln Lab CTF T-shirt worn by Wellesley CS342 students.

Problem 4 [15]: Decoding a message
You have been sent a message that consists of the following bytes (expressed in hex):

49 E2 99 A5 CF 80 21

You have been informed that this message consists of Unicode characters that have been encoded into a
byte sequence via the UTF-8 encoding.

a [12] What is the sequence of Unicode codepoints in this UTF-8 encoded message? For example,

3

codepoint U+03B1 is the Greek letter α (http://unicode.org/charts/PDF/U0370.pdf). Explain how
you determined the codepoints.

b [3] What would this message look like when displayed in a Unicode-enabled application?

Guidelines/hints

• Consult the following on Unicode: http://www.joelonsoftware.com/articles/Unicode.html, http:
//en.wikipedia.org/wiki/Unicode

• Consult the following on UTF-8: http://en.wikipedia.org/wiki/UTF-8.

Problem 5 [15]: Exploiting a C program
This problem illustrates the fundamental insecurity of arrays in C and hints at the role that character

buffers play in stack buffer exploits.
Figure 3 is a C program arrays.c available in ~cs342/download/ps1. When compiled and executed,

it enters a read/eval/print loop (REPL) that responds to commands. For example, the display command
shows the addresses and contents of all slots in the three integer arrays a, b, and c manipulated by the
program:

[cs342@jay ps1] gcc -o arrays arrays.c

[cs342@jay ps1] ./arrays

Enter one of these three commands: display, setb, quit:

> display

bfbca1d8 a[0]: 1 (int); 1 (hex)

bfbca1dc a[1]: 2 (int); 2 (hex)

bfbca1cc b[0]: 3 (int); 3 (hex)

bfbca1d0 b[1]: 4 (int); 4 (hex)

bfbca1d4 b[2]: 5 (int); 5 (hex)

bfbca1bc c[0]: 6 (int); 6 (hex)

bfbca1c0 c[1]: 7 (int); 7 (hex)

bfbca1c4 c[2]: 8 (int); 8 (hex)

bfbca1c8 c[3]: 9 (int); 9 (hex)

Enter one of these three commands: display, setb, quit:

>

Your task is to enter a sequence of commands that ends with a display command that prints exactly
the following array contents:

Enter one of these three commands: display, setb, quit:

> display

bfbca1d8 a[0]: 1 (int); 1 (hex)

bfbca1dc a[1]: 17 (int); 11 (hex)

bfbca1cc b[0]: 3 (int); 3 (hex)

bfbca1d0 b[1]: 23 (int); 17 (hex)

bfbca1d4 b[2]: 5 (int); 5 (hex)

bfbca1bc c[0]: 42 (int); 2a (hex)

bfbca1c0 c[1]: 7 (int); 7 (hex)

bfbca1c4 c[2]: 8 (int); 8 (hex)

bfbca1c8 c[3]: 9 (int); 9 (hex)

Enter one of these three commands: display, setb, quit:

> quit

For this problem, submit (1) a complete transcript of your REPL interaction that ends with the
desired result and (2) a companion explanation of why you chose the commands you did.

4

http://unicode.org/charts/PDF/U0370.pdf
http://www.joelonsoftware.com/articles/Unicode.html
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8

Guidelines/hints

• Run this program on one of the micro-focus Linux machines (e.g., cardinal, jay, lark, thrush, etc.);
you can connect to these remotely via ssh.

• Study arrays.c carefully to understand exactly how it works. But you are not allowed to change it
in any way!

• It is straightforward to use the setb command to change b[1], but how the heck you change a[1]

and c[0]? That’s the crux of this problem, and it requires thinking like a hacker.

• The addresses of all integer array slots and character array slots are displayed for a reason. Study
them to understand the key to your exploits. Of course, in a typical program they wouldn’t be printed,
but you’d have to imagine they were there. You’d also have to do a lot more experimentation without
them.

• An unexpected command string can be used in a nefarious way!

Problem 6 [35]: Hacking the Tanner Photo Contest Sites
In 2010, I implemented a website that allows members of the Wellesley community to submit photos

to the annual Tanner photo contest. The purpose of the website is to allow members of the Wellesley
community (and no one else) to submit up to three photos to the contest, none of which should be larger
than 5MB. Users should be able to view the photos that they’ve uploaded, but no one else’s.

In this problem, you will experiment with an early version of the 2010 website
http://cs.wellesley.edu/~tanner-test

and the current 2014 version at
http://cs.wellesley.edu/~tanner-photos.

In the “hacker curriculum” spirit, your goal in this problem is to find out as much as you can about the
implementation of these websites, and see whether you can coax the websites into doing some unexpected
things. Here are some of the questions that you should investigate (but do not be limited by these!):

• Can a user without Wellesley email or domain name access the system?

• Can you view the photo files uploaded by others? How about the photo metadata (title, location,
notes) and personal data (name, email, position at Wellesley)?

• Can you change the photo files uploaded by others? How about their photo metadata and personal
data?

• Can you find the source code for the website? Does that help you find other vulnerabilities?

• Can you upload more than 3 files?

• Can you upload files other than photos?

• Can you upload files larger than 5MB?

• Can you use the website to view or modify resources of user tanner-test or tanner-photos?

• Can you do anything else you consider surprising?

Write up a report describing the experiments you performed on both websites, summarizing all the
vulnerabilities or surprising behaviors you discovered. Where possible, suggest ways in which vulnerabil-
ities could be removed or made less damaging. If they can’t be removed, explain why. Also, explain the
rationale of security design decisions that were made in these sites, and compare the approaches of the
two sites. E.g., the 2010 site requires registering with an email address, and then the user follows a link
to their submission page. Why is this done? What does the 2014 site do differently? Bonus points will
be awarded for finding vulnerabilities in the 2014 tanner-photos site!

You are welcome to talk about and/or perform experiments with others, but the write-up must be
done on your own.

5

http://cs.wellesley.edu/~tanner-test
http://cs.wellesley.edu/~tanner-photos

include <stdio.h> // I/O operations

include <string.h> // string operations

// Display the word addresses and integer contents of len slots of given array

void display_array(char* name, // string name for array

int* array, // array of ints is pointer to (word address of) int in 0th slot

int len) { // need to pass length of array separately

int i = 0; // initialize index to 0

int* end = array + len; // end is address of word after last array slot

for (; array < end; array++) { // Loop iterates through word addresses of array slots.

// Incrementing adds 4 to the address b/c array is int pointer

printf("%x %s[%i]: %i (int);\t%x (hex)\n", array, name, i, *array, *array);

// *array is contents of current slot

i++; // increment index in sync with address of next slot

}

}

// Display the byte addresses and character contents of all slots in given string

void display_chars(char* str) { // str is pointer to char in 0th slot

while (*str != 0) { // Loop while terminating null byte hasn’t been reached

printf("%x: %c (char), %x (hex)\n", str, *str, *str);

str++; // Incrementing adds 1 to address b/c str is a char pointer

}

}

// Return the maximum of two integers

int max (int a, int b) { if (a > b) return a; else return b; }

// Program entry point

int main (int argn, char** argv) { // argn and argv are ignored in this program

int a[2] = {1,2}; // Allocate integer arrays on stack

int b[3] = {3,4,5};

int c[4] = {6,7,8,9};

char command[8]; // Stack space allocated for command string character buffer.

// No one would type more than 8 characters, would they? ;-)

int index; // Stack space allocated for "setb" command index

int value; // Stack space allocated for "setb" command value

// Read/eval/print loop: read a command from user, perform action, and repeat

while (1) { // 1 is how "true" is written in C; "infinite" loop exited via "quit" command

printf("Enter one of these three commands: display, setb, quit:\n> "); // Prompt for command

scanf("%s", &command); // Read command into character buffer

if (strcmp(command,"display")==0) { // strcmp compares strings; 0 result means they’re equal

// Display the addresses and contents of slots in all arrays

display_array("a", a, 2);

display_array("b", b, 3);

display_array("c", c, 4);

} else if (strcmp(command,"setb")==0) { // Change slots in array b

printf("Choose an index for array b: "); // Prompt for index of array b to change

scanf("%i", &index); // Store it into index variable

index = max(index,0); // Don’t allow negative indices; convert negative index to 0

printf("Choose a new value for b[%i]: ", index); // Prompt for new value at index

scanf("%i", &value); // Store it into value variable

b[index] = value; // Change the indexth slot of b to new value

} else if (strcmp(command,"quit")==0) {

return 0; // Exit loop by returning from main function

} else { // Case for unrecognized commands

printf("\"%s\" is not a recognized command.\n");

display_chars(command); // Display the addresses and contents of characters in command

printf("Try again.\n");

}

}

}

Figure 3: A C program manipulating some arrays.

6

