
CS342 Computer Security Handout # 2
Prof. Lyn Turbak January 25, 2016
Wellesley College Revised February 09, 2016

Problem Set 1
Due: 11:59pm, Wednesday February 10

Revisions:

• Tue Feb 09: In Problem 4, the wording “the binary digits and decimal numbers” has been corrected
to “the binary and other digits”.

• Sun Feb 07: (1) Added link http://tinyurl.com/wellesley-cs342-find-grep to explain subtleties
of symbolic links in the context of find and grep; (2) added more notes on the negative offset case
for Problem 7, including an extra credit challenge.

• Tue Feb 02: (1) The previous version of Problem 6 assumed you were working on an Ubuntu VM you
don’t yet have. The problem has been rewritten to assume that you’re working on cs.wellesley.edu.
(2) in the first note for Problem 7, the list of micro-focus Linux machines has been updated.

Overview:
The purpose of this assignment is to get you to get you in the mindset of thinking about computer

security and getting you familiar with some concepts and tools you will need.

Working Together:
The basic rule of collaboration in this class is that you can talk with anyone about how to solve any

problem but you can’t take away anything (notes, programs, etc.) from such a discussion and must write
up all programs and solutions completely on your own. This is essentially Yoshi Kohno’s “Gilligan’s
Island Rule” described at

https://www.cs.washington.edu/education/courses/cse484/12sp/administrivia/overview.html,

whose purpose is to ensure that you truly understand everything you write up. You must also explicitly
list your collaborators on every problem (Kohno’s “Freedom of Information Rule”).

Submission:
You will submit all your work for this pset in a single PS1 Google doc linked from your CS342

Portfolio doc that you create in Problem 1. Follow these guidelines:

1. In your course Blog (see Problem 1) you should summarize any issues you encountered while working
on the problems, insights you gained, resources you consulted, etc.

2. At the beginning of each problem, indicate the time you spent on that problem.

3. For Problem 2, include (1) the name of and link to the article or blog post you chose, (2) the paragraphs
you wrote about the article and posted to the CS342 Google Group, and (3) the text of your additional
posts to the CS342 Google Group discussing other articles.

4. For Problem 3, submit a transcript of the Linux command and its results.

5. For Problem 4, submit the the decoded T-shirt message and explain how you decoded it.

6. For Problem 5, submit the Unicode codepoint sequence and an image of how the characters should
look. Also explain how you determined these.

7. For Problem 6, show the Emacs keystroke commands you typed to transform the lines of the buffer
to be in sorted order from largest size down.

8. For Problem 7, submit (1) a transcript of your REPL interaction that culminates with the desired
result and (2) a companion explanation of why you chose the commands you did.

1

http://tinyurl.com/wellesley-cs342-find-grep
https://www.cs.washington.edu/education/courses/cse484/12sp/administrivia/overview.html

cat gunzip popd telnet

cd gzip ps (-ef) top

chmod (-R) info pushd touch

chown (-R) less pwd umount

chgrp (-R) ln (-s) rm (-rf) useradd

cp (-R) ls (-al) scp (-r) usermod

df mkdir ssh wc

du more source which

echo mount su (-) whoami

find nice tar (-cvf, -xvf, xargs

grep passwd (and the file -cvzf, -xvzf,

/etc/password) -cvjf, -xvjf)

Figure 1: Some Linux commmands with which you should be familiar.

Problem 1 [5]: Creating your portfolio doc and starting your course blog
Create a Google doc entitled your name CS342 Portfolio that you share with me with commenting

privileges. You will use this Portfolio doc to submit all your work for this course. This doc will simply
contain a list of links to docs of your submitted work. For starters, it will have a link to your Blog doc
(see below) and your PS1 doc (see above.)

Create a second Google doc entitled your name CS342 Blog that you share with me with com-
menting privileges and that you link from your Portfolio doc. You will use this Blog doc to record your
journey through the course. Every day you work on the course, you should add a dated entry to the
top of this page summarizing your work for the day, emphasizing insights you gained, difficulties you
encountered, resources you discovered, and security-related news/articles you read. Include images when
appropriate. Put all your entries in a single document in reverse chronological order.

Problem 2 [20]: Discuss a Security Article or Blog Post
As emphasized in Lecture 1 and the associated readings (see the course schedule), we will be thinking

about security topics in the context of the security mindset and the hacker curriculum.
To get you into this mode of thinking, in this problem, you will do the following:

• Find an online article or blog post related to computer security that you can analyze in terms of the
security mindset and/or ideas from the hacker curriculum. Choose a topic not yet posted by someone
else in the class. (This is a motivation to do this problem early!)

• Write an email to the CS-342-01-SP16 Google Group that includes (1) a link to the article and (2)
one paragraph that summarizes the article and a second paragraph that analyzes the article from the
perspective of the security mindset and/or the hacker curriculum.

• Write a nontrivial response to at least two of your classmates posts for this problem. E.g., add
something nontrivial to the discussion of the article, relate it to another topic or article, or evaluate
the analysis (pro and/or con).

• Include in your PS1 writeup the link to your article, your paragraphs about it, and the text of your
discussions of other articles.

Problem 3 [15]: Linux Skills
In this course, you will be doing a lot of work with Linux. So it’s important to gain familiarity with

lots of Linux commands. Figure 1 lists some of the commands you should be familiar with. The list is by
no means exhaustive! Many of the commands have lots of options; some of the common options ones are
listed. To get documentation on this commands, use man and info, browse on-line resources, and refer to
the many Linux books on the security bookshelves in SCI 160A.

You should also play with pipes (|) and input/output redirection (<, >, >>) and learn a little bit about
shell scripts (which we will cover soon in a lab or lecture). You can learn about Linux commands and
shell scripts by consulting the Linux resources on the CS342 Resources page.

2

For this problem, you should play around with Linux commmands and shell programming. The only
thing you need to submit for this problem is the following:

In your account on cs.wellesley.edu (tempest), write a single Linux command that lists every line
containing the word “vulnerabilities” in every publicly readable text (non-binary) file in the direc-
tory /home/cs342. Each line should have the form filename:line, where line is the contents of the
line containing the word and filename is the name of the file containing that line. The find and
grep commands are very useful for this problem. The 2> error redirection mechanism is helpful for
suppressing annoying error messages.

Your command should ignore case. E.g., it should list lines containing strings like “Vulnerabilities”,
“VULNERABILITIES”, and “vulneraBiliTies”.

Your command should also not follow symbolic links. This will greatly reduce the number of match-
ing lines. Using the find command in conjunction with grep is helpful in this regard. However,
there are numerous subtleties involving the processing of symbolic links with find and grep that you
need to understand to get the correct output. See http://tinyurl.com/wellesley-cs342-find-grep
for details.

Submit a transcript of the command and the results of executing it.

Problem 4 [15]: Decoding a T-shirt
Margaret Ligon ’14, a student in the 2012 CS342 class, designed a T-shirt for the Wellesley participants

in the Lincoln Laboratory Capture the Flag (CTF) contest. The back of the T-shirt is shown in figure 2.
The binary and other digits on the shirt stand for a message. What is the message?

Guidelines/hints

• An ASCII table such as the one at http://www.asciitable.com/ is very helpful in this problem.

• For full credit, you must not only specify the message, but describe the details by which you decoded
it.

Problem 5 [15]: Decoding a message
You have been sent a message that consists of the following bytes (expressed in hex):

49 E2 99 A5 CF 80 21

You have been informed that this message consists of Unicode characters that have been encoded into a
byte sequence via the UTF-8 encoding.

a [12] What is the sequence of Unicode codepoints in this UTF-8 encoded message? For example,
codepoint U+03B1 is the Greek letter α (http://unicode.org/charts/PDF/U0370.pdf). Explain how
you determined the codepoints.

b [3] What would this message look like when displayed in a Unicode-enabled application?

Guidelines/hints

• Consult the following on Unicode: http://www.joelonsoftware.com/articles/Unicode.html, http:
//en.wikipedia.org/wiki/Unicode

• Consult the following on UTF-8: http://en.wikipedia.org/wiki/UTF-8.

Problem 6 [15]: Learn Emacs
Emacs is a powerful text editor that will be very helpful to you as you play sysadmin on your Ubuntu

VM, so it’s a good idea to become familiar with it.
Here are three ways to launch Emacs:

3

http://tinyurl.com/wellesley-cs342-find-grep
http://www.asciitable.com/
http://unicode.org/charts/PDF/U0370.pdf
http://www.joelonsoftware.com/articles/Unicode.html
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8

Figure 2: Design on the 2012 Lincoln Lab CTF T-shirt worn by Wellesley CS342 students.

• You can launch Emacs by clicking on the GNU Emacs icon in the icon panel on the left of your Ubuntu
VM. This creates a separate Emacs window with GUI features. In this window, the permissions you
will have for reading and writing files will be those of the account in which you are logged in to the
Ubuntu machine.

• You can also launch and Emacs editor in a separate GUI window from a Linux shell via emacs & (the
“&” means execute the command in a separate process). In this window, the permissions you will have

4

for reading and writing files will be those of the account in which you are logged in to the shell. This
is handy if you want to edit a file as root, say. First su to root in a shell, and then launch Emacs
from that shell.

• You can also launch Emacs within a Linux shell via emacs -nw (“-nw” means “no window”), which
gives a version of Emacs in the shell without GUI features.

In this problem, you should first follow the Emacs tutorial by selecting Help>Emacs Tutorial from
an Emacs GUI window or typing Ctrl-h t (first press the “control” and “h” keys at the same time, then
press the “t” key). This will teach you the basics of Emacs. Although you can use GUI features like
menus to perform many tasks in Emacs, it is important to lean the keystroke commands as well. Why?
Three reasons: (1) once you become familiar with the keystroke commands, they are faster than using
the mouse; (2) sometimes you will have access only to non-GUI versions of Emacs; and (3) you can do
amazing things in Emacs by defining so-called keyboard macros based on keystrokes.

Once you have taken the tutorial, explore other Emacs resources at http://cs.wellesley.edu/

~cs342/resources.html. Particularly useful is the two-page Emacs reference card. It’s a good idea to
print this out for your personal use.

To get a sense for the kinds of file manipulations you can do in Emacs, in your cs.wellesley.edu

account, create a du-cs342.txt file as follows:

du /home/cs342 > du -cs342.txt 2> /dev/null

and then view du-cs342,txt in Emacs. It lists subdirectories (recursively) of the /var directory, preceded
by a size measure. It might include lines like the following:

...

32 /home/cs342/archive/shared/papers/formatstring/examples/fmtattr_test

260 /home/cs342/archive/shared/papers/formatstring/examples

512 /home/cs342/archive/shared/papers/formatstring

16 /home/cs342/archive/shared/papers/CVS

4476 /home/cs342/archive/shared/papers

14232 /home/cs342/archive/shared

4 /home/cs342/archive/cs342_spring16/handouts

28 /home/cs342/archive/cs342_spring16/public_html/cgi -bin/hilo -sessions

636 /home/cs342/archive/cs342_spring16/public_html/cgi -bin

35872 /home/cs342/archive/cs342_spring16/public_html/lectures

4 /home/cs342/archive/cs342_spring16/public_html/protected

688 /home/cs342/archive/cs342_spring16/public_html/handouts

37908 /home/cs342/archive/cs342_spring16/public_html

37916 /home/cs342/archive/cs342_spring16

4 /home/cs342/archive/cs342_fall14/drop/ps7/lys

...

Writeup: Show the Emacs keystroke commands you typed to transform the lines of the buffer to be in
sorted order from largest size down.

Note: The Emacs M-x apropos command is a good way to find other Emacs commands by keyword. In
this context, it’s helpful to use M-x apropos to search for terms like sort and reverse.

Note: Emacs has an amazing number of built-in commands, some of which are quite humorous. Try
some of the following: hanoi, doctor, yow, psychoanalyze-pinhead, and dissociated-press (try this
last one on a text document).

Problem 7 [15]: Exploiting a C program
This problem illustrates the fundamental insecurity of arrays in C and hints at the role that character

buffers play in stack buffer exploits. It also give you some experience with thinking like a hacker.
Figure 3 is a C program arrays.c available in ~cs342/download/ps1. When compiled and executed,

it enters a read/eval/print loop (REPL) that responds to commands. For example, the display command
shows the addresses and contents of all slots in the three integer arrays a, b, and c manipulated by the
program:

5

http://cs.wellesley.edu/~cs342/resources.html
http://cs.wellesley.edu/~cs342/resources.html

[cs342@jay ps1] gcc -o arrays arrays.c

[cs342@jay ps1] ./arrays

Enter one of these three commands: display, setb, quit:

> display

bfbca1d8 a[0]: 1 (int); 1 (hex)

bfbca1dc a[1]: 2 (int); 2 (hex)

bfbca1cc b[0]: 3 (int); 3 (hex)

bfbca1d0 b[1]: 4 (int); 4 (hex)

bfbca1d4 b[2]: 5 (int); 5 (hex)

bfbca1bc c[0]: 6 (int); 6 (hex)

bfbca1c0 c[1]: 7 (int); 7 (hex)

bfbca1c4 c[2]: 8 (int); 8 (hex)

bfbca1c8 c[3]: 9 (int); 9 (hex)

Enter one of these three commands: display, setb, quit:

>

Your task is to enter a sequence of commands that ends with a display command that prints exactly
the following array contents:

Enter one of these three commands: display, setb, quit:

> display

bfbca1d8 a[0]: 1 (int); 1 (hex)

bfbca1dc a[1]: 17 (int); 11 (hex)

bfbca1cc b[0]: 3 (int); 3 (hex)

bfbca1d0 b[1]: 23 (int); 17 (hex)

bfbca1d4 b[2]: 5 (int); 5 (hex)

bfbca1bc c[0]: 42 (int); 2a (hex)

bfbca1c0 c[1]: 7 (int); 7 (hex)

bfbca1c4 c[2]: 8 (int); 8 (hex)

bfbca1c8 c[3]: 9 (int); 9 (hex)

Enter one of these three commands: display, setb, quit:

> quit

For this problem, submit (1) a complete transcript of your REPL interaction that ends with the
desired result and (2) a companion explanation of why you chose the commands you did.

Guidelines/hints

• You can either run this program in your Ubuntu VM or on one of the micro-focus Linux machines
(e.g., cardinal, finch, orangutan, gorilla, chimp, tamarin, gibbon, baboon, lemur, etc. you can
connect to these remotely via ssh).

• Study arrays.c carefully to understand exactly how it works. But you are not allowed to change it
in any way!

• It is straightforward to use the setb command to change b[1], but how the heck you change a[1]

and c[0]? That’s the crux of this problem, and it requires thinking like a hacker.

• The addresses of all integer array slots and character array slots are displayed for a reason. Study
them to understand the key to your exploits. Of course, in a typical program they wouldn’t be printed,
but you’d have to imagine they were there. You’d also have to do a lot more experimentation without
them.

• Changing array slots at a positive offset from a[0] is fairly easy, but changing them at negative offset
is hard, because the REPL converts negative indices entered by the user to 0. Nevertheless, there are
two very different ways to get around this problem. Hints: (1) an unexpected command string can
be used in a nefarious way; (2) an unusual offset can used as an exploit. Solve this in one way for full
credit. But if you find both ways, you get extra credit!

6

include <stdio.h> // I/O operations

include <string.h> // string operations

// Display the word addresses and integer contents of len slots of given array

void display_array(char* name, // string name for array

int* array, // array of ints is pointer to (word address of) int in 0th slot

int len) { // need to pass length of array separately

int i = 0; // initialize index to 0

int* end = array + len; // end is address of word after last array slot

for (; array < end; array++) { // Loop iterates through word addresses of array slots.

// Incrementing adds 4 to the address b/c array is int pointer

printf("%x %s[%i]: %i (int);\t%x (hex)\n", array, name, i, *array, *array);

// *array is contents of current slot

i++; // increment index in sync with address of next slot

}

}

// Display the byte addresses and character contents of all slots in given string

void display_chars(char* str) { // str is pointer to char in 0th slot

while (*str != 0) { // Loop while terminating null byte hasn’t been reached

printf("%x: %c (char), %x (hex)\n", str, *str, *str);

str++; // Incrementing adds 1 to address b/c str is a char pointer

}

}

// Return the maximum of two integers

int max (int a, int b) { if (a > b) return a; else return b; }

// Program entry point

int main (int argn, char** argv) { // argn and argv are ignored in this program

int a[2] = {1,2}; // Allocate integer arrays on stack

int b[3] = {3,4,5};

int c[4] = {6,7,8,9};

char command[8]; // Stack space allocated for command string character buffer.

// No one would type more than 8 characters, would they? ;-)

int index; // Stack space allocated for "setb" command index

int value; // Stack space allocated for "setb" command value

// Read/eval/print loop: read a command from user, perform action, and repeat

while (1) { // 1 is how "true" is written in C; "infinite" loop exited via "quit" command

printf("Enter one of these three commands: display, setb, quit:\n> "); // Prompt for command

scanf("%s", &command); // Read command into character buffer

if (strcmp(command,"display")==0) { // strcmp compares strings; 0 result means they’re equal

// Display the addresses and contents of slots in all arrays

display_array("a", a, 2);

display_array("b", b, 3);

display_array("c", c, 4);

} else if (strcmp(command,"setb")==0) { // Change slots in array b

printf("Choose an index for array b: "); // Prompt for index of array b to change

scanf("%i", &index); // Store it into index variable

index = max(index,0); // Don’t allow negative indices; convert negative index to 0

printf("Choose a new value for b[%i]: ", index); // Prompt for new value at index

scanf("%i", &value); // Store it into value variable

b[index] = value; // Change the indexth slot of b to new value

} else if (strcmp(command,"quit")==0) {

return 0; // Exit loop by returning from main function

} else { // Case for unrecognized commands

printf("\"%s\" is not a recognized command.\n");

display_chars(command); // Display the addresses and contents of characters in command

printf("Try again.\n");

}

}

}

Figure 3: A C program manipulating some arrays.

7

