GRASP:
A VISIBLE AND MANIPULABLE MODEL
FOR PROCEDURAL PROGRAMS

by
Franklyn Albin Turbak

Submitted to the
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
in partial fulfillment of the requirements
for the degrees of
BACHELOR OF SCIENCE
and
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1986

(c¢) Franklyn Albin Turbak, 1986

The author hereby grants MIT permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author....~.......: e S A2 PO U T T,
Department of Eléctrical Engineering and Computer Science,

May 92,1986

Certified by DA 2 VT W T et e NP
Andrea A. diSessa

Thesis Supervisor

Certified BY. i e

D Austin Henderson, Jr.
~ Company Supervisor, Xerox Palo Alto Research Center

—

Accepted bﬁ/ e oy NV ZREREEREERRRRPRRS ArthurC Smlth

Chairman, Departmental Committee on Graduate Students

: ARCHIVES

GRASP:
A VISIBLE AND MANIPULABLE MODEL
FOR PROCEDURAL PROGRAMMING

by

Franklyn Albin Turbak

Submitted to the
Department of Electrical Engineering and Computer Science
on May 9, 1986
in partial fulfillment of the requirements for the Degrees of Bachelor
of Science and Master of Science
in Electrical Engineering and Computer Science.

ABSTRACT

Grasp is a computational model and programming system designed to help
novices reason about the structure of procedural programs. Text-based programs
in traditional programming languages poorly reflect the rich structure of the
underlying model of computation. Grasp makes the elements and processes of the
computational model more accessible to the programmer by adhering to two
principles: vistbility - the programmer should see graphical representations of a
program's structure; and manipulability - the programmer should interact with
the elements of a program as if they were physical objects. This report motivates
these two principles and describes how they are applied to the development of a
computational model and programming system for procedural programs.

Thesis Supervisors:

Dr. Andrea A. diSessa (MIT)
Senior Research Scientist

Dr. D. Austin Henderson (Xerox Palo Alto Research Center)
Research Staff Member

GRASP:
A VISIBLE AND MANIPULABLE
MODEL FOR

PROCEDURAL PROGRAMS

Franklyn Turbak

ACKNOWLEDGMENTS

If brevity is the soul of wit, then I must be witless. Despite the best efforts of
my teachers since childhood, I continue to be plagued by verbosity. The length of
this document is evidence of this affliction, as is the length of these
acknowledgments. Whereas most people can get by with a few sentences, I
require three pages! I hope that the length of this section does not detract from
the significance of the individual contributions made by those mentioned herein.

A thesis is an interesting test of friendships. Only friends will put up with
the singlemindedness of purpose that grows in the thesis writer aiid overtakes
him as the due date looms ominously nearer. The best of friends will even help
him out in his plight.

This exrerience has taught me that I have many friends. To express my
gratitude in this small section of the thesis hardly absolves me of my debt to them.
I can probably never repay them for their contributions and kindness, but I hope
that Ican at least spread the good will they have bestowed upon me by similarly
helping cut others in the future.

I begin with my advisors, Andy diSessa and Austin Henderson. I am lucky
to have chosen two advisors who, in the end, wanted me to graduate even more
than Idid. Andy put up with an amazing amount of lameness on my part over the
past few years and was kind enough to continue as my advisor when he
skedaddled off to Berkeley. I thank him for letting me explore structural models
even when he knew in his heart that functional models were more appropriate. I
would net have appreciated the limitations of structural models if I didn't discover

them on my own.

Austin ismy hero. Itis hard to imagine a more helpful and dedicated
advisor. He has been a constant source of ideas, advice, and support over the four
years] have known him. His enthusiasm and encouragement lifted my spirits on
several occassions when I seemed to be experiencing the nadir of my life. For this,
I am forever grateful.

I thank Hal Abelson and Gerry Sussman for developing a wonderful
introductory course to computer science. Without their course, my interest in
computation and education might never have developed.

Mike Eisenberg, Ellie Long, and Mitch Resnick were dear companions and
valuable proof that interest in education still exists at MIT. I am endebted to
Mike and Ellie for undertaking the ordeal of a 6.003 TA-ship with me during this
past term. Mike had the knack of making me laugh during times when a sane
person would otherwise he going crazy. He prepared me for all the Leave it to
Beaver questions I could expect on my orals (though unfortunately my orals
committee decided to concentrate on the Addams family instead).

The LENS group at the MIT Sloan School provided me with tremendous
support when the chips were down. Tom Malone, the nicest professor imaginable,
gave me a summer job. Ken Grant, Dave Rosenblitt, Ramana Rao, and Kum-Yew
Lai all helped to improve the quality of this report and the orals talk based on it.
Ken's formatting, Dave's proofreading, and Rarana's suggestions helped keep
this document off the "endagered theses" list (Dave's joke). Ken was especially
kind enough to let me commandeer his carrel and workstation for over a month
straight during the final prepartion of this document. He also kept me going by
continually repeating that I was a "lean, mean writing machine."

Now for the "clowns out West": Dave Chiang, William Lee, and Andy
Litman. Not only were they the best of friends at MIT, but they were wonderful
housemates in California. They provided me with megahours of great
conversation and carted me around cverywhere in their cars. Special thanks go to
Dave, my alter ego, who helped me get through some awfully rough nights at
Xerox PARC. Dave is the creator of many of the icons in the Grasp system. The
moosehead in the controller house is a stroke of his brilliance. And let us not
forget his advice on Lisp syntax: "Parentheses are like small bananas!"

The "clown out East", Robert Kwon, was essential to my survival during
my past year at MIT. Where would I be now without his continual advice for me to
"reach out with my feelings" and his constant reminders that life is but a "dream
within a dream"? Who would have thought when we met at an eighth grade
spelling bee that ten years later he would stay up late at night to correct spelling
mistakes in my thesis? Cheers, R.K!

Many other people deserve special mention. I am forever endebted to Ram
Sundaram, who took up the slack when I fell behind in my 6.003 TA duties. I
especially want to thank him and Keith Nabors for grading Problem Set 6 for me.
David Levy not only selflessly helped me prepare my PARC talk, but he would
later provide me with dental floss. Ithank him. My teeth and gums thank him.
Kathy Takayama, Mike Dawson, Chee-Seng Chow, Judy Litman, Dan Frost, and
Maya Paczuski helped me get through difficult times with their friendship. And
who could forget Chab, Weed, Slim, and Stearn? Quid?

I owe my biggest debt to my family. Mom and Dad not only have provided
me with moral and monetary support for the past six years, but they have
showered me with love and affection since birth. I love them. I hope that someday

I can be as good a parent for my children as they have been for me; my greatest
fear is that I will be punished by having children who will be as unappreciative of
me as I have been of my parents. I also give my love tc my brother, Stephen, and
his wife, Michelle. They continue to invite me to their home even though [burn
their potholders and dust their kitchen with flour.

" . .aspeck of water on a desert cactus no longer covered by shade.”

- Robert Osong Kwon -

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION

1.1 Motivations
1.2 Where Does Grasp Fit In?
1.2.1 Mental Models
1.2.2 Novice-Oriented Programming
1.2.2.1 Accessible Programming
1.2.2.2 Visible Programming
1.2.3 User Interfaces
1.3 Roadmap to this Report

CHAPTER TWO: REASONING ABOUT THE STRUCTURE
OF PROCEDURAL PROGRAMS

2.1 Models of Computation
2.2 Reasoning About Programs
2.2.1 Reasoning Tasks
2.2.2 Models as Reasoning Aids
2.3 Helping Novices
2.3.1 Novices
2.3.2 Helping
2.4 The Procedural Paradigm
2.4.1 Basic Elements of the Procedural Paradigm
2.4.2 The Scheme Approach to the Procedural Paradigm
2.4.2.1 First-Class Objects
2.4.2.2 Procedures in Scheme
2.4.2.3 Environments and Continutations in Scheme
2.5 Summary

CHAPTER THREE: VISIBILITY AND MANIPULABILITY

3.1 Building Models of Programs
3.1.1 Assimilation and Induction
3.1.2 Induction is Prone to Pitfalls
3.1.2.1 Misleading Intuitions
3.1.2.2 Paucity of Information
3.1.2.2.1 The Importance of Examples
3.1.2.2.2 Opaque Interfaces

3

12

13
16
16
18
19
20
23
25

27

27
29
29
33
37
37
39
40
41
44
44
45
47
47

49

49
49
52
53
56
56
58

3.1.2.2.3 The Limits of Textual Representations
3.1.3 Assimilation Should Be Better But. ..
3.2 The Principles of Visibility and Manipulability
3.3 Summary

CHAPTER FOUR: PERILS IN THE PROCEDURAL PARADIGM

4.1 Procedures as First-Class Objects
4.1.1 Procedures as Patterns
4.1.2 Procedures as Doers
4.1.2.1 Whence Comes This Notion?
4.1.2.2 Confusions Caused by "Procedures as Doers"
4.1.3 Procedures as Names
4.2 Environment Issues
4.2.1 Parameter Passing
4.2.2 Scoping
4.3 Control Issues
4.3.1 Order of Evaluation
4.3.2 Pending Operations
4.3.3 Return of Values
4.3.4 Special Forms
4.4 Summary

CHAPTER FIVE: Ti.E GRASP MODEL FOR PROCEDURAL
PROGRAMS

5.1 Why a New Model?
5.2 Scope of the Model
5.3 The Principle of Reification
5.4 Elements of the Grasp Model
5.4.1 Primitive Machines and the Controller
5.4.2 Reference Pipes
5.4.3 Variables
5.4.4 Smashing Machines
5.4.5 Compound Machines
5.4.6 Blueprints and All-Purpose Machines
5.4.7 Conditional Machines
5.5 Summary

CHAPTER SIX: A VISIBLE AND MANIPULABLE INTERFACE

TO THE GRASP MODEL

6.1 Visibility
6.1.1 Direct Mappings
6.1.2 Continuous Representations
6.1.3 Additional Representationa! Considerations

61
65
67
69

72
73
76
78
79
83
89
89
92
96
96
97
99
100
101

102

105
106
109
111
111
115
118
120
122
126
136
144

145

146
146
152
155

6.1.3.1 Familiar Representations
6.1.3.2 Visual Hints
6.1.3.3 The World is Not a Box
6.1.4 Information Suppression
6.2 Manipulability
6.2.1 The Physical Object Metaphor
6.2.2 Fine-grained Positioning
6.2.3 Occlusion
6.2.4 Mouse Sensitivity
6.2.5 Movement of Objects
6.2.6 Making Connections
6.2.7 Permanence
6.2.8 Animated Control and Data Flow
6.3 Summary

CHAPTER SEVEN: DISCUSSION

7.1 Advantages of Grasp
7.1.1 Device Programming Style
7.1.2 Primacy of Procedure Activations
7.1.3 First-Class Procedures
7.1.4 Structural Reference
7.1.5 Agent-Centered Control
7.1.6 Computational Time Line
7.1.7 An Integrated Environment
7.2 Drewbacks of Grasp
7.2.1 Too Much Information
7.2.2 Usability Problems
7.2.3 Semantic Questions
7.2.4 Space
7.2.5 Grasp is not Scheme
7.3 Summary

CHAPTER EIGHT: CURRENT STATUS AND FUTURE DIRECTIONS

8.1 Current Status

8.2 Future Directions
8.2.1 Evaluation with Novices
8.2.2 Extensions to the System
8.2.3 More Functional Emphasis

8.2.4 Variants on the Procedural Paradigm
8.2.5 Exploring Other Programming Paradigms

CHAPTER NINE: SUMMARY

155
158
159
160
164
165
166
166
166
168
169
170
171
i71

173

174
174
175
176
179
182
183
190
192
192
195
197
201
202
203

204

204
205
205
206
207
208
212

213

10

APPENDIX: EXAMPLE GRASP PROGRAMS

A.1 Factorial

A.2 Apply-to-5

A,3 Make-Adder
A.4 Make-Counter

NOTES

BIBLIOGRAPHY

215

215
217
219
222

224

226

CHAPTER 1

INTRODUCTION

Grasp is a computational model and programming system designed to help
novices reason about the structure of procedural programs. Text-based nrograms
in traditional programming languages poorly reflect the rich structure of the
underlying model of computation. Grasp makes the elements and processes of the
computational model more accessible to the programmer by adhering to two
principles: visibility - the programmer should see graphical representations of a
program's structure; and manipulability - the programmer should interact with
the elements of a program as if they were physical objects. This report motivates
these two principles and describes how they are applied to the development of a
computational model and programming system for procedural programs.

Whereas most programming languages try to exploit the user's familiarity
with natural language, Grasp attempts to appeal to his physical intuitions.
People generally have well-developed skills for inspecting and manipulating
interconnected sets of objects. To take advantage of these skills, Grasp embraces
what diSessa has called a device programming style [diSessa 86b]. Programming
in Grasp consists of "wiring" together computational devices with control and
data paths; these devices then serve as the run time structures for actually
executing the program. When reified computational elements are made
accessible in this manner, programmers can use their familiarity with phvsical
systems to reascon about the structure of programs. The name Grasp, in fact, is
intended to reflect this approach; it suggests a relationship between physical
manipulation (grasping an object) and understanding (grasping a concept).

The Grasp project consists of three distinct parts:

1. Probing the problems that novices have in understanding the
structure of procedural programs.

2. Developing a model for procedural programs which addresses these
problems by including features for supporting structural

understanding.
3. Building a programming system based on this model.

The first two parts are reported here. A prototype system is being built, but its
implementation details are not relevant to this report.

In its current state of development, the rudimentary Grasp programming
system serves mainly as a pedagogical tool for illustrating the Grasp model. Much
more work is necesary to extend the system to the point where it can actually be
used for nontrivial programming tasks. The model, however, is the real crux of
the project. Applying the principles of visibility and manipulability not only to
the interface but to the model itself allows procedural programs to be viewed as
collections of interconnected physical devices. This report contends that such a
view offers a powerful alternative to traditional expression-oriented models for

reasoning about the structure of programs.

1.1 MOTIVATIONS

My motivations for undertaking the Grasp project are intimately
intertwined with the introductory course in computation offered by MIT's
Electrical Engineering and Computer Science department.! Based on Abelson
and Sussman's Structure and Interpretation of Computer Programs, the course is
an intensive introduction to the major ideas of computer science. The course
moves at a rapid pace, covering such topics as procedural abstraction, data
abstraction, modularity and state, functional programming, object-oriented
programming, logic programming, interpreters, and compilers. Students have
five hours of class contact with the course each week - two in a large (about 400
people) lecture, two in a medium-sized (about 30 people) recitation, and one in a
small (4 or so people) tutorial. There are weekly programming laboratories, each
of which involves understanding and extending a nontrivial software system.
Typical laboratories include a computer psychiatrist, a system for creating simple
Escher-like pictures, and an adventure game.

The programming language used to illustrate the high-level concepts
covered in the course is a dialect of Lisp known as Scheme. Free of the excess
baggage of most programming languages, Scheme derives an extraordinary

13

14

power and elegance from a small kernel of tightly interwoven features. The most
important of these - first-class procedure objects, lexical scoping, and tail
recursion - will be discussed in Chapter 2. A fair number of small Scheme
programs are used as examples throughout this report. (The reader unfamiliar
with Scheme is encouraged to look at Abelson and Sussman's text [Ableson &
Sussman 85a] for an excellent introduction to the language.) The version of
Scheme used in this report is the same as that used in the MIT course; it differs in
a few respects from the standard Scheme as described in [Clinger 85].

Students often refer to Abelson and Sussman's course as "the Scheme
course,"” but this does not reflect the spirit of what they teach. The focus of the
course is not on a particular programming language, but on controlling the
complexity of large systems. In this way, computer science is introduced as a field
in which abstract engineering principles are examined in their pure form. The
Scheme language is not an end in itself, but a vehicle for exploring the kinds of
high-level issues raised in the course. For thisreason, few hours of class time are
devoted to details about the language or the system on which it is implemented.
Students are expected to become familiar with these on their own as the course
progresses.

Though the instructors like to think that the course has little to do with the
Scheme language, the students tend to disagree. For them, the language and its
supporting programming environment are a very important part of the course.
Certainly it is difficult to grasp the high-level ideas if one cannot understand the
examples that illustrate them. Moreover, students typically spend far more time
reading and writing Scheme code and sitting in front of a computer then they do
attending class or reading the text. There is little wonder that students associate
the course with Scheme rather than "controlling the complexity of large systems.'
Keeping the student's point of view in mind, I will refer to the course as "the

1]

Scheme course" in the remainder of this report.

The mechanics of the Scheme language and system pose a potential source
of confusion and frustration for students. There are, of course, those students who
experience few difficulties. On the other hand, there are those who, at the end of
the course, stili do not feel comfortable with the language or the system. Most
common, perhaps, are the students who begin the course with an array of
misconceptions that are gradually cleared up during the term. Thisis not to say
that Scheme is an exceptionally difficult language to acquire. Undoubtedly, a

15

main problem is a lack of time on the part of the students; as in any university
setting, time is a scarce commodity at MIT, and students simply cannot afford the
time to absorb all of the material in vhich they are immersed. However, the
Scheme course itsel{is also a culprit in the case of the confused student. The
superficial attention paid to the details of Scheme in the course can be frustrating
for many. Asexplored later in Chapter 4, despite Scheme's elegance and
simplicity, there are a host of pitfalls that ncvices can encounter when learning
the language. Requiring them to master the language largely on their own only
increases the probability that they will fall into some of the common traps.

I have been involved with the Scheme course in various capacities over the
past six years: as a student, as a one-on-one tutor, and three times as a teaching
assistant (two terms at MIT and a special course at MIT's Lincoln Laboratories).
The duties of a teaching assistant include teaching tuterials and occasional
recitations, grading problemn sets, and providing students with extra help during
office hours. Through these experiences, I have gained considerable insight into
the problems students have with the Scheme language. It helps to have seen the
course from the perspectives of both student and teacher. All too often instructors
understand material so well that they forget what it was like not to understand it.
I have not forgotten. Istill vividly recall many of the confusions and
misconceptions I had when I took the course. Many of these were not cleared up
until I actually taught the course. I'm sure there are a few more undiscovered

misconceptions waiting to surprise me someday.

My high-level goal in undertaking the Grasp project was to use my
experiences with the Scheme course as a basis for developing new ways to present
procedural programming to novices. Through my teaching endeavors, it has
become obvious to me how important presentation is in conveying ideas. AsI will
argue in Chapter 4, many of the problems novices have with Scheme are rooted in
the way it is presented to them. Scheme code in itself evokes few images of the
state and behavior of the process it describes. These can only be understood via
various explicit models of evaluation taught in class. Yet, in many instances,
these models are too incomplete, confusing, or low-level to help the student gain a
robust understanding of procedural programs. I believe that it is possible to
develop more effective models for presenting computational elements and

processes.

16

In this project I chose to focus in particular on the presentation of
procedures. Procedures as first-class objects? and the environment and control
issues related to procedures represent fertile ground for misconceptions in the
Scheme course, especially during the first few weeks. Part of the problem is that
the abstract nature of procedures makes them particularly hard to visualize. I
once had the desire to go to a Halloween party dressed as a procedure object, but I
didn't have the faintest idea of what I should wear. What does a first-class

procedure object look like?

I developed the Grasp model and system largely in an attempt to answer
this question. Its key feature is the way it reifies many of the implicit structures
associated with procedures and presents them to the programmer as visible,
manipulable objects. Although Grasp is not Scheme, it supports similar kinds of
structures and is a useful tool for reasoning about raany of the concepts in Scheme.
In fact, I have already successfully integrated some of the ideas and notations
from the Grasp model inte my tutorial material for the Scheme course.

1.2 WHERE DOES GRASP FIT IN?

The Grasp project has ties to three major fields of study: mental models,
novice-oriented programming, and user interfaces. In this section I attempt to put
Grasp in perspective by describing its association with the three fields and
discussing some of the related work in each area.

1.2.1 Me*tal Models

In cognitive science, the phrase mental model is used to refer to the internal
mental representation people presumably use to think about a subject area. The
notion of mental models is particularly slippery to formalize or even talk about.
Much of the problem is due to the fact thatit is impossible to directly access the
mental representations appcaring in an individual's mind. We must settle for
indirect methods, such as listening to people verbalize their thought processes or
observing subjects while they perform some task. However, people are not always
consciouc of their models, so the way they say they think does not necessarily
describe the way they actually think. Furthermore, an observer's own models
concerning the subject and the task interfere with an objective appraisal of the

17

subject's models. On top of all this, mental representations are not likely to be

“monolithic, consistent, and well-structured entities; more likely, they are
fragmented into many loosely connected pieces, many of which may be ill-defined
or inconsistent. This is a basic tenet of diSessa's idea of "Knowledge in Pieces"
[diSessa 85b].

Despite the issues raised above, mental models are still a useful concept for
explaining the kinds of misunderstandings people encounter in a subject area.
For example, Brown, Burton, and Van Lehn have shown in several studies that a
large number of errors in subtraction made by elementary school students are
attributable to a small set of "bugs" in the steps of the subtraction algorithm they
use [Brown & VanLehn 80] [Burton 81]. Such a finding has important
consequences for education. Children having difficulty with subtraction might
well be following a logical and well-defined sequence of steps, albeit incorrect in
some minor way. Rather than labelling such children as having "poor math
ability," a more fruitful approach is to diagnose the bugs they have and
investigate ways to clear up their misunderstandings. This approach - analyzing
poor mental models and then helping to diagnose and fix them - is broadly
applicable to many areas of learning.

Recent research has explored people's mental models in many domains. A
line of studies known as natve physics or intuitive physics has probed the way
people understand such topics as motion, gravity, electricity, and heat flow.?
Another area of exploration is human understanding of physical devices. User
models of calzulators are explored in a number of works, including [Young 81],
[Young 83], [Norman 83] and [Halasz 84]. Lekleer and Brown look at ways people
might build models of devices like buzzers [deKleer & Brown 83]. Xerox's
Operability Project [Henderson 84] focuses on the mental models users form of a
machine based on the interface through which they interact with it.

The Grasp project is related to a category of mental models research which
might best be called naive computation. The goal of naive computation is to
investigate the way novices think about computers, especially by studying the
kinds of problems they encounter when learning a new programming language.
Early studies in this area tended to concentrate on the syntactic issues of the
programming languages (e.g. semicolon placement, choice of keywords, and
specification of conditionals); a good overview of these studies can be found in
[duBoulay & O'Shea 81]. Recent research has evolved to focus on cognitive issues

18

and models of computation. Kahney, for example, explores the problems novices
experience with recursion [Kahney 82], while Soloway, Bonar, and Ehrlich
examine naive models of looping [Soloway et al. 83]. Mayer has done several
experiments to observe the effect of teaching explicit models of computation to
novice programmers [Mayer 81]. Strassman's efforts in cataloguing the problems
students expericnce in the Scheme course is particularly relevant to this project

[Strassman 84].

An important part of the Grasp project is to explore the way novices think
about procedures. Through my experiences as a teaching assistant, I have
extensively cbserved novice programmers in tutorials and in the computer
laboratory. These observations are the basis for my theories on student models of
procedures in Scheme. The details of these theories are given in Chapter 4. The
evidence upon which the theories are based is anecdotal; ro formal experiments
were performed to derive them. How=ver, I don't believe that the lack of formality
is a severe drawback in this business. The intuitions one develops as a teacher are
fairly strong and are often corroborated by the intuitions of other teachers.
Although the intuitions may not always be on the mark, failure to harness them
because of a lack of formal evidence is debilitating to the venture of improving
education. Intuitions about novices' misconceptions have played a crucial role in
this project; it is difficult to design a system for helping novices unless one first
has a good feel for the source of their confusions.

1.2.2 Novice-Oriented Programming

Given that current programming systems present a great barrier for
novices, a natural path to explore is the creation of systems which simplify
programming for novices in some way. These efforts, which I group under the
heading novice-oriented programming, follow two main directions:

1. Making programming more accessible to a wider audience by
insulating the novice from the complexities of conventional
programming languages.

2. Making models of computation more visible to the novice by
exposing the traditionally hidden state and behavior of a

computation.

I shall discuss these directions in turn.

19

1.2.2.1 Accessible Programming

One approach to novice-oriented programming is to invent new
programming styles which increase the accessibility of programming to
nonprogrammers and novice programmers. A common method is to provide some
type of intermediary between the programmer and the raw model of computation.
The most frequently empleyed methodology is called programming by
demonstration, in which the user somehow demonstrates (usually through an
interactive, graphical interface) what the desired program is supposed to do.
Gould and Finzer's Programming by Rehearsal is a wonderful example of such a
system; it embodies a theater metaphor to help curriculum designers build their
own graphics-oriented applications. This system automatically writes programs
by "watching" the designers "rehearse" various "performers" which are
represented by graphical objects in the Rehearsal World [Gould & Finzer 84].

A variant on programming by demonstration is programming by example,
in which a system automatically constructs a program based on a user's examples.
The first system embodying this approach was PYGMALION [Smith 75], in which
the user steps through concrete examples of computations by manipulating icons.
If the system isin "remembering mode", it automatically constructs a program
based on the user's example. Halbert's SmaliStar similarly creates a program
based on concrete examples [Halbert 84]. Curry's Programming by Abstract
Demonstration is a different methodology in which the user demonstrates
operations on abstract classes of objects rather than concrete ones [Curry 78]. Yet
another approach is taken in TINKER [Lieberman 82], where programmers use
concrete examples to aid them in visualizing the Lisp programs they are defining.
This style is more programming with examples than programming by example.

Another way to achieve accessibility is to build systems which take
advantage of people's experiences in the world. A major reason for the popularity
of spreadsheet systems is that they bear great similarity to the accounting ledgers
commonplace in the business world. The LENS system uses people's familiarity
with filling out forms to help them specify filtering mechanisms for their
electronic mail [Malone et al. 86]. Xerox's Star Information System embraces a
physical-office metaphor to represent the objects and functions of a document
preparation system. The system is designed so that users' familiarity with objects

20

in the office will help them in their interactions with Star's "desktop." [Smith et
al. 82]

Our wealth of experiences with physical systems is a motivation £
building environments in which programs can be created by interconnecung
graphically represented objects. DiSessa refers to this style of programming as
device programming [diSessa 86b]. The data-flow programming system developed
by Sutherland was an early example of device programming. In Sutherland's
system, the programmer wires together functional units with state-maintaining
data paths to specify a data-flow computation [Sutherland 66] More recently,
Robot Odyssey has employed device programming techniques to embed
fundamental ideas of logic and computation in an exciting educational game

[Dewdney 85].

1.2.2.2 Visible Programming

A second approach to novice-oriented programming is to keep traditional
computational models but to supply users with a more revealing interface. A
major problem with traditional programming languages is that programs and
data are represented as textual expressions which provide little insight into the
state and behavior of the underlying computational model. A desirable goal, as
suggested in [duBoulay et al. 81], is to transform the traditional "black box"
models of the computers into "glass box" ones which allow the programmer to see
the normally hidden state and behavior of a high-level computational model. This
notion is captured in a principle they call visibility.

The idea of visibility has been incorporated into programming systems in
several different ways. Some systems, which Myers refers to as visual
programming systems [Myers 86], have used it to make the specification of a
program more graphical. In AMBIT/G, for example, data structure operations are
expressed by pictures which show how to manipulate the data structures [Rovner
& Henderson 69]. Other systems adhere to visibility by dynamically illustrating
program execution or data structure manipulation; Myers uses the term program
visualization for this approach. The Brown algorithm simulator (BALS/"), for
instance, graphically displays how algorithms manipulate data [Brown & Reiss

82].

Some visible systems provide for the ihtegration of program definition and
~execution within one environment. Reiss's PECAN gives the programmer
multiple syntactic and semantic views of programs and their execution [Reiss 84].
Both Boxer [diSessa 85a] and Eisenberg's extension, BOCHSER [Eisenberg 85],
combine the functionalities of editor, interpreter, and file system into a single
integrated system. Users are free to inspect and directly modify the state of this
environment, which is uniformly represented in a spatial hierarchy of boxes on

the screen.

Many of the systems discussed so far have been dubbed graphical
programming languages or visual programming languages because of the
graphical component they incorporate to make the state and behavior of programs
visible to the programmer. The computer science community has developed a
growing interest in such systems - witness that .E.E.E. Computer recently
devoted an entire issue to visual programming [Grafton & Ichikawa 85]. In many
cases, however, the graphics are limited to only one part of these systems. Thus,
while AMBIT/G allows graphical specification of programs, it does not show
graphical execution; the BALSA system has the inverse property. Though Boxer
and BOCHSER maintain state spatially in boxes, they are fundamentally
text-based; boxes, in fact, are treated simply as large characters. Furthermore,
the dynamic behavior of programs is hidden in these two systems - only the results

of program execution are displayed.*

"Graphical programming" or "visual programming" are terms which better
befit systems in which the creation, execution, and results of a program are all
made visible through an interactive, graphical interface. Sutherland's data flow
system satisfies these criteria. Not only does it allow the creation of programs by
wiring together functional units with data lines, but when the resulting program
is executed, the values on the data lines may be inspected [Sutherland 66]. In the
Rehearsal World introduced above, the user "auditions” and "rehearses"
performers via interactions with graphical representations of them. When a
"production" is run, the behavior of any performer can be directly observed [Gould
& Finzer 84]. Curry's prototype system supports the creation, review, and
execution of a program within a single framework [Curry 78]. In a more recent
effort, Glinert and Tanimoto's Pict/D allows programmers to build and run their
programs in a wholly graphical environment - icons rather than text are used
everywhere, even for variable names [Glinert & Tanimoto 84]. In all of these

21

22

systems, the graphical nature of programming facilitiates the creation and
debugging of programs since the state and behavior of programs are visible to the
user during all stages of the programmming task.

Grasp is a new entry into the class of graphical programming systems. It
does not introduce a new methodology to isolate the nonprogrammer from the
details and complexity of traditional programming languages. Rather, Grasp
tries to make many of the implicit structures of traditional programs more visible
to the novice programmer. To aid in accessiblity, Grasp does embrace a device
programming style. Structures such as procedure activations and variables have
graphical representations in Grasp which can be moved and interconnected in
ways suggestive of interactions with physical objects. Textual names are allowed
in Grasp, but they act purely as comments and have no semantic import. All
semantics are determined by the structural interconnection of the graphically

displayed objects.

Grasp is most closely related to graphical systems like Sutherland's data
flow environment and Glinert and Tanimoto's PICT. It shares with these systems
a total dependence on interactions with graphically représented objectsas a
means of specifying and observing programs. This is in stark contrast to systems
like Boxer and BOCHSER, in which almost all information is made visible in the
more traditional textual form. Whereas these text-based environments take
advantage of people’s linguistic intuitions, graphical interfaces and device
programming styles exploit people's physical intuitions. I make no claim that
Grasp's use of graphics and device programming make it superior to text-based
systems as a programming environment. Text-based languages are an extremely
powerful tool; they allow complex ideas to be expressed with a conciseness and
readability which in many cases is unmatchable by a graphical system. However,
the power of these languages is often inaccessible to novices because their
semantics are not at all immediately obvious. Idc claim that Grasp is a useful
tool for understanding the computational elements and processes implied by

procedural languages.

Grasp is set apart from other graphical programming systems in two
important ways. First, the focus of the Grasp project is not on the use of graphics
but on the development of models to aid novices in reasoning about the structure
of programs. Fancy graphics alone are no panacea for clarifying the
misconceptions of novices. The graphics are helpful only to the extent that they

23

can make the features of a clear model visible to the programmer. For example,
the Grasp interface illustrates the distinction between the oft-confused notions of
procedure, procedure activation, and interpreter, but the important point is that
the Grasp model explicitly disinguishes them in the first place.

The second important property of Grasp is that it supports the full power of
procedures as first-class objects. As with Scheme procedures, Grasp procedures
can be stored in variables, passed as arguments, and returned as results. By
emphasizing a procedure's properties as a data object through a graphical
interface, Grasp strives to reduce the confusion about first-class objects which are
fostered by Scheme's expression-oriented interface. Ofthe novice-oriented
systems I have studied, only BOCHSER [Eisenberg] supports first-class procedure
objects, and it does this through an interface based mainly on text. I believe that
Grasp is the first system to incorporate the powerful notion of first-class
procedures in a truly graphical manner.

1.2.3 User Interfaces

Although the notion of visibility is an important one for novice-oriented
programming, the actual implementation of visible systems falls into the domain
of user interface design. This field focuses on developing general principles for
human interaction with machines and realizing these principles in particular
systems. The extent to which the principles can be realized is strongly dependent
on existing technology. Visibility, for instance, is difficult to achieve in a
teletype-style interface. In recent years, the availability of high resolution
display devices and the development of the software to drive them has made it
possible to explore graphical environments aimed at visibility. New technology
has also opened the door for other exciting interface ideas; interfaces which take
advantage of touch, speech, gesture, and eye motion are areas of current research
[Bolt 84].

The mere utilization of advanced technology does not guarantee a good user
interface. Designers often construct systems in an ad hoc way, following their
whims rather than a firm set of principles. Principled designs are hard to come
by. One of the best examples of a principled design is the Star user interface.
Following such general principles as visibility of information, consistency of
interactions, modelessness, and simplicity, the Star designers carefully embodied

the physical-office metaphor into their system. The resultis a system in which
users can apply their familiarity with the office environment to reduce the
barriers typically associated with computer interaction [Smith et al. 84].

The two main principles incorporated into the Grasp user interface are
visibility and manipulability. Visibility means that information is represented in
a recognizable visual form accessible to the user. Like Star and many other
graphically oriented user interfaces, Grasp uses icons to represent objects of
interest. Unlike Star, however, familiar graphical representations for Grasp's
objects are hard to come by. Documents, filing cabinets, and printers are concrete
objects in the physical-office metaphor which are amenable to easily recognizable
icons. Such abstract objects as procedures, variables, and control make the task of
choosing representations in Grasp anything but straightforward. An important
part of the Grasp project is forming models in which these objects can be viewed as
physical objects and devices. Achieving visibility then reduces to the problem of

designing representations for the objects and devices.

The principle of manipulability is an extension to the notion of direct
manipulation interfaces. Direct manipulation is a style of interface characterized
by direct interaction with representations of the manipulated objects rather than
indirect interactions with them through a separate command language
[Shneiderman 83]. I use the term manipulability here to mean that the user can
interact with representation of the objects in ways reminiscent of his interaction
with physical objects. Many text editors have direct manipulation interfaces, but
they do not embrace a view that characters are physical objects; characters are
usually not the kind of stuff we expect to pick up and hold in our hands. Even
systems that embody a physical metaphor choose to depart from the metaphor in
some ways. Although physical objects can be moved and positioned continuously
in space, icons in Star are constrained to appear in one slot of an array of 154
squares on the display screen. Manipulability implies that such interactions
should more closely resemble their physical counterparts.

Together, visibility and manipulability make Grasp what Ciccarelli calls a
presentation system. A presentation system is one in which the user's interactions
with the representations on the screen are interpreted as manipulations on an
underlying data base [Ciccarelli 84]. If the presentation system is designed
appropriately, the user need not be conscious of the distinction between the
graphical representations and the objects they represent. This idea, which

24

25

diSessa calls naive realism, is a fundamental principle of the Boxer project
[diSessa 85a]. Naive realism allows the users to believe that what is displayed on
the screen is the state of the system. Since users will tend to make such an
assumption anyway, it is fruitful to explicitly maintain such an illusion in a
presentation system. Through its use of visibility and manipulability, Grasp

supports naive realism.

Grasp differs from such interfaces as Star and Boxer in the high degree to
which it adheres to the physical metaphor. The goals of the Star and Boxer
systems require them to pay a considerable amount of attention to handling text.
In Boxer, the user is always interacting with the text editor. In Grasp, on the
other hand, text plays a minor role; it is the structure of the graphical
configurations which is important. This is a strong motivation for incorporating
into the interface features which allow users to manipulate the graphical

configurations in a physical way.

1.3 Roadmap to this Report

In this document, I have striven not only to explain the details of my
project, but also to clarify the motivations, goals, principles, and justifications
behind the project as well. As a result, this thesis contains a fair amount of
background material. The reader may have neither the time nor the desire to
wade through it all. The following overview of the thesis is provided to help the
reader find what he or she considers to be the "meat" of this document:

Chapter 2: REASONING ABOUT THE STRUCTURE OF PROCEDURAL
PROGRAMS - This chapter describes the general goal of the Grasp project - to
help novices build more robust structural models of programs. It contains
discussions of models of computation, comparisons of structural and functional
models, some notes on the procedural paradigm (especially as embodied in
Scheme), and a discussion of what I mean by "helping novices"

Chapter 3: VISIBILITY AND MANIPULABILITY - Two important design rules
that are at the foundation of the project - visibility and manipulability - are
motivated in this chapter. The principles are motivated by a consideration of how
people build mental models of programming languages. I argue that people build
models by assimilating explicitly taught models or by inducing models based on
their interactions with the programming language. Induction is prone to pitfalls,

26

but explicit models can have problems of their own. In both cases, the
presentation of structural information is crucial for forming robust models.
Visibility and manipulability take advantage of people's physical intuitions to
help them build more robust models.

Chapter 4: PERILS IN THE PROCEDURAL PARADIGM - Some of the problems
that students have in understanding Scheme procedures are discussed in this
chapter. These trouble spots were extremely influential on my design of the
model underlying the Grasp system.

Chapter 5: THE GRASP MODEL OF COMPUTATION - In this chapter I present
a model of computation for the Grasp system. I argue that a well-designed
graphical interface is not the only key to a visible and manipulable system -
models must first contain objects which are amenable to such interfaces. A
principle of reification is developed to derive a set of computational elements used
in a model of the procedural paradigm. The chief attributes of the model are its
treatment of procedures as first-class objects and its clear separation of procedures

from procedure activations.

Chapter 6: A VISIBLE AND MANIPULABLE INTERFACE TO THE GRASP
MODEL - This chapter describes how visibility and manipulability are achieved
in the interface to the Grasp system. Visibility is achieved through direct
mappings and naive realism, which are intended to aid the structural reasoning of

programmers. Manipulability is maintained by applying the principle of direct
manipulation rigorously. Mouse sensitivity, occlusion, and smoothly moving
objects are ail important aspects of manipulability.

Chapter 7: DISCUSSION - The advantages and disadvantages of the Grasp model
and interface are discussed, including comparisons to other novice-oriented
systems.

Chapter 8: CURRENT STATUS AND FUTURE DIRECTIONS - The
implementation status of the prototype Grasp system is briefly described, followed
by a discussion of future avenues of exploration for the Grasp project.

Chapter 9: SUMMARY - A summary of the key ideas presented in this document.

Appendix: EXAMPLE GRASP PROGRAMS: A collection of sample Grasp
programs.

CHAPTER 2

REASONING ABOUT THE STRUCTURE
OF PROCEDURAL PROGRAMS

My main goal in this project is to help novices reason about the structure of
programs. Since this is a broad and open-ended goal, it is necessary to clarify my
intent in the scope of this thesis. In this chapter, I will define some terms, clarify
the scope of the work, and justify some of the decisions I made in choosing this

area of inquiry.

2.1 MODELS OF COMPUTATION

For the purposes of this report, a programmer is any individual who
constructs static descriptions intended to bring about a desired dynamic behavior
in a computer. When I refer to a programmer in this report, I often do not specify
his or her level of skill. Since the research described herein focuses on the
non-robust mental models of programmers, I am usually referring to novices
rather than more experienced programmers. A programmer uses a programming
language to specify descriptions, and the resulting structure is a program.
Programming languages are traditionally textual, though they may have a
graphical component as well. Programs are executed by the computer in order to
engender a dynamic behavior on the machine; the evolution of a computation
during the execution of a program is a process. The tools provided by the computer
for the construction and execution of programs form the programming
environment or programming systerﬁ. The programmer interacts with the
programming environment through a user interface, or simply interface.

To be able to read or write a program in a particular programming
language, a programmer must have some notion of how the program will be
executed by the computer. After all, a program is just a static structure with no
intrinsic mesning; the only reason that the programmer can say that a particular

27

28

program does anything at all is that he or she somehow acknowledges the
existence of an active entity which uses the program to determine its behavior.

This entity is often called the interpreter.

A programming language expression only has imneaning when paired with
an interpreter. For example, the expression (+ 1 1) is intrinsically meaningless.
When evaluated by a Scheme interpreter, it denotes the numerical value 2. We
can, however, imagine an alternate interpreter for which a pair of parentheses
denotes an operator for counting the non-blank characters between the
parentheses. For this second interpreter, the expression (+ 1 1) denotes the

numerical value 3.

An interpreter embodies a model of computation, a description of the
abstract world in which the computations performed by the interpreter take place.
A mcdel of computation consists of three major parts:

1. The set of computational elements which exist in the abstract world.

2. A means by which the elements may be configured to form a

computation state.

3. Interpretation rules followed by the interpreter for determining how

one computation state leads to the nex.c.

In real systems, the interpreter for a programming language exposes many of the
details of the system in which it is running - e.g. limits on the representations of
numbers, storage capacity of the machine, and so on. To isolate the model from
the details of any particular machine or operating system, it is beneficial to
consider an abstract machine which supplies the interpreter with an unrestricted
number of the ideal computational elements of the mcdel. The idea of an abstract
machine is similar to the notional machine described in [duBoulay et al. 81] - an
"idealized, conceptual computer whose properties are implied by the constructs of
the programming language employed."

The type of elements found in the abstract machine depend on the
programming language and the desired level of detail. Abstract machines for
microcode, for instance, typically consist of low-level hardware components like
ALUs, registers, and buses. For a high level programming language, the abstract
machine usually includes such entities as variables, procedures, and data
structures, although it is also possible to view the language at a lower level as

well.

29

Programmers must have a good understanding of the model of computation
underlying a programming language in order to programveffectivelly. In order to
improve this understanding, programming courses, texts, and manuals often
provide explicit models for a programming language. The Scheme course, for
example, introduces four distinct explicit models of evaluation for Scheme

expressions:

1. The substitution model gives symbolic manipulation rules for
reducing complex expressions to simpler ones. Although it is useful
for explaining procedure applications early in the course, this model
must be abandoned once side effects are introduced.

2. In the actor model, procedures are treated as scripts that are followed
by actors. This model is not very rigorous, but it is a good vehicle for
introducing the notions of time and space complexity.

3. The environment model describes the evaluation of expressions in
terms of their effect on abstract machine elements known as
environment frames. Though this model completely explains how
variables and reference work in Scheme, it gives no insight into

control flow.

4. Control flow is explained by an explicit control evaluator described
in the register machine model. The abstract machine for this model
includes lower-level entities than the other models - e.g., registers,
stacks, and primitive functional units.

As is evident from the above example, explicit models can vary widely in their
completeness, emphasis, and usefulness. In some cases, an explicit model can be
useful even though it is not phrased in terms of the abstract machine elements
usually associated with the programming language. Scheme's substitution and
actor models, for instance, are helpful even though they do not refer to the
environment structures normally attributed to the language.

2.2 REASONING ABOUT PROGRAMS
2.2.1 Reasoning Tasks

The goal of this thesis is not to help people learn kow to program. Thisis a
very difficult and not well understood task. Programming in the general scenario

involves mapping problems and specifications from some application domain into
the rather constrained abstract world offerred by the computer. In this way,
programming is really engineering and thus involves many of the same
difficulties as any engineering tasks. A good programmer must have:

* A firm understanding of the problem domain and goal.

* A good grasp of fundamental engineering techniques, such as
breaking up problems into subproblem modules with simple

interfaces
* Familiarity with modelling and the design process.

* General knowledge and technical skills - e.g. awareness of
algorithms and standard programming tricks.

* A thorough understanding of the programming system as a

tool.

I do not attempt to deal with the general problem of programming. To a large
extent, many of the skills can be learned only through experience or an
apprenticeship of sorts. Nothing substitutes for experience in many cases.

My chief interest in the Grasp project is the last point mentioned above:
understanding the programming system as a tool. The behavior of a computer is
predictable to a degree of exactness not attainable with physical systems. If the
programmer knows the details of the model of computation embodied by a
programming language, he can explain the execution of any program in that
language. Whereas comprehending how programs are executed is a well-defined
task, understanding how to write programs is not. Rather then dealing with
problem solving and general engineering principles in this project, I chose to focus
on the more tractable goal of helping novices understand the details of program

execution.

My main interest in this project is in helping people reason about programs.

Here I am influenced by my experience with the Scheme course. Most
introductory programming courses emphasize writing programs from scratch.
Furthermore the kinds of programs they deal with are typically implementations
of standard algorithms for sorting, searching, data manipulation, numeric
computation, and so on. The approach taken by Abelson and Sussman, on the
other hand, stresses understanding, modifying, and extending existing systems.

30

Typical systems which students explore in their challenging weekly problem sets
are a computer psychiatrist, an adventure game, and a Scheme interpreter. The
kinds of taks they are given might be:

* Add a history mechanism to the computer psychiatrist so that
it can refer to previous statements made by the patient.

* Develop a troll character for an adventure game which will eat
other characters unless appeased with a pizza.

* Extend a Scheme interpreter to allow typechecking for
variables, procedure arguments, and procedure results.

Often the changes which need to be made to the existing system are not difficult,
but making them requires a thorough understanding of the given system.
Figuring out what the program is doing and wk. :re the cnanges need to be made
are usually more than half the battle.

To be successful in such an environment, programmers need to be skilled at

the reasoning abilities presented in [Young 83]:
Explanation: Say why a system has a given behavior.
Prediction: Reason what the behavior of a system will be.

Invention: Construct or modify a system so that it has a desired

behavior.

In the Scheme course, these abilities are necessary for three important

programming tasks:

Reading: With natural languages, we cannot hope to become good
writers of a language until we are proficient readers. Through
reading, we note the basic structure of the language and become
familiar with the common constructs, the idioms, and the
exceptions. The same is true of programming languages, but to a
much greater degree. Here the structure is especially crucial
because the computer demands extraordinary precision. A
human being can probably interpret stylistically poor writing in
a foreign language; a computer is not so forgiving. However, the
ruthlessness of a programming language interpreter makes
programs an ideal medium for expressing ideas in a precise
manner. This crucial property of programming languages is the

31

motivation for Abelson and Sussman's claim that "Programs are
written for people to read, and only incidentally for machines to
execute." [Abelson & Sussman 85b].

Explanation and prediction are crucial ¥s2asoning abilities for
reading code. If we are told that a given program has a particular
behavior, we should by reading it be able to explain the
mechanism for that behavior. Even if we are not given
information about a program's function, we should be able to
predict its behavior by reading it. This does not mean that people
should be able to read any piece of code. In any programming
language it is possible to write ridiculously obscure programs
which aren't worth deciphering. T assume here that the code is
well-written in a standard style, with insightful choices for
variable names and helpful comments where appropriate.

Modifying: The Scheme course emphasizes making changes and
extensions to an existing sysiem. This does require the ability to
write code, but the amount of code written is small compared to
the size of the entire system. What is often just as important is
finding where in the code to make the change. Maintaining the
style and spirit of the original program is alsc an important goal.
Extensions using side effects, for instance, are not appropriate for

a program written in a purely functional style.

Explanation, prediction, and invention are all important
abilities for modifying programs. Before we can modify code, we
must be able to explain what it does and how it does it. We then
must invent a method for modifying the existing code to give a
desired behavior. Predictive abilities are useful for seeing
whether the invented methods will in fact achieve the desired
effect.

Debugging: Programmers expend great effort in finding and
correcting errorsin their programs. In the Scheme course,
students are sometimes presented with "buggy" pieces of code and
asked to fix them. However, students get the vast majority of
their debugging experience when they make incorrect

32

modifications to a programming system. Explicit debugging
skills are never taught in the course, but students must acquire
some mastery of them in order to complete their computer

laboratories.

Again, explanation, prediction, and invention play a crucial
role in the debugging of programs. Explanation is required for
localizing the error. Fixing an error is just another form of
program modification, so the inventive and predictive abilities
that were useful for that task are important for debugging as

well.

The reasoning skills and programming tasks described above are whatI
have in mind when I talk abouu "reasoning about programming." Certainly there
are other skills and tasks which are important for programming - e.g. the ability
to design a large system from scratch. However, these other skills extend to a
wide range of engineering disciplines. In this report I have chosen to concentrate
on the reasoning necessary to understand the specific tools of computer science - in
particular, the structural mechanisms of a programming language.

2.2.2 Models as Reasoning Aids

Models are representations which aid a person in reasoning about a system.
Explicit models are written or spoken descriptions of the structure and function of
systems. The four models of evaluation taught in the Scheme course are good
examples of explicit models. The internal mental representations which people
actually use to reason about a system are mental models. For reasons which I will
shall discuss in Chapter 3, the mental models which people use to reason about a
system may be only loosely related to the explicit models which they have been
exposed to.

Models are sometimes divided into two categories: structural and
functional. Structural models are those which explain the behavior of a system
based upon the interconnections between its component parts and the behavior of
those parts. Often these models can be "run" to mechanistically simulate the
behavior of a system given its structure. Functional models, on the other hand,
concentrate on the functional characteristics of a system. They are appropriate

33

for explaining certain aspects of a system's behavior, but do nct deal with the

general mechanism responsible for that behavior.

As an example of the difference between the two kinds of models, consider
models of recursion for Scheme. Suppose we have the standard recursive
definition of a procedure for computing the factorial function:

(DEFINE éFACTORIAL N)
(COND {(= N 0) 1)
(ELSE (* N (FACTORIAL (- N 1))))))

Structural models for recursion explicitly account for the environment and control
information which must be maintained when a procedure calls itself recursively.
In the above example, a structural model would explain how the v parameters for
different activations are distinguished and how the pending multiplications are

remembered.

On the other hand, functional models of recursion explain what recursion
does rather than how it is implemented. In the ractoriaL example, it is possible to
understand what ractoriaL does in terms of mathematical induction or recursively
defined functions. The above piece of code resembles the declarative

mathematical notation for factorial:

FACTORIAL (N) = 1, N =0;
M * FACTORIAL (N - 1), N> O

Although this resemblance may help people understand what ractoriaL does, it does
help them attain a deep understanding of recursion. In particular, mathematical
intuitions are of little help in predicting the behavior of recursive procedures like

the one given below:

(DEFINE (COUNT2 N)
(COND ((= N 0) 0)
ELSE (COUNT2 (- N 1))
PRINT N))))

Here the behavior of the pending rrinT expression is difficult to understand unless
one has a good structural understanding of recursion.

Although I have tried to stress the difference between structural and
functional models, there is not always a clear dichotomy between the two. Just
about any model has both structural and functional aspects, and these may not
always easy to separate. However, for the purposes of the following discussion, I
will continue to talk about the two types of models as if they are distinct.

34

Each of the two types of models has its advantages and disadvantages.
Structural models seem to be good aids for explanation and prediction tasks.
Because they are based on mechanism, they give the model-holder a means of
"running" the model to mentally simulate the system of interest. Allowing people
vo envision the behavior of a system, this process of simulation is at the very heart
of explanatory and predictive abilities. Structural models can also help with
invention tasks by providing the model holder with an appropriate space in which
to look for operations for achieving a desired goal. Halasz, for instance, has
demonstrated that explicit structural models of a stack-based calculator aid the
user of the calculator in approaching non-routine calculations [Halasz 84].

However, structural models have several undesirable properties. Models of
behavior based on mechanism generally must be fairly complex in order to cover
all the cases of possible behavior at some level. The level of detail stressed by
functional models leads to the following problems (many of these are due to
[diSessa 86al):

* The complexity of the models makes them difficult to apply.

* Incomplete structural models are not very useful. For this
reason they usually cannot be learned incrementally.

* The details of a structural model bear little relation to a
high-level functional specification for a system. Knowing what
a part does does not imply knowing how it can be used.

* When applying structural models, it is easy to lose sight of the
forest because of the trees. The high-level behavior of a system
can be difficult to discern from the plethora of details generated

by applying a structural model.

Functional models fix many of the problems raised above. By stressing the
use of a device, they are much closer to the functional terms in which tasks are
phrased. Further, they are at a high level, so the model holder does not become
bogged down in a quagmire of low-level details when reasoning with them.
Another advantage of functional models is that partial models can still be useful
reasoning aids. This implies that functional models can be learned incrementally.

The major disadvantage of functional models is that they do not explain the
full range of a system's behavior. They may be useful for describing the most
common situations in which the system is used, but they tend to break down in the

35

36

less common situations. A classic example of this effect is the algebraic calculator
model described in [Young 81]. One simple functional model of an algebraic
calculator is that the user enters an algebraic expression and the calculator
evaluates it when the user presses the = key. This model covers the legal
expressions that the user can enter (suchas1 + 2and (3 + 4) 7 (5 - 1)), but does
not explain how an ill-formed expression such as 1 + + will be treated by the
calculator. The model has no predictive or explanatory power for reasoning about
expressions outside the class of legal expressions. In the calculator domain, such
reasoning is probably not very important anyway. In a domain such as
programming, however, explaining and predicting errors is crucial for the
debugging process.

In the Grasp project, I focus on structural models rather than functional
models. I have made this design decision for two main reasons:

1. Emphasizing structure fits in well with the goal of helping people to
read, modify and debug programs. As discussed above, these
activities require reasoning abilities such as explanation, prediction,
and invention. Because they stress mechanism, structural models
are more supportive of these skills than functional ones.

2. Structural models are far more tractable than functional models for
the domain of programming. Programming is far more structural
than other disciplines. The functionality of most devices is confined
to a small range of behavior. For example, telephones are for
communication; calculators are for simple numeric computations.
Computers, on the other hand, are such general purpose devices that
itis hard to attach any particular functionality to them. The
structures supported by a programming language, though, form a
small, well-defined kernel. Perhaps it is possible to handle function
within a particularly small domain, but handling general
functionality seems a hard row to hoe.

My design decision does not indicate that I believe functional models are
unimportant. Like structural models, functional models are also useful for
reading, modifying, and debugging programs. Recognizing standard patterns,
knowing typical ways to use elements, and being familiar with common sources of
errors are all important for these activities. However, functional models of this
kind tend to be built up from experience and are difficult to teach explicitly.

Structural models can be a good foundation for learning functional ones. If
the learner has enough patience, he or she can always determine how a piece of
code works using structural models. The next time a similar piece of code is
encountered, it is easier to understand, and over time standard functioral
patterns become apparent. This whole process, though, depends on the ability to
understand the mechanism of the code in the first place. Itis not always
necessary to resort to the structural models - in fact, experts use many functional
models when reasoning about the behavior of systems. However, the structural
models can always be used as stepping stones for learning the higher-level
functional models. The converse statement is not true in general. Knowing how
to use certain elements in a particular way does not mean we will necessarily

understand a new use of those elements.

23 HELPING NOVICES

Iclaim in my goal that I want to help novices reason about the structure of
programs. But what defines a "novice"? What do I mean by "helping"? The
purpose of this section is to explain these terms meore clearly.

2.3.1 Novices

In the context of this thesis, a novice is someone who is new to the
procedural paradigm of programming. The term not only designates people who
have never programmed before, but it also refers to those familiar with other
models of computation but not the procedural paradigm. Note that the procedural
paradigm here implies the full powers of procedures as used in Scheme. Although
other programming languages, such as Pascal, ADA, and CLU share many of the
features of this paradigm, they do not support first-class procedure objects. Thus,
even people with backgrounds in such languages would be considered partial
novices in this thesis. Of course, experience in other languages might help, but it
can often be detrimental as well.

1 assume in this project that novices desire to be good at the reasoning tasks
described in the previous section - namely reading, writing, and debugging
programs. I assume that they are not casual programmers trying out a new
language, but that they actually plan to do a fair amount of work on nontrivial
programming projects. For the casual programmer, high-level functional models

37

are probably sufficient reasoning aids in most cases. For the other group of
novices, however, more structural models are necessary. The main reason for
focusing on this latter group is that students in the Scheme course fall into this
category. These are the kind of people with whom I have had the most contact and
with whom I am the most familiar.

Through my experiences as a teaching assistant, I have observed that
novices have poor structural models of programs. The models are poor in the sense
that they are inadequate to support the appropriate reasoning tasks for reading,

writing, and debugging programs. Poor models tend to be:
* Incomplete - the models are missing pieces.
* Jll-defined - the models have incorrect pieces.

* Unintegrated - many of the pieces of the model are present but they
have not been synthesized into a coherent whole.

* Inconsistent - the models support differing interpretations to a given

problem.

*

Superstitious - the models contain irrational pieces based on bad

experiences.

The poorness of students' structural reasoning is especially surprising in light of
the fact that a considerable amount of emphasis in the course is placed on
teaching explicit models of evaluation. Many examples of poor reasoning in

Scheme are considered in Chapter 4.

A desirable property for structural models is that they be robust. Here I use
the term "robust" in a similiar way to [deKleer & Brown 83] - a robust model is
one which continues to support proper reasoning even on problems which are new
and unexpected. Presumably expert programmers, those whose reasoning about
programe. is clear and accurate, hold such robust models. This is probably not the
only advantage experts have - as mentioned before, they also have a
well-developed spectrum of models ranging from structural ones to functional
ones. Further, they have the ability to discern situations in which application of a
model will be profitable, and those in which it will not. Robust structural models
alone do not make an expert. However, they are a crucial foundation on which
many of the other models may be built.

39

2.3.2 Helping

The goal of this thesis is to help novices build more robust structural
models of programs. The term help, however, is a fuzzy one, and it deserves an

explanation.

There are a wide range of ways to help learners understand a subject area.
In methods of active help, an independent agent is available to give lessons,
answer questions, and provide comments as the learner progresses. Traditionally,
this agent is another person in the capacity of a teacher, employer, or colleague.
However, in some Intelligent Computer Assisted Instruction (ICAI) systems, this
agent can be a computer. Anderson's Lisp Tutor [Anderson et al. 84] and Burton
and Brown's West [Burton and Brown 79] are examples of programs which

provide the learner with feedback.

Learning environments in which no active agent can respond to an
individual learner employ methods of passive help. Textbooks and lectures are
prime examples of methods of learning where there is no feedback. An example of
passive help on a computer are computer-based microworlds which give the
learner a domain to explore. The classic example of a microworld is turtle
geometry !, in which the learner can explore properties of geometry via a
pen-carrying "turtle" which "lives'" on the display screen.

A key property of passive help systems is that they depend largely on
presentation to help the student learn. Since they cannot dynamically
reconfigure themselves to a particular person, they must aim to be beneficial for a
large percentage of the audience for which they are targeted by approriate
presentation of the subject matter at hand. Order of material, number and
content of examples, and rigor of reasoning, for example, are all important
considerations for textbooks and lectures; for microworlds, important decisions
include the design of building blocks, how they can be manipulated, and the
interface the user has to them.

In this project, I have opted for the passive help approach. The Grasp
project described in this report is essentially a microworld for exploring some of
the important structures of the procedural paradigm. In particular, itis not an
active system whicl tries to diagnose and correct student programming errors.
This is not to say that active help is of no use with a system like Grasp. To the
contrary, the educational effect of any passive help environment is immeasurably

40

enhanced if it is used as a tool by teachers who can answer students' questions and
suggest further directions of exploration. I firmly believe that human tutors are
the most effective means of teaching programming. I envision Grasp as a tool to
supplement the traditional teaching of programming.

The value of Grasp lies in the way " presents the pieces and relationships of
procedural programs to the novice programmer. Granted, this particular
presentation may not be very helpful to some learners. A major drawback of any
passive help system is that it will be helpful to different people in differing
degrees. However, when used as a tool, it provides an alternate point of view
which may help some people build better structural models of programs.

I would like to make a comment here about making models explicit. I have
assumed throughout this project that developing and teaching explicit modelsis a
good thing. This is not a universally accepted belief. There are those people who
believe that such explicit models can actually be a hindrance because they "force"
a certain viewpoint on the learner. To some extent, this point has validity - people
learn not by being told, but by developing models on their own. Although itis
possible that too many explicit models may make it difficult for learners to
discover their own, I doubt it. I see the explicit models only as suggested ways of
looking at the subject matter. The learner is free to accept some of their parts and
disregard others Ultimately, however, learners build all models by themselves; if
they are not satisfied with the models they have seen, they will create new ones.

2.4 THE PROCEDURAL PARADIGM

There are an infinite number of computational models, differing from one
another in their elements, allowable computation states, and interpretation rules.
Although many of these models may be equivalent in terms of the kinds of
processes they can specify, from the programmer's point of view they are still
different in terms of the way they describe a process.

Despite an infinite variety of computational models, many of the models
can be classified according to certain programming styles or paradigms. Some of
the more popular programming paradigms are:

1. Procedural Programming (Imperative Style) - The cornerstone

of this paradigm is the procedure, which describes how to
manipulate data objects and variable bindings.

41

2. Functional Programming (Applicative Style) - This style is
similar to the procedural one, except that no side effects
(mutations of data or variable bindings) are allowed.

3. Object-Oriented Programming (Message-Passing Style) - In
this paradigm, the world consists of state-maintaining objects
which communicate with each other via messages. A method
for an object determines how it handles a message.

4. Logic Programming (Rule-Based Programming, Declarative
Style) - Here the basic model consists of a database of facts and
rules for deducing new facts from old ones. Computations are

initiated by queries to the database.

All the above styles are covered in the Scheme course, though the Scheme
language itself falls under the heading of the procedural paradigm.

In the Grasp project, I have chosen to focus on the procedural paradigm as
an arena for exploring ways to help novices build structural models. There were
two major reasons for this decision. First, procedural programming is the style
with which I have become the most familiar through classwork, teaching, and
research. Second, my teaching experiences have made it increasingly clear that
the procedural paradigm is capable of fostering a great many misconceptions in
novice programmers (see Chapter 4 for details). I believe that many of these
misconceptions can be avoided with the help of interactive environments which

better present the structural information contained in programs.

2.4.1 Basic Elements of the Procedural Paradigm
Despite the differences between languages supporting the procedural
paradigm, the elements of their computational models can be classified into three
broad categories:
1. Data Structures - explicit elements which are manipulated
during the execution of the program.
2. Procedures - elements which describe how to manipulate the
data.

3. Interpretation Structures - implicit elements which are used by

the interpreter to execute programs.

42

I will describe how these elements are embodied in Scheme. before I do this,
though, it will be fruitful to deal s little more with them in the context of

procedural languages in general.
Data structures can be analyzed along several dimensions:

Composition - Data which can be decomposed into smaller units of
data are compound, while those for which no further
decomposition is possible are primitive. Number and booleans are
examples of primitive data, while arrays, records, and lists are
typical compound data structures.

Mutability - If a data object maintains stat« which a program can
change, it is said to be mutable; otherwise it is unchangeable or
tmmutable. For example, the programming language CLU makes
a clear distinction between data based on mutability - it has both
mutable and immutable versions of arrays, records, and
discriminated unions [Liskov et al. 79].

Level of Abstraction - A programming language directly supports
only a small set of data structures. Using techniques of data
abstraction, the user can conceptually extend this set by defining
procedures to create, decompose, and manipulate new kinds of
data. These operations form an abstraction barrier which
separates the specification of the user-defined data from its
implementation. Languages offer varying amounts of support for
data abstraction. CLU, for example, ensures that abstraction
‘barriers are not violated, while Scheme programmers must

maintain the barrier by convention.

Like the data structures discussed above, procedures come in both
system-defined and user-defined forms. Primitive procedures are those which are
predefined in the language; typically their definition cannot be changed. Usually
the primitive procedures are for creating and operating on the primitive data
elements. Arithmetic operations and procedures for composing and decomposing
compound data structures fall into this category. In order to avoid continually
repeating common patterns of operations, it is useful to be able to capture such a
common pattern into a new procedure. This technique, known as procedural
abstraction, allows the programmer to define new procedures. Asin data

43

abstraction, there is an abstraction barrier which separates the specification of
the procedure's behavior from the implementation realizing that behavior.

Although procedures vary widely between languages, they share some
common characteristics. Typically they consist of a specification of inputs, called
formal parameters, and a pattern of operations, called the body of the procedure.
The body describes how to produce outputs based on inputs; it may also describe
side-effects to be performed by the procedure. A procedure is enacted by calling or
invoking it on pieces of data known as actucl parameters or arguments. The
resulting invocation is often termed an activation of the procedure. The way in
which the actual parameters are associated with the formal parametersis
determined -y the parameter-passing mechanism of the language - thisisan
important distinguishing feature for different procedural languages.

Interpretation structures are the entities used by the interpreter at
run-time to carry out computations. They are typically necessary for handling the
flow of data and control during the execution of a program. One common
interpretation structure is the variable, which allows the program to name a piece
of data and refer to it subsequently by this name. Because they allow data
computed at one point in a program to be used at another point, variables are
critical elements for implementing data flow in a program. To aid in control flow,
interpreters usually have a representation of the current expression they are
executing along with a control stack of pending operations to be executed once the
current one has completed. These kinds of structures are the ones that the
interpreter manipulates when handling conditional branches, iteration loops, and

procedure calls.

Interpretation structures differ from data structures mainly in the degree
of explicitness with which the user is able to manipulate them. Data structures
are under the direct control of the programmer. Programs explicitly construct
data structures, take them apart, and operate on them. Interpretation structures
are much less under the direct control of the user. For example, stack-based
languages generally do not include user-level operations for pushing and popping
the stack - these operations are available to the interpreter only. However, since
the contents of the stack change in a way dependent on the program, the program
can be said to manipulate the stack indirectly.

In some cases the line between interpretation structures and data may not
be well-defined. For example, one normally thinks of the arguments to a
procedure as being data structures. In the call-by-reference parameter-passing
mechanism, a variable rather than the piece of data bound to that variable is
passed into a procedure as an argument. In this situation, the variable has a
property we normally associate with data structures. Why not consider the
variable itself to be a data structure rather than an interpretation structure? The
problem is that a variable does not share many of the other properties held by data
structures. In particular, we cannot make a variable the value of another
variable, nor can we make it a component of a compound data structure. For such
reasons it is difficult to consider variables in the same light as data structures.
Interpretation structures include all those structures which do not fit neatly into

the category of data structures.

2.4.2 The Scheme Approach to the Procedural Paradigm

The approach Scheme takes to the procedural paradigm is distinguished by
its simplicity, expressive power, and conceptual clarity. Unlike many other
procedural models, the model underlying Scheme is unfettered by a morass of
complex details. Instead, a small number of carefully crafted elements interact
together in predictable and powerful ways. Since these elements play a crucial
role in the evolution of the Grasp project, it is worthwhile to discuss them in some

detail.

2.4.2.1 First-Class Objects

One important idea in Scheme is the notion of first-class objects. A
first-class object in the Scheme world is a piece of data which is characterized by

an important set of properties. Any such object:
* May be named by a variable
* May be passed to a procedure as an argument.

* May be returned by a procedure as a result.

*

May be used as a component in a compound data structure.

* Has a printed representation.

44

45

* Has a conceptually infinite lifetime.

Every piece of data used in Scheme is a first-class object. This includes traditional
data structures such as numbers, symbols, and lists, as well as not-so-traditional

data as procedures, environments, and continuations.?

2.4.2.2 Procedures in Scheme

A second critical aspect of the Scheme model is its view of procedures. The
combination of the following three properties is mainly responsible for their great

power and versatility. Procedures are:
1. First-class objects.
2. Lexically scoped.
3. Tail-recursive.

The most important characteristic of Scheme procedures is that they are
first-class objects. In most other procedural languages, procedures fall into the
category of interpretation structures because they possess only a limited subset of
the properties of a first-class data structure. Usually they can be named, but the
binding between name and procedure cannot be changed once it is made. In a few
languages (such as Algol, Pascal, and CLU), procedures can be passed as
arguments to other procedures. However, it is rare to find languages which allow
procedures to be returned as results from a procedure, to be compenentsin a
compound data structure, or to have an infinite lifetime. There are probably two
main reasons for treating procedures as interpretation structures rather than

data structures:

1. Atthe conceptual level, procedures may seem quite distinct
from data. A common view is that data is stuff to manipulate
while procedures are stuff which describes manipulations.
However, they are certainly both stuff, and this is the basis for
treating the two in a similar fashion.

2. At the implementation level, it may be considered difficult or
inefficient to implement procedures as first-class objects.

Scheme grants procedures the full rights of every first-class object. The
utility of some of these rights may not be obvious at first, but [Abelson & Sussman

46

85a] and the Scheme course provide many convincing examples of the advantages
of this approach. Many of the examples deal with higher-order procedures - that
is, procedures passed as arguments to, or returned as results from, other
procedures. Such examples not only make clear the power inherent in this
approach, but they also demonstrate how this view of procedures greatly
simplifies the model of computation in terms of uniformity. A programmer need
not remember special-case rules for what can and cannot be done with procedures.
Instead, one set of liberal properties applies to all first-class data objects,

procedures included.

Scheme's support of lexical scoping is closely tied to its view of procedures
as first-class objects. Scoping is the method of determining what non-local names
mean within a procedure. Lexical scoping dictates that a free variable name
within a procedure refers to the first accessible variable with that name in the
text surrounding the expression which creates the procedure. A more common
type of scoping for Lisp dialects is dynamic scoping, in which a free variable name
within a procedure refers to the first accessible variable with that name in the
text surrounding the expression which calls the procedure. Dynamic scoping and
higher-order procedures don't mix well, however; name confusions can occur with
procedures passed as arguments (the funarg problem), and state can be lost with
procedures returned as results (the funval problem). Lexical scoping not only
avoids these problems, but permits the use of Algol-like block structure within

Scheme procedures.

Although it is not as intrinsic to procedures as lexical scoping, tail recursion
is an important property of Scheme procedures. Tail recursion is poorly named; it
really has little to do with recursion. If the last expression to be evaluated in a
procedure body is a procedure call, then tail recursion allows the state of the outer
activation to be discarded at the point when the inner procedure is about to be
applied to its arguments. This subtle rule allows certain syntactically recursive
procedures to run iteratively. Iterative looping in Scheme does not require speciai
Do or wHILE constructs; because of tail recursion, iteration can be expressed simply
through procedure calls. Thus, the procedure call is Scheme's main control

structure.

47

2.4.2.3 Environments and Continuations in Scheme

Environments and continuations are structures in Scheme which might
best be classified as interpretation structures. Environments are the structures
which maintain bindings between names and objects. They are used for
implementing lexical scoping. Continuations are representations of the "rest of
the program" from a particular point in the program. Nonstandard control
constructs in Scheme are expressible via continuations.

The status of environments and continuations in Scheme is not clear. In
standard Scheme (as described in [Clinger 85]), environments and continutations
are not first-class objects. In the Scheme course taught at MIT, environments are
first-class objects; in fact, they must be explicitly passed as a second argument to
the Scheme's evaL procedure.? Continuations are never introduced in the Scheme
course. On the other hand, MIT Scheme supports both environments and

continuations as first-class objects.

It is not clear that environments and continuations make good semantic
sense as first-class objects at the user level. In the approach taken by 3-Lisp
[Smith 84], environments and continuations are objects maintained by the
interpreter which can only be accessed through a process called reflection. During
reflection, the focus of a program conceptually jumps from the current level of code
to the level of a metacircular interpreter ¢ running the current level of code. The
environment and continuation which were implicit at the previous level become
explicitly accessible during reflection. Certain versions of Scheme, on the other
hand, treat environments and continuations as explicit objects at the same leve!l of
all user-defined objects in a flat semantic space. Since the "appropriate" status for
environments and continuations is an open question, I will take a conservative
approach in this report by refering to environments and continuations as

interpretation structures.

2.5 Summary

This chapter clarifies the goal of the Grasp project, namely to help novices
reason about the structure of procedural programs. The structure of a program is
determined by the model of computation or abstract machine that defines the
semantics to the program. Reasoning about the structure of programs requires
applying such skills as explanation, prediction, and invention to the tasks of

48

reading, modifying, and debugging programs. Although both structural and
functional models are useful as reasoning aids, the Grasp project focuses
primarily on structural models. Designed as a passive help system, Graspis a
microworld for exploring the structural aspects of procedural programs. Grasp's
approach to the procedural paradigm is largely influenced by the Scheme
programming language, especially Scheme's view of procedures as first-class

objects.

CHAPTER 3

VISIBILITY AND MANIPULABILITY

As noted in the previous chapter, passive help environments depend chiefly
on presentation as a means of helping the learner. In this chapter, I will motivate
two important design principles - visibility and manipulability - which are at the
heart of the way Grasp presents 2 model of computation to the programmer.

My approach will be as follows: I will argue that programmers build models
based both on explicit models they are taught and on models they acquire from
experience. Models based on induction are subject to many pitfalls, yet explicit
models often do not help because people do not learn them or neglect to use them.
Visibility and manipulability are proposed as principles for helping programmers
build more robust models of computational elements and processes.

3.1 BUILDING MODELS OF PROGRAMS
3.1.1 Assimilation and Induction

I claim that programmers build structural models in two distinct ways.
The first is by assimilating explicit models presented in textbooks, lectures, or
other educational settings. In the Scheme course, for example, four explicit models
of evaluation are taught to the students. By "assimilation", I suggest that the
programmer's internal mental model is related to the external explicit model in a
-relatively straightforward manner. Certainly it may be modified along the way -
some pieces may be lost or altered - but the mapping between the internal and
external piecesis fairly direct. If most of the model survived the assimilation
process intact, we would expect that the learner would be able to simulate the

model in a predictable fashion.

A second method for building models is induction based on interaction with
the programming language. Here the programmer generates hypotheses about
the model of computation and tests them out with sample programs encountered

49

50

in the text, in class, or in lab. The models which learners generate depend on the
corpus of knowledge they bring with them to the programming task. Note that
induction is not independent of assimilation - knowledge of explicit models will
certainly influence the kinds of models generated to explain particular examples.
The key point here is that people seem to use inductive techniques all the time,
regardless of whether or not they assimilate explicit models. For example,
children are not explicitly taught about many aspects of the physical world - they
learn through their experiences. A child need not be taught that moving objects
tend to come to rest in a world full of friction. He or she, though, will probably
have a very different model than a physicist as to why this is the case.

As an example of models based on induction, I clearly remember
constructing and testing a model for side effects during my first days as a student
in the Scheme course.! We were presented with an example that was something
like:

=> (DEFINE X 2)
2

=> (DEFINE Y X)

~

> X

N

>y

N

Upon seeing the above example, I constructed two plausible models for
variable binding. In the first, bindings created by the two oerine expressions might

be represented as follows:

X: 2
Y: 2

In this model, perine associates the name of the variable with the value of the last

subexpression. Evaluating a variable name means returning the value associated
with that variable. The second model might be represented as:

X: 2

Y: X

In this model, perine associates the variable with an unevaluated form of the last
subexpression. The rule for evaluation of a variable is also different: if the value
of a variable is a number, return it; if the value is the name of another variable,

return the value of that variable.

51

When I learned that the first model was correct, I felt a little silly for not
concluding this on my own. I did not realize until years later that my "incorrect"
model actually makes sense for certain interpreters - in particular, those which
use normal order evaluation. In fact, in a purely functional subset of Scheme, the
two models of variables presented above will, for programs which terminate,
always describe the same behavior. If side effects are considered, though, the
models are different. After evaluating (set! x 3) in the first model, v will still
evaluate to 2; in the second model, its new value will be 3. Finding
counterexamples such as this one are crucial to model formation because they
allow us to disqualify some models and strengthen our belief in others.

In the above example, I consciously generated and compared different
models. In general, however, the formulation and testing of models can occur at a
subconscious level as well. This fact has some important consequences for the
validity and consistency of our models. If we consciously generated and tested all
of our models, then it seems that the resulting models would be fairly robust - we
would cast aside models that did not work (or at least be aware of their limits),
while we would maintain all those that still seemed useful. In reality, though, we
probably generate many models but do not rigorously compare them or weed out
the bad ones. Rather they become part of a distributed model we have for a
domain. (Here I use the term "distributed model" after diSessa, who uses it to
describe the collection of partial, perhaps inconsistent, ways in which we

understand a domain [diSessa 85a]).

I noted above that people use their corpus of knowledge as a basis for
generating their models. Some of the knowledge particularly relevant to the

domain of programming includes:

Familiarity with other programming languages or systems - Since many
programming languages have similar pieces, it is often possible to transfer
knowledge from one to another.

Knowledge of natural language - Most programming languages are in a
textual form which to some degree resembles the written form of natural
language. The Scheme expression (square 5), for instance, can be viewed as
a command to the computer, where square is an imperative form of a verb,
and s is its direct object. LOGO was designed to take advantage of exactly
such linguistic intuitions [diSessa 86a].

52

Experience interacting with the physical world - Our interactions in
everyday life can be a basis for generating models of the structures of
programming languages. For example we can understand a last-in
first-out stack in terms of stacks of plates or trays in a cafeteria or in terms

of a deck of cards.

Understanding of humans and the way they interact - It is often easy to
view the computer or some of its structures as independent agents much
like humans. It is then possible to understand the behavior of the
computer or its structures in terms of analogies with individuals or
societies. For example, the message-passing paradigm of object-oriented
programming languages makes sense in terms of the way people
communicate with each other.

Knowledge of design or engineering principles - Many people come to the
programming task with a rich set of principles from other disciplines.
These can affect the plausibility they are willing to assign to particular
models. Notions of simplicity, elegance, uniformity, and efficiency will
play a role in determining the kinds of models they will generate. For
example, someone might disregard the second of my variable models
because it implies extra complexity in the implementation (the second
model requires the ability to delay expressions, whereas the first does not).

Both assimilation and induction have advantages. Explicit models have
the clear advantage that they are generally correct. After all, they have been
crafted by experts who are familiar with the domain. Induced models have the
advantage that the learner is likely to feel more at home with them. Rather than
blindly assimilating models that are given to them, the learner of induced models
is more likely to be in touch with the reasoning behind the model. Thisis
especially true if the model-building process is carried on at a conscious level -
then the learner is aware of where certain hypotheses fail and what the crucial

components are.

3.1.2 Induction is Prone to Pitfalls

As to be expected, induced models are prone to many pitfails. Good models
are nontrivial to build. Since learners do not have much depth, scope, or

53

experience in a domain, they are at a distinct disadvantage in building models.
There are two major problems for learners to contend with when forming models:

1. Misleading intuitions - The intuitions people have based on
their corpus of knowledge can often lead them in the wrong
direction when they build models.

2. Paucity of information - Learners must generate and test their
hypotheses based on the scarce amount of information they
encounter in their interactions with the programming
language.

I shall consider both of these problems in more depth in the following sections.

3.1.2.1 Misleading Intuitions

The corpus of knowledge which serves as a basis for generating and testing
hypotheses can often lead people astray in their efforts to understand a domain. It
will be fruitful to consider some of the ways in which the types of knowledge
described above can lead novice programmers into inducing faulty models.

Familiarity with other systems - Although analogies between systems
often serve as a useful way of understanding a new system, the structure
and function of the old system often do not carry over to the new. For
example, one of my students wondered why the expression (= a 5) did not
change the value of A to 5. The - procedure in Scheme is purely functional
and tests if its two arguments have the same numerical value. This
student was appartently familiar with a language such as BASIC, in
which - is an assignment operator. In another instance, a student
attributed the slowness of his personal computer to a "high load average,”
a term which is intended to apply to a time-sharing environment.
Transfering knowledge from a familiar programming system to a new one
can clearly result in poorly formed models for the new system.

Knowledge of natural language - Transfering knowledge about natural
language to the programming domain can lead to non-robust reasoning
about programs. The fact that English is read from left to rightisa
motivation for Scheme's prefix form. However, reading from left to right

54

can confuse learners about the order in which nested operations are

performed. In the expression
(SQRT (+ (SQUARE 3) (SQUARE 4)))

linguistic intuitions might say that the operations are done in the order
SQRT, +, and square. A little thought shows that they are performed in

exactly the opposite order that one might expect based on knowledge of
English. As we will see in Chapter 4, problems in determining the order of
evaluation of expressions can lead to confusion with recursion.

Intuitions about the physical world - Understanding elements of a
programming system in terms of physical cbjects can be a powerful
metaphor. However, like most metaphors it has limitations, and these
limitations can lead to confusion. For example, I was once working on a
spelling correction program in the programming language CLU. A
dictionary object had to be passed as an argument to several procedures.
Curious to see what words the dictionary contained, I printed it out and
discovered it filled over twenty pages. Based on this experience, I began to
think of the dictionary as a large and unwieldy object. I worried that
passing such a massive object around to other procedures would be grossly
inefficient in terms of time and space. My conceptual problem was that I
was trying to understand parameter passing in terms of physical
movement. In fact, every object in CLU can be considered to be passed as a
pointer, so all objects take the same amount of time and space to move
around. My intuitions about the physical world clearly led me astray in

this case.

Understanding of human interaction - Understanding programming
languages or systems in terms of human beings and their interactions is
particularly conducive to the formation of faulty models. People are so
familiar with communicating with other sentient beings that they tend to
anthropomorphize the machine. Indeed, to a novice, the behavior
exhibited by a computer can seem so magical and mystical that it is easy
to believe that there is something very human-like about it.

Understanding programming languages as a means of
communicating with the computer can lead to poor reasoning about
computation. Humans are very powerful interpreters of languages in the

55

sense that they can read much more into a sentence than is actually said,
such as implications, the emotions of the speaker or writer, etc.
Programming language interpreters differ in this respect. They demand
an extraordinary amount of precision and are not forgiving of errors. This
is not necessarily bad; it is unlikely that we would want them to attribute
any more meaning to our code than what was actually there. In fact,
perhaps the best properties of computers is their ruthless interpretation of
code. Unlike with natural language, there can be no debate about whata
piece of code means. This makes it a perfect medium for describing

computations.

As an example of faulty reasoning based on familiarity with
human interaction, suppose we have defined a square procedure as follows:

(DEFINE (SQUARE X) (* X X))

If we now evaluate (sQuare (= 2 3)), in which the squaring procedure is
applied to the boolean false value, we will get an error. It is very easy for a
programmer to believe that the error occurs because numbers, but not
booleans, can be squared. Here the programmer is assuming that his or
her knowledge of the constraints governing the ways in which square can
be used are explicitly represented inside the machine. In Scheme, this is
simply not the case. The error occurs not at the level of square but at the
level of the primitive multiplication procedure, which cannot be applied to
booleans. This may seem to be a minor difference, but such structural
knowledge is important for debugging a program. An error message for
the above expressicn would say nothing about square - it would only
mention the multiplication procedure.

Knowledge of design or engineering principles - Sometimes knowledge of
design or engineering principles can lead to the generation of incorrect

models. I held a faulty model of Lisp's quote for over three years, even as a
teaching assistant. I developed the following three rules of evaluation to

explain the behavior of quoTe:

(QUOTE <symbol>) --> <symbol>
(QUOTE <number>) --> <number>

(QUOTE (<elt1> <elt2> . . . <eltn>))
-=> (LIST (QUOTE <elt7>) (QUOTE <elt2>) . . . (QUOTE <eltn>))

This model handles about 99% of all cases normally encountered in Lisp,
and, if I'm not mistaken, all examples in the Abelson and Sussman text. It
was also easy to believe this model based on principles of elegance and
simplicity, since it has the kind of nice recursive decomposition so
commonly associated with Scheme. Unfortunately, as I later discovered,
the model is wrong and shows a very poor understanding of what all the
fuss over quote is about in Lisp.? This is a case where arguments based on

design principles made me feel smug with an incorrect model.

3.1.2.2 Paucity of Information

Above we saw how a person's corpus of knowledge can be a stumbling block
for correct model formation by induction. It is not the only source of trouble.
Another important reason why induced models may be faulty is that the evidence
used for generating and testing these models is not very good. Learners must
induce models based on the paucity of information they encounter in their

interactions with a programming language.

3.1.2.2.1 The Importance of Examples

The evidence serving as a basis for model formation comes mainly from
examples of code presented in the text, class, or labs. These examples are
supplemented by the programmer's interactions with the computer. Such
interactions are crucial for generating and testing models. Theoretically, it is
possible to learn programming without ever touching a computer. In reality,
though, it is difficult to replace interactions with the computer as a learning
experience. We can reason about code in any way we want to, but there is always
room for doubt. The computer is the final authority as to what the code actually
does.

The examples that learners encounter in their interactions with a
programming language represent only a small portion of the range of the possible
uses of the langauge. Even though lectures, text, and laboratories may provide
some examples of language use, learners must generate and test hypotheses
based on a relative scarcity of information. The fewer the number of examples,

56

the more likely it is that they will build incorrect or incomplete models of the

abstract machine they are programming.

Examples are important because they drive model formation. Learners
will build models to explain the behavior of the examples they encounter in their
interactions with the programming language. These models won't necessarily
explain all the features of the examples encountered - it is important to note that
the learner will often be focusing only on a particular aspect of the examples.
Counterexamples which expose the limitations of previcusly held models are
especially important to the process of induction - they force the learner to modify
old models in order to explain the new behavior. An example with side effects, for
instance, makes it possible to distinguish the two models for variables considered

at the beginning of this chapter.

If learners do not encounter a wide enough range of examples, the models
they form will tend to lack robustness. Failure to consider the right
counterexamples can give people an unwarranted strength of beliefin their faulty
models. As noted above, I held an incorrect model of Scheme's QUOTE for several
years before a suitable counterexample exposed my folly. Examples also serve to
reinforce the ties between different pieces of knowledge the learner may have. A
student with a passing understanding of list structures and of procedures as data
objects may still not feel comfortable thinking about lists of procedures. Examples
which explicitly use lists of procedures will help to solidify the possibly hazy
connection between lists and procedures by providing a suitable context for
exercising the pieces of knowledge the student already has.

Unfortunately, novices are unlikely to experiment with a wide variety of
examples in their interactions with a programming langauge. Often they are -
satisified with the examples they see in lectures, books, and laboratories; if they
do generate examples on their own, these are usually restricted to simple
examples which do not adequately test their understanding. Consider examples
illustrating the behavior of Scheme's mapcar.? Both instructors and students alike
will often limit themselves to examples in which marcar is applied to a list of
numbers. To square each member of a list of the first four integers, we would
write:

=> (MAPCAR (LAMBDA (X) (* X X)) (LIST 1 2 3 4))

(14916)

57

There are many other interesting applications of marcar, however. mapcar can be
used with a list of procedures, as illustrated in the following example:

=> (MAPCAR éLAMBDA (PROC) (PROC 5))
LIST (LAMBDA (X) (* X X)

LAMBDA (X) (> X 0)

LAMBDA (X) (LAMBDA (Y) (+ X Y)))

(25 ' #TRUE [COMPOUND-PROCEDURE 1589763])

Here marcar applies each member of a list of procedures to the number 5. The
resulting list contains a number, a boolean, and a procedure of one argument
which adds 5 to that argument.

Not only does this example illustrate the behavior of marcar, but it also
demonstrates the utility of having lists which contain such objects as procedures
and booleans. This kind of example offers a context in which a student can unify
possibly unconnected pieces of knowledge to form more complete and consistent
models. Models based only on simpler examples rmight not exhibit the same
robustness because they would not necessarily be extendible to more complex

situations.

3.1.2.2.2 Opaque Interfaces

The major reason why a wide range of programming examples is needed to
form robust structural models of a programming language is that traditional
command language interfaces provide the programmer with only a limited
amount of information on a particular example. The interfaces are opaque in the
sense that they hide important details about how the interpreter evaluates the

~ expressions which are given to it.

The standard view of programming is linguistic in nature. Programmers
communicate their intentions to an interpreting agent via specifications called
programs expressed in some language of description. Although this language is
usually textual, it need not be; languages based on pictures, sounds, or touch are
possible as well. It is important to note that elements of the language have no
intrinsic meaning; all meaning is determined by the details of the interpreting
agent to which they are given. It is perfectly possible to consider a different
interpreting agent for the same program. For example, the semantics of Scheme
programs would change if the properties of the Scheme interpreter were modified

in any of the following ways:

58

59

* Changing applicative order evaluation of arguments to normal

order.
* Using dynamic rather than lexical scoping.
* Removing tail recursion.

It is exactly this "feature" which makes structural reasoning about
programs difficult tc carry out. The syntactic elements of the language contain no
information about their meaning; only the rules of interpretation bestow meaning
to them. Yet, in their interactions with the computer, people become most
familiar with the representational properties of the language itself. The
interpreter is largely invisible; programmers can observe it only indirectly
through its behavior in response to sample expressions from the language.

Conventional command language interfaces to programming languages
show the user representations of programs and their results. Programs, though,
are only static descriptions of dynamic processes. To fully understand how the
process described by a program evolves, the programmer must be able to reason
about the run-time structures which are manipulated during the execution of a
program. Yet, command language interfaces generally do allow the user to view
run-time structures or intermediate points of a computation. In Scheme's
READ-EVAL-PRINT loop, for example, the programmer sees a character string input to
reap and a character string output to rrinT, but the all-important action of evar

remains hidden.

For experienced programmers the fact that much of the evaluation process
remains hidden is a blessing; they do not want to be swamped by the substantial
amount of information associated with eva. every time they evaluate an
expresssion. For novices, on the other hand, this approach robs them of
information which is crucial for building robust structural models. Many
different abstract machines can exhibit the same input/output behavior for
certain ranges of examples. For instance, we saw above that two different models
of variables were consistent with any examples which did not involve side effects.
Novices encountering only a small range of examples cannot be expected to form
complete and consistent models under these conditions.

To be fair, many programming environments offer debugging tools which
allow the programmer to inspect the kinds of state and.-dyuamic behavior which
are invisible in the normal interface. The Scheme system at MIT, for instance,

supports facilities for stepping through a computation, tracing the calls and
returns of procedures, examining the stack of pending operations, and inspecting
the environment information available at a particular point in a computation.
Although such tools help experienced programmers access more information
about a computation, their utility to novices is limited by three factors:

1. Proper use of the tools often requires the programmer to be
familiar with an explicit model of the language. Accessing
information in Scheme's environment inspector is difficult unless
the user has command of the environment model. Most novices,
however, do not have a firm enough grasp on the explicit models
to effectively use the debugging tools.

2. Programmers must be aware of the tools in order to use them.
Since little emphasis is placed on them in the Scheme course,
many students complete the course without ever knowing the

tools exist.

3. The tools must be explicitly invoked. Using the debugging tools
takes time and requires special incantations which are easy to
forget. Even novices aware of the existence of the tools would
often rather simply read through their buggy code than go
through the bother of invoking the debugging tools.

For these reasons, traditional debugging tools are not satisfactory methods of
providing novices with more information about the mode!l of computation
underlying the programming language.

It is interesting to note that debugging tools are almost universally
employed only in situations where an error occurs. Rarely are they used to
illustrate the evolution of a process in an example which exhibits the proper
input/output behavior. Yet, using debugging tools in this manner would be
extremely valuable to novices, since it would provide them with important
additional information for forming and testing their models of the abstract

machine.

61

3.1.2.2.3 The Limits of Textual Representations

The textual representations employed by most programming language
interfaces are a poor medium for conveying the structural information of
programs. Linear sequences of characters are not well-suited for describing
interconnections among computational elements. To illustrate this point, we will
consider alternate representations of the list data structure for Lisp.

A list in Lisp is conceptually a sequence of other data objects. It is composed
of a chain of smaller data structures known as pairs or cons-cells, each of which
can maintain a pointer to two other data objects (see Figure 3.1).

RNy

Figure 3.1: Representation of a Lisp pair.

Box-and-pointer diagrams use a collection of the graphical representations for
pairs shown above to show how pairs are chained together to form a list. For
instance, Figure 3.2 shows a list of the numbers 1, 2, and 3 in box-and-pointer form.

(The representation

is a shorthand for

(| > N
v

where niL serves as an end-of-list marker.)

.

1

3

Figure 3.2: A list of three numbers.

62

This style of representation is especially well-suited to illustrating the
phenomena of shared structure. Thus, in Figure 3.3, the top-level listis a
sequence of two elements, each of which is the exact same (i.e. shared) list of 1 and

2.

v

1 2

Figure 3.3: An example of shared structure.

The standard representation for list structures in most Lisp systems is
parenthesis notation. In this notation, a list is represented as a pair of parentheses
enclosing a sequence of textual representations of its parts. A list of 1, 2, and 3 is
represented as (1 2 3). Individual pairs are represented by the dotted-pair
notation - here a period separates the textual representations of the pair
components between a set of parentheses. For example, the pair consisting of 1

and 2 has the representation (1 . 2).

Box-and-pointer diagrams are related to the list structures they represent
by a one-to-one mapping. First, they are unique - only one box-and-pointer
diagram can exist for a particular configuration of pairs (though it can be
formatted in many different ways). Second, they are unambiguous - only one list
structure corresponds to a given box-and-pointer diagram. Box-and-pointer
representations support structural reasoning about list structures because they
explicitly show all relevant structural details of the list.

The mapping between parenthesis notation and list structure is much less
direct. First, because the list notation is really just an abbreviation for the
dotted-pair notation, it is not unique. The list of 1, 2, and 3, for instance, can be
represented bothas (1 2 s)and (1 . (2 . (3 . ())). Second, because it cannot
adequately represent shared structure, parenthesis notation is also ambiguous.
The textual notation ((1 2) (1 2)) isthe representation of both the shared list
structure illustrated in Figure 3.3 and the unshared in Figure 3.4:

LT3

v
1

2

Figure 3.4: Unshared version of ((1 2) (1 2))

Because parenthesis notation does not have a one-to-one correspondence with list
structure, it does not support structural reasoning as well as box-and-pointer

63

diagrams. In fact, it can be quite misleading, since mutation of a list can result in

unexpected results if the programmer is unaware of sharing.

A second problem with textual representations in command language
interfaces is that the input language commonly differs from the output language.
Although certain objects in Scheme, such as numbers and booleans, have the same

input and output representations, other objects do not (se Figure 3.5).

OBJECT INPUT OUTPUT DIFFERERT
REPRESENTATION REPRESENTATION BECAUSE . . .
A list of (1 2 3) would be
the numbers (QUOTE (1 2 3)) (12 3) interpreted as
1, 2 and 3 applying 1 to 2 and 3.
The symbol A (QUOTE A) A A would be interpreted as

evaluating the variable A.

Figure 3.5: Input and ouput representations differ for some Scheme objécts.

Symbols and lists must be quoted as inputs to distinguish them from variables
and combinations. The output representation of a Scheme procedure cannot be

used in an input expression in any form.

Having input and output expressions that differ in the above mannerisa
source of confusion for novices. It is not easy for students in the Scheme course to
develop consistent canonical representations for Scheme objects. This problem
most clearly manifests itself in box-and-pointer diagrams, where many students

will add a quote mark before a symbol. Figure 3.6 illustrates this bug (and also a
correct version) for a list of the symbols A, B, and C.

e

‘A ‘B

{a) Representation with quoting bug.

R NE N

A 4 4 v
A B C

{b) Correct representaticn.

Figure 3.6: Incorrect use of quotation marks.

The quote mark is really a macro that expands ' <stuff> into (QUoTE <stuff>), S0
Figure 3.6a is really just a shorthand for Figure 3.7:

j, i
a4 Ll Ll

- QUOTE A QUOTE B QUOTE

Figure 3.7: Expanded version of Figure 3.6a

Given that the only way students can refer to a symbol in their interactions with
the Scheme interpreter is to quote it, this confusion naturally arises from the
difference between input and output language Scheme.

Yet another drawback of textual representations is that the actions the

user takes to construct a programs (namely typing characters at a keyboard) and
the form of the final program (a linear string of text) are very far removed from

64

the conceptual elements of the abstract machine. Experienced programmers often

visualize the running of programs in terms of environment operations, flow of
control, stack manipulations, and so on. Little that novices see or do in their
interactions with text-based interfaces can give them a good feeling for the
run-time structures and activities of the underlying model of computation.

Traditional interfaces, especially text based ones, block the novice's access to
information which is important for the formation of robust models.

3.1.3 Assimilation Should Be Better But...

Given that induction is subject to the pitfalls discussed above, assimilation
of explicit models would seem a much better route toward the development of a
robust understanding of the structure of programs. Although this sounds nice in
theory, I claim from my experience that in practice this approach leaves

something to be desired.

Based on my experience in the Scheme course, I believe that there are three
major reasons why exnlicit models do not always lead to robust structural models.
The first is that many novices never really learn them. In the Scheme course this

results from many factors:

* Though a fair amount of time is spent on explicit models in class,
they are not properly motivated. Many students never quite
appreciate their value as reasoning tools.

* Explicit detailed rules for the models are rarely presented to the
student. Instead, rules covering some common cases are given.
When students try to apply the models, they reach impasses which
they don't know how to handle properly.

* Students get littie feedback as to whether they are actually using
the models appropriately. They may, in fact, not be using the right

model.

* Some students may have the belief that the models are "toys" and
do not represent the ways experts think about programs.
Consequently, they see no great advantage to learning the models.

* Students are more than learning machines. Struggling to juggle
heavy courseloads, jobs, a social life, and sleep, they drop some
things along the wayside. In the Scheme course, students are more
likely to ignore the classes and reading material than the heavily
emphasized laboratories. Since models are covered in lectures and
the text but are not stressed in labs, many students have only
minimal contact with them.

66

A second reason is that even those students who learn the models don't
necessarily use them. Sometimes the models are so unwieldy to apply that
students do not see the benefit of using them. One only has to teach the Scheme
course once to become acquainted with the weeping and gnashing of teeth evoked
by environment diagram exercises on problem sets. In addition, observation of
students in the computer laboratory leads to the inescapable conclusion that they
would rather do anything within the world of the computer than to step back and
think about the problems they are encountering. Instead of pulling out a pencil
and some paper to apply a model for assessing their situation, students tend to
debug their programs by trying different combinations of parenthesis placement,
quotation mark insertion, expression reordering, and so on. Using Halasz's
terminology, the students seem more comfortable working in the methods space
rather than the models space [Halasz 84]. A main reason for this is that the
interface provides little feedback for reminding students about the models or
helping them to apply the models. The bottom line is that students tend to work
in a space which does not allow for robust structural reasoning.

The third reason for the possible failure of explicit models is that the
models themselves may be misleading. In Chapter 4, for example, we will
examine how a poor choice of representation in Scheme's substitution model can
lead to a confusion between the names of procedures and the actual procedure
objects. This is one of many possible instances in which the intended model is not
the one which a student actually assimilates. The modified model may still work
in many cases but will not exhibit the robustness we expect from a structural

model.

The factors outlined above indicate that assimilating explicit models is not
always a viable path towards the formation of good structural models. As a resul:,
few learners will depend solely on assimilated models for reasoning about
programs. The majority are likely to employ some hybrid of assimilated and
induced models. However, the inherent unreliability of models induced from the
paucity of information provided by most programming language interfacesis a

major source for the poor structural models of novices.

3.2 The Principles of Visibility and Manipulability

In the previous section, we explored reasons for the poor quality of novices'
structural models. When inducing models on their own, novices are misled by
their intuitions and hampered by the lack of structural information provided by
traditional programming language interfaces. Yet, explicit models do not
necessarily improve the situation. Programming systems rarely help
programmers apply an explicit model or even remind them of its existence. Such
an environment is not conducive to learning or using the explicit model. Worse
yet, the representations chosen in the explicit model may be misleading as well.
The upshot of all these factors is that novices' models can remain non-robust

despite the existence of explicit models.

What can be done to improve this state of affairs? One approach is to make
the structural information of an explicit model inspectable through the interface
to the programming environment. This is the fundamental idea behind the
principle of visibility as espoused by du Boulay, O'Shea, and Monk. Instead of
presenting the novice with a "black box" system which computes outputs from
inputs, these authors suggest that novices be able to see werkings of the abstract
machine through a "glass box" [duBoulay et al. 81].

Visibility makes a great amount of sense. We saw above that poor
structural models are partially attributable to the opaqueness of traditional
programming language interfaces. With more transparent interfaces, the
programmer has greater access to the structural information inherent in
programs. This additional information aids the process of generating and testing
hypothetical models and should thus aid the formation of more robust structural
models.

The advantages of visibility are even greater if an environment presents
the structural information in the form of an explicit structural model taught in
classes or texts. In this case, the programming environment continually reminds
the programmer about the explicit model. Even if the programmer has never
really learned the model, its embodiment in a visible interface should help him or
her to induce its important properties. This process of induction should be less
error-prone than normal because the availability of structural information makes
it less likely that the programmer will be led astray by misleading intuitions.

67

68

Visibility means that programmers are able to see the abstract machine
which is running their programs. In our everyday life, however, we are not only
familiar with seeing objects but we are used to interacting with them as well. A
principle of manipulability suggests that programmers should be able to interact
with the elements of an abstract machine as if they were physical objects. This
principle is intended to exploit people's well-developed intuitions about
interacting with the physical world for constructing and modifying programs.

Manipulability is closely related to the direct manipulation approach to
user interfaces. Shneiderman defines a direct manipulation interface as one
characterized by rapid, incremental interactions with continuous representations
of the object of interest [Shneiderman 83]. Manipulability is an extension of direct
manipulation in which interaction with the objects of interest closely resembles
interactions with physical objects. For example, many modern text editors have
direct manipulation interfaces, but they do not support manipulability.
Operations like "cut" and "paste" evoke images of moving text from one place to
another, but editors show only the result of the movement and not the process of
motion itself. I am not suggesting that showing characters flying across the
screen would actually be a good idea. Text editing is simply not a domain
well-suited to a manipulable interface. Manipulability makes the most sense for
representations attempting to show structural connections between objects.
Box-and-pointer notation for list structure is an example of a representation for

which a manipulable interface is well-suited.

The emphasis of manipulability on physical rather than linguistic
intuitions is related to a style of progamming which diSessa calls device
programming [diSessa 86b]. In device programming, the programmer pieces
together representations of physical devices to achieve some desired behavior.

For example, a computer microworld for studying fluid flow might contain such
devices as reservoirs, pipes, pumps, and meters. People could explore properties of
fluid flow systems by connecting these elements together in interesting
configurations and observing the simulated behavior. Device programs need not
have so direct a physical interpretation as the above example might indicate.
Instead, we might consider systems similar to the above which allowed the

exploration of momentum flow or vector flow.

The key advantage of the device programming style is its physical nature.
When people build device programs, they can pretend that they are manipulating

69

physical objects analogous to the ones that they would use in constructing
mechanical, electrical, or chemical systems. Further, the meaning of device
programs appears to be centered in the devices and their connections rather than
in a separate interpreting agent. Of course, in any implementation of a device
programming system there must be a central interpreter which is actually
responsibie for simulating the behavior of all the devices. In the model of
computation presented to the programmer, however, activity is not located in a
central agent but is distributed over all the devices. This corresponds to the
independence of objects which people are familiar with from their experiences in

the world.

Applying the ideas of device programming to a general computational
environment implies viewing the elements of an abstract machine as physical
devices. The structure of the program can then be represented as explicit
interconnections among the computational devices. Programs can be constructed
and modified by interacting with graphical representations of the pieces of the

program through a manipulable interface.

When combined with visibility, manipulability allows for the interesting
possibility of programming in the rmodel. Normally, explicit models are presented
as an aid to help programmers reason about the abstract machine running their
programs. The model is outside the domain of the computer in that the interface
generally does not offer any support for helping the programmer apply the model.
However, visibility ailows the user to see the representations of the model in the
interface and manipulability allows the user to interact with them. In such a
situation, it becomes possible to construct programs by manipulating the
elements of the model rather than by the more traditional method of creating
programs in a text editor. This approach greatly decreases the distance between
the programmer and the explicit model. The constant contact the programmer
has with the model space should facilitate the building of more robust structural

models.

3.3 SUMMARY

This chapter proposes a theory of why novices have poor structural models
and suggests two principles for improving their models. Novices build models by
two processes: inducing models based on their interactions with a programming

language and assimilating explicitly taught models. Induction tends to foster
non-robust models because opaque interfaces hide structural information which is
crucial to the model building process. Without this information, novices can be
easily misled by their intuitions into forming inappropriate models. Assimilaing
explicit models should be a better way to form models, but for many reasons

novices never learn or use the models.

Visibility and manipulability are intended to help alleviate the problems
associated with inducing and assimilating structural models. Visibile interfaces
make the structural information inherent in a program readily available to the
programmer. Manipulable interfaces allow the programmer to use physical
intuitions for interacting with the structure of a program. Together, visibility and
manipulability not only support the use of an explicit model but also allow the

programimer to program in the model.

70

CHAPTER 4
PERILS INTHE PROCEDURAL PARADIGM

One need only spend a small amount of time observing novice programmers
in classroom or laboratory situations in order to witness the extent and variety of
their misconceptions. Problems crop up at many different levels:

* Getting used to the the physical environment (keyboard, display,
floppy disks)

* Using the support system (editor, file-system, interpreter)

%

Understanding the model of computation

*

Becoming familiar with the language constructs

*

Learning the higher-level concepts (procedural abstraction, data
abstraction, modularity, etc.)

Teaching assistants in close contact with students can easily amass a wealth of
information concerning student misunderstandings at these levels. In this
chapter, I will probe those misunderstandings that were most influential on the
direction of my project and the design of the Grasp system.

I will focus primarily on the problems novices have in understanding
Scheme procedures. Although students’ bugs with list structures, language
constructs, the editor, and other topics are all fruitful and interesting areas of
exploration, they are simply outside the scope of this thesis. I will only refer to
these areas insofar as they relate to the topic of procedures. Those readers who
are interested in the other areas mentioned above are referred to Steve
Strassman's "Learning Lisp: The Barriers to Novice Programmers at MIT."

[Strassman 84]. Based on his experiences as a teaching assistant for the Scheme
course, Strassinan covers a much wider range of students' problems than are
- documented in this report.

It is important to discuss some points about the nature of my analysis
before I begin. First of all, the evidence I present is mainly anecdotal - that is to
say that I did not set forth with a predetermined set of experiments to test people's
understanding of procedures. Rather the evidence I have collected is based on my
informal observations of the bugs people exhibit in tutorials and the computer
laboratory. Second, my interpretation of the problems students have is to some
degree influenced by my memories of my own misunderstandings of the material.
It is much easier to understand the confusion of others in terms of the confusions
one has personally experienced. There is a danger here, of course, of not faithfully
representing what problem a student actually has, but I have tried to be as
objective as possible in my analyses. Third, the misunderstandings reported here
are of varying degrees. Some misconceptions are cleared up quite easily, while
others remain entrenched long after the course is over. Finally, it is important to
realize that there is no such thing as the "typical student." Each individual
student has his or her own set of difficulties with the material. Certainly no one
student experiences all the kinds of difficulties reported here. The examples to be
discussed are meant to be representative of the wide range of problems people

have in understanding procedures.
The difficulties novices have with Scheme procedures can be grouped into
three broad areas. They have trouble with:
1.Procedures as first-class objects.
2.Naming issues associated with procedures.
3. Control issues associated with procedures.

The following sections consider these problems in depth.

4.1 PROCEDURES AS FIRST-CLASS OBJECTS

Asdiscussed in Chapter 2, a major advantage of Scheme is the way it treats
procedures as first-class objects. Students can encounter many problems when
trying to understand the full implications of this idea. Generally these problems
appear to stem from the view that procedures are "different" from data and
therefore do not fit into the category of first-class objects. This notion is fostered
not only by the syntax of the language but even by the explicit models used for
reasohing about the underlying model of computation. Both of these cause

confusion by what they fail to present to the students as well as what they present
in a misleading fashion. In the case of procedures, the syntax and explicit models
support at least three non-robust views of procedures:

1. Procedures as Patterns
2. Procedures as Doers
3. Procedures as Names

I will explore each of these views in turn.

4.1.1 Procedures as Patterns

Scheme's syntax for procedure definition and execution promotes the

73

understanding of procedures in terms of patterns. Since this inappropriate model

seems to be rooted in Scheme's special syntax for procedure definition, it will be
advantageous to briefly discuss the meaning of oerine. The only job of oeFine in
Scheme is to bind a name to an object. The expression

(DEFINE A (+ 2 3))

binds the unevaluated name a to the result of evaluating the expression (+ 2 3) -
i.e. 5. Names can be given to procedures in a simlar fashion;

(DEFINE SQUARE (LAMBDA (X) (* X X))

binds the name souare to the procedure created by evaluating the LaMsDA expression
(LamBoa is Scheme's construct for creating a procedure object). The precedure
created above can be called with arguments as in

(SQUARE A),
which computes the square of 5.

Scheme provides an alternate syntax for creating and naming a procedure.
The procedure definition above is more commonly expressed in Schere as

(DEFINE (SQUARE X) (* X X)).

Note that the (square x) subexpression in the oerine expression looks very much like
a call of a procedure on a dummy argument. In fact, this syntax was especially
chosen to provide a syntactic link between the procedure and the call [Abelson
861.1 It is not unreasonable for novices to form the model that what is being
defined is a pattern for a procedure call. That is, just as

T4

(DEFINE A §)
associates the variable a with the value 5, the definition
(DEFINE (SQUARE X) (* X X))

can be interpreted as associating the procedure call pattern (square x) with the
procedure body (* x x). In such a model, a particular call is an instantiation of the
pattern, and the meaning of the call is determined by using the substitution model
to evaluate the procedure body with actual values substituted in for the dummy

arguments.

Although this pattern-based view of procedures is a suitable functional
model for understanding the evaluation of simple expressions, it seriously
undermines a deep structural understanding of procedures. First of all, the special
DEFINE Syntiax obscures the two fundamentally distinct operations of creating a
procedure object and naming the resulting object. The expression

(DEFINE SQUARE (LAMBDA (X) (* X X)))

separates the two operations much more clearly: the Laveoa expression is evaluated
to yield a squaring procedure; nerINe associates the name souare with this procedure
object in the same way it associates a name with any object. The special syntax for
oerINE hides the uniformity and clarity of Scheme by making it look like special
cases exist in places where they really don't.

Awareness of the syntactic transformation mentioned above, though, is not
necessarily inconsistent with a pattern-based view of procedures. Students are
explicitly informed about the transformation, but this does not mean that they
incorporate this information into their models. Once introduced to the
transformation, students may develop the notion that there are only two patterns

for defining a procedure:
1. (DEFINE (<name> <args>) <body>)
2. (DEFINE <name> (LAMBDA <args> <body>))

In fact, procedures can be named with pefine in many more ways - consider such
expressions as

(DEFINE FIRST CAR)

(DEFINE COS (DERIVATIVE SIN))

75

The fact that students often greet these expressions with puzzlement is an
indication that such examples do not fit neatly into their schema for defining

procedures.

The worst aspect of the pattern-based view is that it does not provide a
robust understanding of procedures as first-class objects. The special oeFine syntax
may make it easier to understand the standard invocation in which parentheses
encapsulate a procedure name followed by argument expressions. However, this
typical pattern gives no clue how to handle expressions in which the name occurs
by itself, e.g.

SQUARE
(DEFINE NEW-SQUARE SQUARE)
(APPLY-TO-FIVE SQUARE)

Novices are very confused by such examples. When confronted with the
evaluation of square, most will say that it gives an error because it has not been
supplied with any arguments. This is a strong indication of the pattern-based
view - the procedure has meaning when part of a standard pattern with
arguments, but alone it is meaningless. Even though students know that the
other two examples above do not give errors, a typical reaction is "But how does
square get its arguments?." Again, the procedure seems incomplete without the
arguments to fill out the pattern.

Similar confusions arise when the first subexpression of a procedure call is
a more complex expression than a name. In the pattern-based view of procedures,
a procedure call begins with the name of the procedure. Most examples students
encounter in the course do in fact fit this pattern. However, the procedure object
can be designated by any a-bitrary expression, of which a single name is only an
example. For instance, even early in the course students will stumble across
examples such as

“ ((LAMBBA (X) (* X X)) 5)
or

(DEFINE (REPSATED F N)
(IF (= N 1)
F

(LAMBDA (X) ({REPEATED F (- N 1)) (F X)))))

in which expressions other than names occur in the first position of a procedure
application. A pattern-based model of procedures does not help novices to reason

76

about procedures in these examples. A model emphasizing procedures a first-class
objects is necessary to expose the common thread of uniformity and simplicity

underlying all the examples discussed in this section.

4.1.2 Procedures as Doers

Novices are much more comfortable in their understanding of what
proccdures do than what procedures are. They find it difficult to decouple the
description of a process from the process specified by that description. The result
is that novices have a great tendency to attribute activity to procedures rather
than to the processes generated from them. This gives rise to a notion of
"procedure as doer" which can be detrimental to a novice's understanding of

procedures as first-class objects.

A full appreciation of procedures as first-class objects requires a clear
understanding of three concepts: instruction, agent, and action. An instruction is
a description of what an agent is supposed to do. When an agent carries out an
instruction, the action is done. In computation, instructions are embodied in
procedures, the agent carrying them out is the interpreter, and the action
generated is a computational process. In particular, proc.edures don't do
anything.? Rather, they are specifications of how some active agent should act.
That active agent is the interpreter; in some sense, it is the only element of the
computational model which has the capability of doing things.

These ideas can be clarified by an analogy with cooking. Such an analogy is
sometimes explicitly presented in programming courses. In cooking, recipes are
the analog of procedures and the cook plays the role of interpreter. We rarely
think of recipes as "doing" anything. We may sometimes figuratively associate
action with them, as in "This recipe bakes a imean pecan pie" or "This recipe
serves twelve," but we know that in reality recipes don't bake anything or serve
anyone. Recipes don't bake cakes; cooks do. The active agent (the cook) uses a
passive description of a process (the recipe) to carry out an instance of the process
so described. And so it is with the interpreter and a procedure.

The naive notion of procedures as doers is fairly common among students in
the first weeks of the course. When a recent questionnaire [Turbak] asked
students in the third week of the course "What is a procedure?", over a third gave
responses which indicated the procedure as an agent or a location of action. A

77

response which exemplified this group was "A procedure is something that does

something."

Students were also asked to describe analogies they used to understand
procedures. Several viewed procedures as machines which took in inputs and
produced outputs. A large number did view procedures more in terms of
descriptions, such as instructions, recipes, and maps, but even in these cases there
was some confusion about the separation of instruction, agent, and action. A
particularly interesting response along these lines was:

"A procedure is a recipe that tells you how to take ingredients and
put them together to get a final product. In addition, (1) the
procedure is ALSO the cook - it makes the product according to its
rules, and (2) the ingredients can be other recipes (procedures), in
which case the procedure would tell you how to use OTHER recipes

together."

Here the student understands the descriptive aspect of procedures but clearly

attributes agency to them as well.

Why is the notion of "procedure as doer" a potentially harmful one?
Certainly many expert programmers have functional models based on this notion.
It frees the programmer from continually having to view action as resulting from
the interpreter's evaluation of expressions. The programmer can then concentrate
on the behavior of the program without getting mired in the details of its
structure. However, the expert programmer is fundamentally aware of the
structural models as well. Wien necessary, he or she can deftly switch to more
appropriate models depending on the circumstances. When dealing with the
properties of procedures as first-class objects, such a programmer will readily
adopt a structural view rather than a functional one.

What is unfortunate for novices is that their models are generally not
well-developed enough to support the kind of medel-switching that experts have.
Since they are not aware of the extent and limitations of their models, they can
apply them in instances where they don't make sense. The notion of "procedure as
doer” is not an intrinsically harmful model, but there is the danger that novices
will misapply it. In the following subsections, I will consider how novices develop
this notion and will give examples of how it interferes with reasoning about the

properties of procedures.

78

4.1.2.1 Whence Comes This Notion?

It is not difficult to understand how students develop the view of procedures
as doers. Firstof all, the notion is propagated by the figurative way in which
teachers talk about procedures. Instructors, myself included, are guilty of
generally referring to procedures as doing things. Such statements as "The
SUM-OF-SQUARES procedure squares its arguments and adds them" or "prinT evaluates
its arguments" are common in classroom situations. Referring to procedures as
agents is indicative of the functional models experts use in thinking about
programs. However, as noted above, the expert is aware of the limitiations of such
models whereas the novice may not be. The teacher really knows, for example,
that the interpreter is responsible for evaluating the arguments to prinT, not the
prINT procedure itself. For a novice who cannot switch so easily between models,
however, these figurative statements can be confusing. For example, when an
instructor says "Scheme blurs the line between procedures and data,” whatis the
student supposed to think except that there is a difference between them to begin
with? It might be clearer to say "Procedures are data" and leave it at that.

Regardless of the ways in which procedures are described to them, students
have many other avenues for developing bad intuitions about procedures.
Linguistic intuitions can lead novices to view procedures as verbs and their
arguments as direct objects. The Scheme text explicitly translates the definition

(DEFINE (SQUARE X) (* X X))

as "To square something, multiply it by itself" [Abelson & Sussman 85a]. The
LOGO language was specifically designed to take advantage of the linguistic
intuitions children have; it explicitly uses the word 7o to introduce procedure
definitions [diSessa 86a]. The same type of intuitions can be fostered by Scheme.
In fact, one respondent to the aforementioned questionnaire about procedures
directly compared procedures to verbs. Since verbs are the pieces of language
associated with action, it is easy to see how linguistic intuitions could lead to the

association of action with procedures.

People's intuitions about physice” devices are also partially responsible for
their assignment of agency to procedu’ - 'As noted before, procedures are
sometimes thought of as machines with a certaln input/output behavior. Itis
natural to view many physical devices, such as food processors, vending machines,

79

or circuit elements, as active agents operating on input objects or signals.
However, analogies comparing procedures to such devices suffer a serious flaw. In
the physical world, the devices themselves are responsible for activity. In
computation, procedures abstractly describe a class of activities; it is the
procedure activation, an instantiation of a procedure, which is directly associated
with activity. When viewing the procedure itself as an active device, it is possible

to overlook the descriptive properties of procedures.

Finally, spatial intuitions about Scheme expressions can also be
instrumental in giving rise to the assignment of agency to procedures. A
procedure application in Scheme is denoted by a sequence of subexpressions
wrapped in a pair of parenthesis; the first subexpression denotes the procedure
while the rest designate its arguments. This form for an application naturally
represents a localized unit of action. In the substitution model, the local spatial
transformation which takes place when the application of a primitive procedure
yields a value makes it seem as if action is associated with the expression itself.

This notion of localized action is supported even more strongly by
interactions with the Scheme interpreter. Although the heart of the reap-£vAL-PRINT
loop is in evaL, the programmer sees only the textual inputs to reap and outputs
from prINT. When the user indicates the end of the input expression, the only
change which takes place on the screen is the printing of the result directly below
the evaluated expression. This type of interaction promotes the view that the
expression itself is somehow the location of action for the computation. Since most
expressions are procedure applications, it is natural to associate procedures and
action. This association can be even stronger is systems where evaluation is
initiated by the closing the final parenthesis of an expression; it seems as if the
final parenthesis is an indication to the procedure that it can go ahead and "do its

thing".

4.1.2.2 Confusions Cause by "Procedure as Doer”

There are at least three area of confusion which are associated with the

"procedure as doer" model.
1. Confusion about how action can be bundled up into an object.

2. Problems with recursion - how can something call itself?

3. The tendency to expect action anywhere in the vicinity of procedures.

I will discuss each of these in turn

Novices who too closely associate procedures and action can find it difficult
to meaningfully interpret their properties as first-class objects. The confusion
seems to stem from an inability to reify the action in such a way that the
properties make sense. How can activity be bundled up in order that it can be
named? How does one take a piece of computational energy and pass it as an
argument or store it in a data structure? To such people, procedures are totally
understood in terms of what they do rather than what they are; in this context it is
difficult to determine what higher-order procedures could possibly mean. One just
as well might be asking how to package up the "loves" in "John loves Mary" to
send it off to a friend.

Problems with recursion can arise from focusing on procedures as the locus
of action in computations. A robust understanding of recursion requires a
familiarity with the idea that several invocations of the same procedure may be in
progress at the same time. In models where the procedure itself is considered a
doer, whether a human-like agent or input/output machine, explaining how the
state and control information of different activations could be maintained at the

same time can be difficult.

This is a possible source of the "loop model" which Kahney describes in his
work on novices' understanding of recursion [Kahney 82]. In the loop model of
recursion, the recursive call of a procedure indicates that the body of the
procedure should be executed from the beginning, but any state or control
information associated with the current activation of the procedure is lost. It is
interesting to note that such a model is accurate in the case where the recursive
call occurs in the tail recursive position. However, it fails in the case of recursive
procedures which require the state and control information of each recursive call
to be maintained. The loop model seems closely akin to the Fortran view of
subroutines - there the storage for a subroutine call is in the subroutine itself
rather than in some activation record associated with the subroutine. For this
reason, Fortran cannot support general recursion. If novices have an
agent-centered view of procedures, they may have similar troubles in seeing how

recursion could work in the general case.

80

This is not to say that consistent agent-centered views of procedures are not
possible. Certainly the actor model uses agents to explain procedures. However,
the actor model is a multiple-agent model where several actors may be reading
the same seript. This corresponds to several procedure activations for the same
procedure - that is, the actor is an activation and not a procedure. Thisisa
perfectly good way of understanding procedures. However, consistent
single-agent models for procedures are harder to come by. In such models, an
agentis associated with a procedure rather than an activation. To accurately
explain general recursion, such a model must explain how the single agent keeps
track of the state and control information of multiple activations - e.g. by writing
them down on sheets of paper maintained in stack-like order. There is nothing
wrong with such a model, but itis unlikely that a novice will be able to discover it

on hisor her own.

Perhaps the most prevalent side-effect of the notion of procedure as doer is
the naive tendency to associate action with procedures wherever they occur.
Procedures can be viewed as active entities waiting to operate on the arguments
which follow them. Given this point of view, cases in which procedures are not
followed by arguments are perceived as being a cause for error. Examples like

SQUARE

(APPLY-TO-FIVE SQUARE)

which were introduced in the "procedures as patterns' section are also relevant
here too. There the confusion occurred because souare by itself did not match a
pattern which the students knew. Here, there is a different notion of
incompleteness. With the "procedure as doer" model, the square procedure is
waiting to act on an argument but it is nowhere to be found. Students often
suggest that an error will be signalled in this case.

Another symptom of action-centered procedure bugs is a confusion between
procedure creation and invocation. Consider what happens when we evaluate
(DEFINE (SQUARE X) (* X X))
In the first few weeks of class, there are inevitably a few students who say
something like, "But we can't do that because we don't know what x is." Even
worse, if x has already been defined as a global variable, say with a value of s,
some will say the above expression gives 25. Clearly there are some problems here

in terms of understanding naming and the evaluation of special forms,® but there

81

82

is also a confusion as to when the activity of a procedure occurs. If the notion of a
procedure as an object is understood, then it is clear there must be a way to create
the object (via Lamsoa or the special oerine syntax) as well as a way to use the object
(via procedure application). When the distinction is not understood, however,
there can be an overzealousness to expect action wherever procedures are

involved.

This problem is compounded even further when dealing with procedures

which return other procedures as objects. Consider

(DEFINE (MAKE-EXPONENENTIATION EXPONENT)
(LAMBDA (NUM) (EXPT NUM EXPONENT))

When we evaluate
(MAKE-EXPONENENTIATION 3),

for example, a cubing procedure is returned. The above definition can be quite
disturbing for the novice, because return of a procedure is hardly an "action" in
the normal sense. It is clear that there is an zxp7 buried in the body of

MAKE -EXPONENENTIATION, but since only one number is available, the exer clearly can't do
anything yet - a piece of information is missing. Some are inclined to say that
there is an error because numisn't defined for exer. These are people showing the
bug of trying to evaluate an expression in a procedure body at procedure creation
time. Another group of people know that there will be no error, but still feel
uneasy about what is going on. In particular, they wonder where the other
number is going to come from and when the exponentiation is going to happen. A
better structural model of procedures would help clear up such confusions.

The problem of forgetting to initiate an internal loop may also be related to
the model of procedure as doer. Iterative procedures in Scheme are commonly
defined with an internal procedure to maintain the extra state of an iteration. For
example, an iterative version of factorial might look like:

(DEFINE (FACT N)
(DEFINE (ITER M ANS)

(IF SESM 0)

(ITER (- M 1) (* M ANS))))
(ITER N 1))

In this example the internal 17er procedure maintains an extra argument ans for
storing the accumulated state of the answer. Note that 17er must not only be
defined, but it must be called on initial values to get the computation going. A

83

common error in defining such procedures is neglecting the initial call of the
internal procedure. Part of the reason may be that procedures are so closely
associated with action that merely declaring what the internal procedure is
supposed to do is seen as providing tl.e body of the external procedure with
sufficient "action" for doing its job.

Two other trouble spots with procedures for novices may be related to the
notion of procedure as doer. Novices have an especially hard time understanding

two special cases of procedures [Sussman 85]:
1. Procedures which take no arguments, e.g.
(DEFINE (THREE) (+ 1 2)).
2. Procedures which have primitive expressions in their bodies, e.g.
(DEFINE (IDENTITY X) X).

Sometimes these special cases occur together, asin

(DEFINE (FOUR) 4).

Certainly a major problem here is that these cases are unfamiliar - few examples
covering these cases occur in the text or problem sets. Yet, some of the difficulties
may be related to an expectation of action. In the case of parameterless
procedures, the view of procedures as input/output machines can be misleading.
One might consider the input as starting the machine (e.g. coins in a vending
machine), so that the lack of input would make it hard to tell when to start.
Furthermore, an interpretation of procedures as manipulators of input data raises
the question of what the procedures would be manipulating in this case. For
procedures with primitive expresssions as bodies, the confusion may be that such
an expression does not fit in with the expectation of action for a procedure.
Having another procedure call, such as (+ 2 3), as a body meets the expectation of
action, but having just the number s does not. Although I have never studied
these two phenomena in students, I would not be surprised if the notion of agency
was to some degree intertwined with these problems.

4.1.3 Procedures as Names

When Shakespeare penned, "What's in a name," he was underscoring the
difference between a name and the object it denotes. This distinction is an
important one in the study of semantics for both natural languages and

84

programming languages. In the basic Scheme model of computation, procedures
manipulate objects, not names; a clear separation between the two is built into
Scheme environments. The use of a name in a program denotes the object to
which the name is bound in the appropriate environment. In short, names aren't
important - objects are.

Unfortunately, the inability to fully appreciate the name/object distinction
when dealing with procedures is a stumbling block for some novices. A confusion
between the name of a procedure and the procedure object is an impediment to the
understanding of procedures as first-class objects. This section probes how this
confusion may come about and gives examples of the kinds of misunderstandings

it can lead to.

Many programming languages do not emphasize a clear distinction
between the name of a procedure and the procedure itself. Often thisisa
consequence of the fact that procedures are not true first-class objects in these
languages. When procedures cannot be assigned to variables, inserted into data
structures, passed as arguments, or returned as results, there is little conceptual
leverage to gain by stressing the difference between the two. Such languages
generally treat the names of procedures in a special way. Firstof all, procedures
in these languages are not associated with names by normal variable assignment
(as they are in Scheme), but by special declarations which put procedures into a
separate namespace. Second, whereas Scheme allows arbitrary expressions to
appear in the procedure position of a procedure call, most programming
languages require this position to be filled by the name of a procedure. Pascal, C,
and CLU are examples of languages with these characteristics.

Even many dialects of Lisp treat procedure names in a special way by
maintaining separate namespaces for functions and variables. Maclisp uses seTQ
for general variable assignment but oerun to associate a procedure with a name. In
Interlisp, the procedure position for a call can be filled with a procedure name or a
lambda expression but not an arbitrary expression. When explicitly applying a
procedure to arguments in Interlisp, one passes a name to aprLy, not a procedure
object. For example, the Scheme expression

(APPLY SQUARE '(5))

has as its Interlisp counterpart

(APPLY 'SQUARE '(5)).

85

A problem with Scheme is that it is easy for new programmers to get the
mistaken impression that it also treats procedure names differently from other
names. Most of the reasons have to do with the fact that procedures look as if they
are being treated specially even though they really aren't. I can think of four
factors contributing to this confusion:

1. In mostintroductory examples, the procedure position of a procedure
call is filled with the name of a procedure only. Novices can get the
impresssion that it must be a procedure name, especially if they are
already familiar with another language in which this is the case. This
explains the confusion that accompanies the first uses of other
expressions in this position.

2. The special syntax for oerine disussed earlier is also a cause of trouble in
this context. The special syntax makes it look like procedures are
different from other objects when in reality this is not the case. Is there
any wonder why novices are almost universally confused when

confronted with evaluating
=> SQUARE

for the first time? Asking the corresponding question for Pascal, C, or
CLU would be absurd - such an expression is simply not meaningful in
those languages. Yet the special oerine syntax does not give any
indication that Scheme is different from those languages.

3. The substitution model presented in the Scheme course further
compounds name/object confusion by handling the evaluation of
procedure-designating expresssions in an inadeqate fashion. Consider
the following sample evaluation using the substitution model:

1. (SQUARE (+ 2 3))

2. (SQUARE 5)

3. (* 5 5)

4, 25
Between steps 1 and 2, the expression (+ 2 3) evaluates to the number s,
but the name square remains the same. Again, precedures seem to be
treated differently from other objects. In actuality, square is not an
appropriate notation for the second line - it should really be replaced by
a different notation for the procedure object denoted by the name square.

As it stands, the model makes it seem as if the procedure is integrally
tied to its name. In this way, the currently taught substitution model
reinforces any name/object confusions a novice may already have.

. Printed representations for procedures can also contribute to
name/object confusions. There is no agreed-upon representation for
procedures in standard Scherae [Clinger 85], but MIT Scheme prints
compound procedures out in one of the following ways:

[COMPOUND-PROCEDURE SQUARE]

or

[COMPOUND-PROCEDURE 0187328]

The first form is for precedures defined with the special define syntax -
in this case it is possible to grab hold of the name when creating the
procedure.* The second is for procedures created with an explicit LamsDA -
in this case, a name is not available when the procedure is created, so a
unique ID number is assigned to the procedure instead.

The problem with names of the first form is that they give the
impression that the name is intimately bound up with the procedure
object itself. Since no other printed representation contains a name,
procedures are again singled out as "looking different” from other
objects because of their names.

There are several typical situations in which name/object confusion
manifests itself. First, new Scheme programmers commonly expect procedure
calls to begin with the name of a procedure. Such counterexamples as

((LAMBDA (X) (* X X)) 5)

((REPEATED F (- N 1)) (F X))

expose the folly of this expectation. The expressions of confusion worn by novices
when they are first faced with such examples suggests that they do not fully
appreciate the name/object distinction.

Second, students sometimes believe that names rather than objects are
being passed around in higher-order procedure examples. Upon seeing the

sequence of expressions

(DEFINE (SQUARE X) (* X X))

86

87

(DEFINE (APPLY-TO-FIVE PROC) (PROC 5))

(APPLY-TO-FIVE SQUARE)

some novices voice the opinion that the name square is being handed to the
APPLY.TO-FIVE procedure in the final expression. In fact, I have seen one case of a
student actually writing the equivalent of

(APPLY-TO-FIVE 'SQUARE)

in this type of example. Here there is a clear confusion between name and object.

Reasoning about procedures as elements in data structures is a third area
in which the name/object confusion leads to trouble. I myself was guilty of such an
error in a handout I prepared in my first semester as a teaching assistant.
Desiring to express a list of trigonometric functions, I wrote

"(SIN COS TAN)

rather than the correct

(LIST SIN COS TAN).
The former is a list of procedure names, while the latter is a list of procedures.

This type of confusion usually comes to a head for the students in the
laboratory on generic arithmetic. To keep track of the operators for different
types of mathematical objects (rationals, complex numbers, polynomials, etc.), a
two dimensional table of procedures is maintained. Students must not only define
the procedures for handling polynomials, but they must also insert them into the
table. A common bug often happens at this stage. The student notices that a
procedure, say PLus-poLy, is defined incorrectly, so he or she fixes it it but forgets to
reinsert the new procedure into the table. The effects of the edit are not seen
because the generic arithmetic package is still using the incorrect version in the
table. At first glance, this error might seem to be related to the understanding of
side-effects rather than the understanding of procedures. However, when the
problem is explained to students who encounter this error, a large number will
say something to the effect of "Oh - I thought the name pLus-roLy was being stored
in the table.” The name/object confusion strikes again!

A fourth manifestation of the confusion between name and object is
illustrated in procedure definitions in which a new name is given to an existing
procedure - e.g.

(DEFINE FIRST CAR)

88

Novices are typically at odds to explain what the above definition means.
Some will independently propose the mistaken idea that rirst is being associated
with the name car in such a way that subsequent uses of First will really be
referring to car. Although this predicts the right behavior, it is a non-robust model
which does not reflect the Scheme model of computation. Furthermore, the fact
that many students must be explicitly informed about the semantics of the above
expression is an indication that they do not fundamentally grasp the notion of
first-class procedure objects.

A £ - 1 example of procedure names resulting in faulty reasoning occurs
with meséag4a~ passing.’ Consider the adventure game laboratory in which
characters in the game are represented by message-passing objects defined with

the following skeletal form:

(DEFINE (MAKE-PERSON NAME)

(DEFINE (ME MESSAGE)

)
ME)

Suppose we new create two people via MAKE-PERSON:
(DEFINE HAL (MAKE-PERSON 'HAL))

(DEFINE GERRY (MAKE-PERSON 'GERRY))
An environment diagram skeleton for the resulting environment is illustrated in

Figure 4.1.

Global Environment

Make/-person Hal /l\ Gerry j\
name ———>Hal name ——2>> Gerry
_—me _—me

GO (G

> 8

Figure 4.1: Environment diagram for the MAKE-PERSON example.

89

The environment diagram makes clear that each person object "knows" its
name only because that name is explicitly stored in the environmentit has access
to. 1n particular, contrary to some naive expectaions, the procedures have no idea
what names they are known by in the global environment. A further confusion
which hampers reasoning in this example is that the printed representaticns for
both person objects is [coMPoUND-PROCEDURE ME], a non-unique representation that gives
no clue which procedure is being referred to. In such cases the printed
representation showing the unique identifier number would be a much more

helpful reasoning aid.

4.2 ENVIRONMENT ISSUES

Understanding the implication of names in Scheme is not an easy task for
the new programmer. We have already seen in the previous section how it is
possible to blur the distinction between names and objects in the case of
procedures. This section explores some of the other difficulties which novices
encounter when trying to understand names in Scheme.

4.2.1 Parameter Passing

One area for potential misunderstanding of names is Scheme's
parameter-passing mechanism. The Scheme interpreter evaluates a combination
(an expression denoting a procedure call) by first evaluating ali subexpressions for
the combination into objects; it then applies the value of the leftmost
subexpresssion (a procedure object) to the other objects. As a part of the
application process, the formal parameter names are associated with the
corresponding argument objects. Thisis a call-by-value parameter-passing
mechanism; it is also known by the name applicative-order evaluation. Many
alternate mechanisms are possible - for example, in normal-order evaluation (also
referred to as call-by-name), the formal parameter name is associated with the
expression itself rather than the object which results from evaluating the
expression. In such a scheme, expressions are not evaluated until they appear as
arguments to a primitive procedure. A distinction between the two mechanismsis
illustrated below by different versions of the substitution model; here square refers

to a squaring procedure, and ais bound to 3.

Applicative order
1. (SQUARE A)
2. (SQUARE 3)
3. (*33)
4. 9

Normal order

1. (SQUARE A)

2. (*AA)
3. (*33)
4, g9

When reasoning about procedure applications, it is easy to misunderstand
exactly what information is available to the interpreter at a particular point in
the computation. Even in the simple example of squaring show above, it is
possible to have a misleading model. When asked what (square a) does, many
programmers will respond "It multiplies A by itself.” Semetimes this really means
"It multiplies the value of a by itself," in which case the programmer shows an
understanding of applicative-order evaluation. In other cases, however, the
programmer really has a model that the interpreter still has access to the name A
within the body of square. Such a model is not necessarily related to normal-order
evaluation; it may just be a hazy notion that the interpreter "remembers" that
the 3 came from evaluating the name a. After all, the programmer can clearly
remember that this is the case, so why can't the interpreter?

The problem with the above kind of model is that it can hinder proper
reasoning. First, it unnecessarily clutters the programmer's view of what
information is actually available to the interpreter. Second, it can lead to
confusion or improper lines of reasoning if the programmer actually tries to make
use of the extra information. I cannot pinpoint a particular example of this
situation, but I remember having seen cases in which thinking the interpreter
knew more than it actually did got novices into trouble.

Another parameter-passing misunderstanding which inevitably crops up
with a few students every term is confusion between formal and actual
parémeters. These students get the mistaken impression that the formal and
- actual pérameters to a procedure must be the same. A sure-fire sign of this

90

91

confusion is the unnecessary naming of objects before they are passed as
parameters to a procedure. For example, suppose we have a procedure

SUM-OF -SQUARES:

(DEFINE (SUM-OF-SQUARES A B)
(+ (SQUARE A) (SQUARE B)))

To apply this procedure to 3 and 4, a person exhibiting the formal/actual bug will
write

(DEFINE A 3)

(DEFINE B 4)

(SUM-OF-SQUARES A B)

This certainly works, but it belies a lack of true understanding for the way
Scheme handles parameters.

Although the formal/actual bug is usually cleared up within a week, itis
worthwhile to consider why it occurs at all. Certainly there are plenty of
examples shown in class and in the text where the actual argument is not the
name of a formal parameter. However, there are some important examples where
the distinction is obscured. Consider the set of procedures presented in [Abelson &
Sussman 85a] for using Newton's method to approximate the square root of a

number:

(DEFINE (SQRT X)
(SQRT-ITER 1 X))

(DEFINE (SQRT-ITER GUESS X)
(IF (GOOD-ENOUGH? GUESS X)
GUESS
(SQRT-ITER (IMPROVE GUESS X) X)))

(DEFINE (GOOD-ENQUGH? GUESS X)
(< (ABS (- (SQUARE GUESS) X)) .001))

(DEFINE (IMPROVE GUESS X)
(AVERAGE GUESS (/ X GUESS)))

(DEFINE (AVERAGE X Y)
(/7 (+ X Y) 2))

Note that x and cuess are used to name many different variables. There are
really five different xs and three different cuesss in the above code. In this
example, the actual argument is the same name as the formal in six instances.
Because Scheme syntax does not indicate the siructure of reference (i.e.. which xs
are really related) there is certainly ample room for confusion to arises. When
this lack of structural visibility is combined with examples in which the structure

92

is obscured by the unnecessary reuse of names, problems such as the formal/actual

bug are sure to arise.

4.2.2 Scoping

The confusion about the structure of reference in Scheme is most clearly
evidenced in examples involving Scheme's use of lexical scoping. Although lexical
scoping is explained in depth by the environment model, many students never
become facile enough with that model to use it as a reasoning tool. Furthermore,
the notion of lexical scoping must be understood in the context of higher order
procedures before the environment model is ever introduced in the course. The
result is that students inevitably discover non-robust methods for thinking about

names.

The way in which higher-order procedures can "remember" information is a

possible area for confusion. Consider the following definitions:

(DEFINE (MAKE-ADDER N)
(LAMBDA (X) (+ X N))

(DEFINE ADD-3 (MAKE-ADDER 3)).

Evaluating

(ADD-3 7)
results in the value 10. The aoo-3 procedure clearly remembers the value of v, but
how? Before the environment model is introduced, this behavior can only be
explained by the substitution model. The substitution model explains this
phenomenon by saying that the value of 3 is substituted for v in the body of the
procedure created by make-aooer. Thus the 3 is hardwired into the aoo-3 procedure, as
if it had been created by evaluating

(LAMBDA (X) (+ X 3)).

However, the way the substitution model is taught, this point often does
not get across. Students sometimes seem to use other methods to understand such
examples. One method is the attribution of their own knowledge to the
interpreter as discussed in the previous section. That is, the student knows that
aoo-3 was defined when v was 3, so the interpreter must know that as well.
Sometimes this notion will be even fuzzier, perhaps even guided more by the
student's understanding of what the answer should be rather than how it is
actually computed. I have witnessed students who predict that (ao0-3 7) should be

93

10 based simply on the fact that the precedure is named aon-3 rather than on any
deep understanding of why abo-3 adds 3 to its input. Even if aoo-3 were given a less
descriptive name, an astute problem solver could note that in the above code,
there is only one operation (+) and two numbers (3 and 7) so a likely meaningful
action to perform is to apply the operation to the numbers to get 10. This may
sound absurd, butI have actually had students who explicitly told me that they
were using such a method to approach a more convoluted higher-order procedure
example in which other reasoning approaches failed them. The drawbacks of such
approaches are obvious - they are simply not a robust way to reason about
programs.,

Matters grow progressivly worse with the introduction of block structure.
Here proper reasoning about names almost requires a detailed model like the
environment model. Yet people are creative beings and are bound to develop
alternate, albeit wrong, models of naming.

My favorite example of confusion with naming in block structure involves a
problem set dealing with a simple software psychiatrist. The program reads
inputs from the user and responds to them in sor-e fashion. The basic driver loop
of the program consists of the three parts shown below:

(DEFINE (START)
(DRIVER-LOOP))

(CEFINE §DRIVER—LOOP)
(LET ((USER-RESPONSE (READ)))
REPLY USER-RESPONSE)
DRIVER-LOOP))

(DEFINC (REPLY RESPONSE)
<ways to resLond>)

Through each iteration of the loop, an inputis read from the user and the repLy
procedure is called on that input to generate an appropriate response.

Students were asked to extend the system to include a history of the user's
responses so that the psychiatrist could sometimes reply
(EARLIER YOU SAID THAT <previous userresponse>) .
Since this problem-set occurred before side effects were introduced, students were
expected to handle thisin an applicative fashion. The standard trick in such cases
is to add an extra argument to the loop in order to maintain the desired state.
This approach leads to the following code;

(DEFINE (START)
(DRIVER-LOOP NIL)) : start off with an empty list of responses

94

(DEFINE (DRIVER-LOOP HISTORY)
(LET ((USER-RESPONSE (READ)))
REPLY USER-RESPONSE HISTORY)
DRIVER-LOOP (CONS USER-RESPONSE HISTORY))): Add the new response
; to the history.

(DEFINE (REPLY RESPONSE PREVIOUS-RESPONSES)

(PRINT (APPEND '{earlier you said that)
(PICK-RANDOM PREVIQUS-RESPONSES)) ; pick-random extracts a random
; element from a list.

Several students were not familiar with this trick and instead attempted an
approach where a global history list would be updated each time through the loop.
The most interesting of these attempts was the following piece of code:

(DEFINE (START)
DEFINE HISTORY NIL) ; history #1
DRIVER-LOOP HISTORY))

(DEFINE (DRIVER-LOOP HISTORY) ;history #2
(LET ((USER-RESPONSE (READ)))
(DEFINE HISTORY (CONS USER-RESPONSE HISTORY)); history #3 followed
; by history #2
DRIVER-LOOP HISTORY))) ; history #3

(DEFINE (REPLY RESPONSE HISTORY) ; history #4

EREPLY USER-RESPONSE HISTORY) ; history #3

(PRINT (APPEND '(earlier you said that)
(PICK-RANDOM HISTORY)) ;history #4

)
This code actually works, but for reasons not at all suspected by the student.
From the student's explanations, it was clear that he thought his code was
mutating a global variable named History. However, mutations are accomplished
using seT!, not oerINeE. Scheme's DeFINE creates a new variable in the current block,
so the above code actually contains four different variables named nistory (as

indicated by the comments). This code does exactly what the standard solution
above did, although in a much more obscure manner.

The student's model of naming here shows clear bugs as to what names
mean. The above code even shows signs of the formal/actual bug discussed
previously. My guess is that the student started off with the side effect model in
mind, but that early attempts at implementing it did not work. He then kept
making modifications to his code until it finally exhibited the correct behvior,
resulting in the program above. The irony here is that the program's behavior

95

supports the student's fundamentally flawed model. This is a good example of
hidden information resulting in a poor structural model.

Introduction of side effects and the full-blown environment model result in
innumerable difficulties. The problems, however, aren't so much in
understanding the concept of state as in understanding the mechanics of the
environment model. The major problem seems to be that students get so stuck in
a quagmire of the low-level details of applying the model they they lose sight of
the high-level phenomena the model is meant to explain. Blind application of the
environment model rules gives little insight into what environments are all
about. Furthermore, since it is easy to make mistakes when applying the model,
such an approach is not even guaranteed to aid the reasoning process.

As an example, consider one of the most common mistakes associated with
using the environment model. To ensure that lexical scoping is enforced, a crucial
rule of the model decrees that the new environment frame created by application
of a procedure closure must have as its parent environment the environment of
the closure. Inevitably, students will instead follow a very strong intuition that
the parent environment should be the calling environment. Unfortunately,
rather than describing lexical scoping, this results in dynamic scoping, which is
what the whole environment model was designed to circumvent.

The sad part about this whole affair is that lexical scoping is one of the few
issues where the textual representation of code is helpful in assisting reasoning
about its semantics. The meaning of a name in a program is totally determined by
its position within the text of the code. In fact, there are straightforward ways
(which are unfortunately rarely described in class) of determining what the shape
of an environment structure for a procedure must look like based on the textual
representations of the program.® Experienced programmers tend to use such
tricks and higher-level reasoning to build environment diagrams without
resorting to blind application of the environment model rules.

The problem here is that even though the information is at the user's
fingertips, it is not presented in a way that the user becomes aware of it. All
names look the same in a standard text editor. If some distinguishing feature -
color or font, for example - were used to highlight the names which referred to the
same conceptual variable, perhaps the programmer could make more use of this

96

information. The main point of this section is that until the structure of reference
is emphasized in some manner, people will think about names in non-robust ways.

4.3 CONTROL ISSUES

The third major area of confusion with procedures is that of control.
Understanding how the interpreter evaluates expressions - the order it follows,
what it evaluates and doesn't evaluate, how it remembers pending operations, and
S0 on - is a nontrivial task for novices. Again, the troubles are rooted in the fact
that the textual representation of programs does little to aid reasoning about
these matters. With control, this is an especially acute problem, since a suitable
explicit model for handling it, the explicit control evaluator, is not presented until
the end of the Scheme course. Students are basically on their own to dev=lop
models about control. This section will consider several areas where students

encounter problems with control.

4.3.1 Order of Evaluation

Scheme's use of nested expressions can make it difficult for novices to see
the order in which expressions are evaluated. Strong linguistic intuitions dictate
that expressions are read from left to right, but this belies the fact that they are
evaluated "from the inside out." An expression such as

(SQRT (+ (SQUARE 3) (SQUARE 4))),

translates so cleanly into the English "The square root of the sum of the squares of
3 and 4," that people can understand its meaning without paying attention to the
order of computation it implies. Alas, there are many situations where the order

is not so obvious.

A favorite example of mine in this area involves the factorial procedure. In
the first few weeks of the Scheme course, students become very faniliar with
simple recursive procedures, such as the factorial procedure given below:

(DEFINE (FACTORIAL N)
(IF (= N 0)
i

(* N (FACTORIAL (-.N 1)))))

97

Many of them seem to understand the recursive call at a functional level but not
necessarily at a structural one. That is, the above definition looks very much like
an inductive definition from mathematics:

FACT (N) = 1, N=20

N*FACT(N-1), N>1
However, the mathematical definition is more declarative than imperative - it
stresses what factorial is and only implicitly says how it can be calculated.

To an experienced programmer, it is clear that no multiplication can occur
until (facTorIAL 0) is reached. At this point all the pending' multiplications are done
in the reverse order of that in which they are encountered. Thus, (rFacTor1AL 0) is
the first call of FacTorIAL to actually return a value, and the first multiplication
which a programmer "sees" in simulating the behavior of factorial is actually the

last one to be applied.

To test student's understanding of these ideas, I often present the following

variant of rFacTor1aL:

(DEFINE (FACTORIAL N)
(IF (= N 0)
1

(LET ((RESULT (FACT (- N 1))))
(* N RESULT))))

Here the use of the LeT expression merely emphasizes that the program rushes
toward (FacToriaL 0) before any multiplication can be done. Yet, about half the
students who see this example say it will not work, usually predicting that it will
_result in an infinite loop. There are many possible sources for confusion here, such
as a misunderstanding of the LeT construct or a general weakness with recursion,
but it seems that a bad model of the order in which expressions are evaluated is
the most likely candidate as the cause for these responses.

4.3.2 Pending Operations

A notion related to order of evaluation which also crops up in recursive
procedure examples is that of pending operations. A pending operation is one
which the interpreter has to "remember" to do when it completes the current
computation. In the nested expression example of the above section, for example,

the + procedure is a pending operation to be applied to the results of (square 3) and
(SQUARE 4).

Students encounter a great amount of difficulty when dealing with pending
operations. Consider the following two procedures, v -ich are often used as

examples in the Scheme course:

(DEFINE E
(COND (

(DEFINE (COUNT2 N)
(COND ((= N 0) 0)

(ELSE (COUNT2 (- N 1)) (PRINT N))))

OUNTL N)
= N 0) 0)
LE(I

c
é &T Ny (COUNTL (- N 1)))))

The two procedures differ only in the placement of the prinT expression with
respect to the recursive call. counti prints numbers in decreasing order from the
initial number to o. countz prints number in increasing order from 1 to the initial

number.

Most students have no trouble in predicting the behavior of count1. countz, on
the other hand, poses a major hurdle to students. When I presented this problem
to a class of thirty students, not a single one was able to predict correctly the
behavior of countz. The problem is that they did not know how to deal with the
pending prInT expression after the recursive call. Actually, the per.ding prinT in
countz is very similar to the pending multiplication in racToriAc, but unlike the
FACTORIAL case, COUNT2 is not easily understand in terms of mathematical induction.

It is interesting to note that the recursive call to lcouun is tail recursive,
whereas the recursive call to count2 is not. Novices in general seem to have less
trouble with the tail recursive cases than the non-tail recusive ones. Thereisa
good reason for this - there is no need to remember pending operations in the tail
recursive case. In such cases, simple models of recursion (such as the "looping
model" discussed in [Kahney 82]) will accurately predict behavior even though

they break down in the more general case.

Trying to explain the actual concept of tail recursion itself to novices,
though, is extremely difficult. The concept requires a deep understanding of what
state must be maintained by an activation of a recursive procedure. Although the
idea is presented in the first chapter of [Abelson & Sussman 85a], few students
pick it up until the introduction of the explicit control evaluator, and even then

many find it too subtle to grasp.

4.3.3 Return of Values

An interesting attribute of Scheme is that evaluation of any expression
returns avalue. In most cases there is an obvious value to return, but in some
instances (e.g. PrINT Or DEFINE) the returned value is rather arbitrarily defined. The
body of a procedure, the body of a LeT expression, and the action sequence of a
conditional clause may contain a sequence of expressions to be evaluated; in these
cases the value of the last expression in the sequence is the value of the construct
in question. Students do not always fully appreciate this notion of expressions

returning values.

A standard example where the return of a value causes confusion involves
the definition of internal procedures. Consider the following example of a

procedure returning a procedure as its result:

(DEFINE (ADD-N N)
(LAMBDA (X) (+ X N)))

Here the last expression in the body of aop-n is the Lamsoa expression. The resuit of
calling aoo-n is the result of the LaMgDA expression - i.e., a procedure. The above
aefinition can also be written in the following form.

(DEFINE (ADD-N N)
(DEFINE (NEW-ADDER X) (+ X N))
NEW-ADDER)

In this case, the body of aop-n consists of two expressions. The result of calling aop-n
is the result of evaluating its last expression, namely new-aooer. Evaluation of this
expression gives the procedure defined by the previous expression.

When novices encounter examples like the second one above, a common
question is "What is the final new-aooer for?" In this case, the second expression is
necessary because perine returns (by convention) the name being defined rather
than the object associated with it. Without the final new-Aoper expression, Abp-n
would create a new procedure but return the name new-aoper rather than the
procedure associated with it. This kind of example sorely tests the novices
understanding of the details of returned values.

99

100

4.3.4 Special Forms

There exist in Scheme a small number of corstructs which are not
evaluated as regular procedure calls. These contructs are introduced by keywords
called special forms. DerFINE, coND, IF, LAMBDA, LET, and seT: are the most common of
these. Each introduces an expression which is evaluated in a special way by the

interpreter.

Unfortunately, special forms look no different than regular procedure calls
except for the keyword which introduces them. Furthermore, there are no special
indications of how the special forms are to be evaluated. Consider the oerine
construct, which has the form

(DEFINE <NAME> <EXPRESSION FOR VALUE>)
Evaluating a pefFine expression involves two separate steps:
1. Evaluate <expressionForvaLue> to get an object

2. Bind the unevaluated <name> to the object resulting from from the
first step.
There is no clue in the syntax that these are the steps to be taken. In fact, some
people get the model that the expression gets associated with the name and is only
evaluated when the name is referenced. Witness my own confusion on this matter
when I was a student in the course, as discussed in Chapter 3. Matters get worse
for perine when it is used in the special syntax for defining procedures.

Based on my experience, it seems that students do not develop a firm
understanding of the set of rules which guide the evaluation of special forms.
Instead, they have functional models for the kinds of patterns they have seen in
examples. The patterns for oerine in procedure definitions were discussed in the
section on procedures as patterns. As another exaniple, consider the pattern for a
conditional clause. Conditional clauses are of the form

(<PREDICATE> <ACTION-1> <ACTION-2> . . . <ACTION-N>)

where if <prepicate> evaluates to a non-niL value, the expressions in the action
sequence following it are evaluated in order. A sample conditional expression is

(COND ((< A G) (PRINT "A < 0") (- A)
(§= A o; (PRINT "A = 0") A)
(ELSE (PRINT "A > 0") A))

101

The expectation that a clause begins with two parentheses (except in the special
case of an ecst clause) is so strong that novices often do not know how to deal with a

case such as:

(COND §A 7)
ELSE 5))

Here the predicate is simply the expression a - if its value is non-nit the conditionai
expression will return a 7. The fact that students are confused by such an example
is evidence that they view speical forms in terms of patterns rather than in terms

of evaluation rules.

4.4 Summary

This chapter documents many of the troubles which students have with
procedures in the Scheme course. The main source of the problems is that the
textual representations people encounter in the programming language give little
insight into the computational elements and processes they ave describing. In
some cases, the representations give no information from which the programmer
can induce good models. In other cases, such as the special perine syntax for
procedure creation, the representations are downright misleading and lure the
programmer off the path towards a robust model. Even the explicit models
intended to explain the evaluation process can confuse the novice - the substitition
model, for example, blurs the sharp line between the names of procedures and the
objects they denote.

In order to help nnvices avoid the kinds of poor structural models described
in this chapter, it is necessary to provide them with better information about the
underlying model of computation in which they are programming. Part of the
work is to make explicit in the model the kinds of structures which are implicit in
the programming langnage. Once this is done, the resulting computational
elements need to be made easily inspectable and manipulable in the interface to
the programming language. The way in which the Grasp system approaches
these two steps is the subject of the next two chapters.

CHAPTERS5

THE GRASP MODEL
FOR PROCEDURAL PROGRAMS

The previous chapter explored some of the pitfalls novices encounter when
trying to understand procedural programs. The problems arise for two basic
reasons. First, the interface through which the programmer interacts with the
underlying computational model can hide valuable information about its state
and dynamic behavior. Scheme's reap-evaL-pRINT loop is a classic example. The
input to rean and the output of erint are displayed, but the all-important action of
evaL remains invisible. Presented with a lopsided view of the model in the
interface, novices are often misled by their intuitions into building mental models
which poorly characterize the model of computation. Second, the explicit models
taught to novices can themselves be misleading. Part of the problem is
presentational in nature. The representations used in the substitution model, for
example, can give rise to a confusion hetween the names of procedures and the
procedures themselves. The rest of the problem is more fundamental. Designed to
explain only certain aspects of the full computational model, explicit models can
be incomplete in their ccverage of important issues. For instance, neither the
substitution model nor the environment model attempts to explain flow of control.

The principles of visibility and manipulability address the presentational
issues raised above. These principles are aimed at providing the novice with more
information about the model through the interface to that model. They may not be
of much help if the underlying model of computation is incomplete or
counterintuitive. Consider a model of computation for a Scheme-like language in
which procedures passed as arguments really are treated as the substitution
model seems to indicate - i.e. they are just names. As an attempt to make this
model more visible, we could have the interpreter print out each of the
intermediate expressions it forms on its way toward the final result. The
intermediate expressions so printed would be the same ones predicted by the

N2

103

substitution model. This visible interface to such a model is not likely to improve
a novice's understanding of procedures as first-class objects. To begin with, the
model itself is flawed because of its nonuniform treatment of procedure names. In
addition, the pieces of the model (namely, textual expressions) are hardiy

conducive to visible and manipulable representations.

On the other hand, suppese we modify the model so that procedure objects
rather than procedure names are passed as arguments. One possible visible
interface to the modified model would be the same one described above. In this
case, though, the representations of the interface are ill-chosen, not the elements
of the model. Itis perfectly possible to choose representations wi:ich better
distinguish the difference between names and the objects they denote. A visible
interface using such improved representations might indeed help novices

understand first-class procedures.

As an example, consider anew way to present the substitution model. Two
representational formats for the substitution model are compared in Figure 5.1.
The traditional representation is shown in Figure 5.1(a). Figure 5.1(b) illustrates
a variant which makes a clear distinction between name and object through its
choice of representation - names appear as text, but objects appear in boxes. Also
note that the second version explicitly distinguishes the evaL and arrLy phasesin
the evaluation process (the evaL stage is shown within parenthesis; the arrLy stage
within brackets). The first version shows only the evaL stage and thus does not
faithfully represent the true character of evaluation in Scheme.

The lesson to learn from the above example is that the model of
computation is itself crucial when considering visibility and manipulability.
These principles are no panacea; they cannot magically turn an incomprehensible
model into a comprehensible one. Their value depends greatly on the nature of the
model to which they are applied. The utility of the principles is closely related to
the extent to which the model satisfies the following prcperties:

1. The model completely describes the domain of interestin a
simple, straightforward way.

2. The model is consistent with the intuitions and expectations
people bring to the task. Of course, this is not always possible,
but models which violate too many intuitions should be

avoided.

3. The model consists of elements which are amenable to visible

and maripulable representations.

(APPLY-TO-FIVE SQUARE)
(SQUARE 5)

(a) Traditional form of substitution model

(* 55)

25

(APNNTK}HVE SQUAR%
PROCEDURE PROCEDURE
Arguments: PROC) |Arguments: X
Body: (PROC 5) Body: (* X X)
PROCEDURE
Arguments: X 5
Body: (* X X)

PROCEDURE NUMBER
Arguments: X Value: 5
Body: {* X X)
* NUMBER NUMBER
Value: 5 Value: 5
PRIMITIVE NUMBER NUMBER
* Value: 5 Value. S
NUMBER
Value: 25

(b) Suggested representation for the substitution model.

FIGURE 5.1: Two representations for the substitution model

The purpose of this chapter is to develop a procedural programming model

104

which is in line with the above properties. The chapter begins with a discussion of

why a new model is necessary. A device programming model is suggested as a
way to make the structure of a program more explicit. Next I discuss the scope of
the Grasp model and the important ways in which it differs from Scheme. The
principle of reification is introduced as a means of developing a device
programming model for procedural programs. Finally, che reified elements of the
Grasp model are presented. In Chapter 7,1 will argue that these elements should
help learners avoid the kinds of misconceptions discussed in Chapter 4.

105

5.1 WHY A NEW MODEL?

In designing the Grasp system, it was necessary to decide upon a model of
computation. I considered developing a new abstract machine for Scheme, but it
soon became clear that this was inconsistent with my view of visibility and
manipulability. The major problem is that Scheme is inherently an
expression-oriented language. The emphasis in Scheme is on the symbolic
description of objects and processes. Constructs such as quote and evaL only make
sense in a model where expressions are the primary focus of attention. This does
not mean that visibility and manipulability are impossible for Scheme. In fact,
Eisenberg's BOCHSER is an integrated, interactive Boxer-like environment
which aliows a Scheme programmer to inspect and manipulate the elements of the
environment model [Eisenberg 85]. However, because it supports Scheme so
directly, BOCHSER is of necessity deeply rooted in a linguistic approach to
program specification.

In Grasp, my desire was to stress a more physical approach to the
specification of programs. I wanted to shift the focus away from expressions to the
objects they denote and the run-time structures they imply. Iimagined an
environment in which a programmer could construct a program in an erector set
fashion by interconnecting representations of data structures and interpretation
structures. Such a system would allow the structure of a program to be
represented in a more direct manner than is possible in an expression-oriented
language. For instance, in expression-based environments, the structural
relationship beiween a variable and references to that variable is achieved
indirectly through names and environments. In the type of system I envisioned,
this structural relationship could be specified directly - by, say, first pointing to a
representation of the variabie and then to the place where its value is to be used.
Not only would the static structure of a program be inspectable and manipulable
in this kind of system, but its dynamic behavior could be made visible as well. For
example, the programmer could see animated representations of control flow and
data flow in a program. Furthermore, such a system would be well-suited for
examining, constructing, executing, and debugging programs within a single
integrated environment.

This vision is related to the device programming style discussed in Chapter

3. In Grasp, I attempt to apply the device programming style to the domain of
programming itself. Developing a model in which computational elements can be

106

consistently viewed as physical cbjects is not entirely straightforward. Designing
such amodel constituted the major effort of this project.

I should note that Grasp is certainly not the first environment which
embodies a device programming style for general computation. In {act, over
twenty years ago, Wiliam Robert Sutherland developed an innovative system for
interactively specifying the structural connections of data flow programs through
a graphical interface. Programmers could connect functional units by data lines
in order to form a program. The resulting configurations could be executed, and
the values on the data lines could be inspected in a special debugging mode
[Sutheriand 66]. Mor- recently, Glinert and Tanimoto have devised the Pict/D
system, in which programmers build simple Pascal-like numerical programs
solely through the manipulation of icons. In fact, the keyboard is never used in
interactions with the Pict/D system [Glinert & Tanimoto 84].

To my knowledge, however, Grasp is the first device programming system
to support procedures as first-class objects. Both Sutherland's system and Pict/D
allow the programmer to create procedures, but the only data objects in these
systems are numbers and booleans. Grasp also is constrained to a limited set of
data structures, but in addition to numbers and booleans, this set contains
procedures. Experience with Scheme shows that treating procedures as first-class
objects is a source of great power and elegance. By supporting this powerful
notion in a device programming system, Grasp aims to help novices build more

robust models of procedures.

5.2 SCOPE OF THE MODEL

To avoid getting bogged down in a morass of special features, it was
necessary to narrow the scope of the Grasp model to cover a relatively smail
kernel of computational elements. Since the focus of the project was on
procedures, I wanted to include in the model those elements necessary for
supporting procedures as first-class objects. My hope was to build a system in
which novices could explore simple examples covering various interesting uses of
procedures. In particular, I wanted a system which could handle the kinds of
examples presented in Chapter 1 and the first half of Chapter 3 in [Abelson &
Sussman 85a]. These chapters cover naming, procedural abstraction, recursion,
higher-order procedures, lexical scoping, and procedures with local state.

107

Examples of the kinds of programs I envision demonstrating in Grasp are
given in Scheme form below. Even though the examples are smail, students
with a deep understanding of the concepts they embody would generally be well
prepared to handle more complex examples. This kind of situation is
characteristic of robust models; they aid reasoning even for new and unexpected

kinds of examples.
1.Straightforward numerical procedures, e.g.

(DEFINE (PYTHAGORAS A B)
(SQRT (+ (SQUARE A) (SQUARE B8))))

2. Recursive procedures, especially those with pending operations, e.g.

; No pending operations
(DEFINE (COUNT1 N)
(COND ((= N 0) 0)
(ELSE (PRINT N) (COUNTL (- N 1)))))

; Pending operations
(DEFINE (COUNT2 N)
(COND g(= N 0) 0)
ELSE (COUNT2 (- N 1)) (PRINT N)))))

(DEFINE (FACT N)
(COND ((= N 0) 1)
(ELSE (* N (FACT (- N 1))})))

3. Procedures with state, e.g.

(DEFINE COUNTER
(LET ((CURRENT-COUNT 0))
(LAMBDA ()
észrz CURRENT-COUNT (+ CURRENT-COUNT 1))
URRENT-COUNT)))

4. Procedures taking procedures as arguments, e.g.

(DEFINE (APPLY-TO-FIVE PROC)
(PROC 5))

5. Procedures returning procedures as results, e.g.

(DEFINE (MAKE-ADDER N)
(LAMBDA (X) (+ X N)$

(DEFINE MAKE-COUNTER)
(LET ({CURRENT-COUNT 0))
LAMBDA ()
(SET! CURRENT-COUNT (+ CURRENT-COUNT 1))
CURRENT-COUNT)))

6. Procedures both taking and returning procedures, e.g.

(DEFINE (TWICE FN)
(LAMBDA (X) (FN (FN X))))

(DEFINE (REPEATED FN N)
(COND ((= N 0) FN)
(ELSE (LAMBDA (X) ((REPEATED FN (- N 1)) (FN X))))))

108

7. Message-Passing procedures, e.g.

; An implementation of CONS, CAR, AND CDR in a message passing style.
(DEFINE (CONS1 X Y)

(LAMBDA (M)
(COND ((= M 0) X)
ELSE Y))))
(DEFINE (CAR1 Z)
(z 0})
(DEFINE (CDR1 Z)
(Z 1))

: A more convoluted implementation of CONS, CAR, and CDR
; that causes great confusion among students.
(DEFINE (CONS2 X Y)

(LAMBDA (Z) (Z X Y)))

(DEFINE (CAR2 Z)
(Z (LAMBDA (P Q) P)))

(DEFINE (CDR2 7)
(Z (LAMBDA (P Q) Q)))

There are certain features of Scheme which I explicitly decided not to
include in the initial Grasp model. As previously mentioned, Grasp does not have
arich set of data structures. Since the focus of Grasp is on procedures rather than
on data structures, I decided to support only numbers, booleans, and procedures as
data objects. This does not indicate that that other data structures or data-related
concepts are unimportant. Certainly every programmer requires an
understanding of compound data and data abstraction. However, my experiences
in the Scheme course have made it clear that procedures are more common than
data as a stumbling block for novices. Moreover, the first chapter of [Abelson &
Sussman 85a] explores the properties of procedures using only numbers,
booleans, and procedures as data objects. Note that the example programs listed
above are restricted to these types of data as well. Given that procedures are a
greater source of confusion and interesting examples can be done with simple data
objects, I decided to deemphasize data structures in in this project.

In GraspI also decided to avoid Scheme's metastructural operators, namely
ouote and evaL. These constructs are fundamentally expression-oriented in nature;
it is not clear what they would mean in a device programming system. Ina
command language interface, expressions are evaluated by default, and quote is
necessary as a mark to prevent evaluation. Even if Grasp supported symbols and
lists, quote would not be necessary because Grasp clearly differentiates between
data objects and the interpretation structures which manipulate them. evaL does
not make sense for Grasp because it does not provide explicit representations of

expressions as data objects.

109

A third aspect of Scheme which is not incorporated into the Grasp model is
tail recursion. Tail recursion is essentially an efficiency mechanism which allows
certain programs to use less space during execution than their specification might
indicate. It does not really extend the expressive power of the language. If
memory weren't a constraint, computations performed using tail recursion could
just as well be done withoutit. Given an infinite memory, Scheme programs
would perform the same computation without tail recursion as with, though they
might take more space. Because tail recursion doesn't increase the expressive
power of a programming language, I see no pressing reason to include it in the

Grasp model of computation.

In fact, the Grasp system generally ignores efficiency in deference to the
clarity of its explicit model. Although efficiercy is an important issue in computer
science, it is much more important to present a simple and consisten® framework
for computation to novices. Once a novice understands the framework and the
principles it embodies, efficiency matters can be introduced as modifications to the

general framework.

5.3 THE PRINCIPLE OF REIFICATION

One trouble spot for novices is that the evolution of a process in many
models of computation depends largely on the manipulation of implicit structures
- structures which are not directly accounted for in the model. Many procedural
languages, for example, implicitly use a stack of activation records for handling
nested procedure calls and recursion. In the Scheme course, the problem with
such implicit structures is that the explicit models to which the students are
exposed in the early part of the course do not shed any light on these structures.
New programmers must resort to induction to complete their models. As
discussed in Chapter 3, however, induction is not a reliable method for forming
robust mental models. Furthermore, novices cannot simply neglect the implicit
structures; at least some model of them is required to understand the
interpretation process. The upshot is that implicit structures are a central source
of confusion for novices.

Consider the problem of understanding "how names work" in Scheme.

Before the environment model is introduced, students can only understand the

evaluation of names in term of some form of implicit contexts; the interpreter

110

uses these contexts to ""do the right thing" when evaluating names. This fuzzy
notion is hardly comforting to a programmer trying to predict the value ofa
variable in a situtation where many different contexts share the name of that
variable. Without explicit models, people have little choice but to use their often
misleading intuitions to reason about the details of interpretation.

The introduction of the environmeni model, on the other hand greatly
increases the potential for robust reasoning. Environments are explicit structures
which maintain the bindings between names and objects. The environment model
uses them to show how the interpreter c-m "remember" the values of names and
distinguish the use of names in different contexts. Explicit environments make it
possible for the programmer to accurately predict and explain the treatment of
names in almost every situation. Whether they actually do help programmers in
practice depends on the extent to which people are aware of the environment
model and the facility they have in applying it. Such principles as visiblity and
manipulability may be useful for helping people become familiar with
environments. The crucial point of this example, though, is that robust reasoning
about implicit structures is only possible when they are made explicit in a model

of computation.

It is not enough, though, to make implicit structures explicit - they must be
made explicit in a way that supports structural reasoning. The explicit control
evaluator for Scheme is an example of a model where explicitness of structure does
not necessarily imply suppnort for certain kinds of reasoning. This model makes
the management of control and procedure activations explicit through the use of
registers and a stack. These inferpretation structures, however explicit, are too
low-level. Registers and stacks may seem natural to those with hardware
experience, but others find such elements confusing. Although the model
provides detailed information, this information is encoded in a way that makes
the model more of an intricate puzzle than an aid for understanding.

To support structural reasoning about implicit structures, Grasp subscribes
to a principle of reification. The principle of reification says that implicit
structures should be concretized into explicit structures that can be thought of as
objects in the physical world. Reification is essentially a method for viewing
computational elements from a device programming perspective. The major
structures of Grasp are designed so that it is possible to reason about them in
physical terms. Object-like structures also have the advantage of being clearly

111

amenable to visible and manipulable representations in an interface to the model

of computation.

54 ELEMENTS OF THE GRASP MODEL

This section introduces the elements of the Grasp model and shows how
they are used to construct programs. These elements arose out of the desire to
reify traditionally implicit structures, such as those implementing procedure
calls, environments, and control. The way in which the elements resulted from
applying the principle of reification will be discussed where appropriate.

In describing the elements of the model, I will also show the graphical
representations used to present these elements to the programmer through the
interface. The focus of this chapter, however, is on the the abstract elements
themselves rather than on the interface through which the user interacts with
them. Thus, when I mention that elements can be connected together, I will not
stress how the connections are displayed or how the programmer can modify the
them. The interface and its properties are the subject matter of the following

chapter.

5.4.1 Primitive Machines and the Controller

The basic building block of the Grasp model is the machine. Machines are
the sites for computations in Grasp. Normally they compute outputs based on
inputs; they may have side effects as well. Primitive machines are reponsible for
the primitive operations of the system, such as adding numbers or testing for
equality between elements. A primitive machine for multiplication i shown in

Figure 5.2.

Machines have input variables to hold their arguments and output
variables to hold their results. In Figure 5.2, the boxes labelled ARG1 and ARG2
represent the input variables and the one labelled ANS represents the output
variable. Variables may contain data objects; Figure 5.3 shows a multiplication
machine whose input variables contain the numbers 5 and -12.

Figure 5.3: A multiplication machine with arguments 5 and -12.

Notice in Figure 5.3 that the presence of the input arguments does not
mean that the result of multiplication is actually computed. Although this would
be the case in a data flow model, Grasp uses explicit flow of control to determine
when the machine fires - i.e. carries out its intended action. Control is associated
with an explicit element known as the controller. The controller "walks" from

machine to machine along explict control paths.

Figure 5.4: A configuration with a controller and control path.

112

113

Representations of the control elements appear in Figure 5.4. Here the
controller is depicted as a human-like figure. The line with the triangle at the end
is a control path to the multiplication machine. The notion that the controller
moves from structure to structure along explicit control paths necessitates an
element to serve as the original location for the controller. The control house,
represented by the icon at the left end of the control path, fills this need. When
the controller reaches a machine along the control path, it activates the machine.
Thus, in Figure 5.5, the controller has activated the mulitplication machine.

Figure 5.5: The result of activating the muliplication machine.

It is important to note that machines in Grasp are the analog not of
procedures but of procedure activations. A procedure is a data object which
describes a class of processes. An activation is an interpretation structure that
maintains state for a particular instance of that class. A single procedure may
have numerous activations; with recursive procedures, more than one activation
may we "active" at the same time. The mulitiplication machine may be viewed as
an instantiation of a primitive multiplication procedure. User-defined procedures
exist in Grasp in the form of blueprints; these will be introduced later.

Grasp machines, however, have properties which distinguish them from
conventional procedure activations. Machines in Grasp are one-shots - that is,
they fire only once and cannot be reused. This fact has some interesting
consequences. Firstof all, since it is not meaningful for the controller to activate a
machine more than once during a computation, only a single control path may
enter any machine. Second, each machine can be associated with a particular
point in time - namely, the time at which it fires. Since flow of control and passage
of time are related, we can think of the controller as progressing along a
computational time line while the computation evolves. At any point during the

114

execution of a program, control paths to be encountered by the controller
represent the future of th.e computation, while control paths already traversed by
the controller represent the history of the computation. This point of view
suggests the interesting possibility of running the controller backward in time
along the computational time line. In fact, Grasp allows the controller to return to
any previous state of the computation by walking in the reverse direction along
the control paths and "undoing" each machine along the way. In the case of our
multiplication example, undoing is straightforward - the result needs to be
removed from the output variable. Sending the controller backward in Figure 5.5
would yield the configuration of Figure 5.4 again. Undoing is less straightforward
with side effects; this point will be considered when mutating structures are

introduced below.

The ability to return to a previous state of a computation implies that all of
the intermediate state of a computation must be saved in Grasp. This contrasts
with the common practice of discarding intermediate state whenever possible in
most programming environments. Even in the simple multiplication example
considered above, most programming systems would simply return the final
answer and throw away the state of the activation used to compute it. Such an
approach is necessary for running large programs within the memory limits of a

computer.

Grasp, on the other hand, is intended for use by novices on simple
programming examples. The amount of space required by these examples should
not be exorbitant, and it is a small price to pay for the conceptual clarity it lends to
the computational model. Saving the history of the process not only allows
novices to run computations backward, but permits them to inspect how a
computation reached a particular point. When the behavior of a program is
incorrect, all the information necessary to debug it is available to the
programmer. There is no need to invoke special debugging tools or restart the
computation. Furthermore, the intermediate state is inspectable even when there
isno error. Thus, in addition to seeing that their programs gave the right answer,

novices can find out why it gave the right answer.

115

5.4.2 Reference Pipes

Suppose we want to extend our example to compute whether the result of
the multiplication is greater than -60. We can modify the configuration
represented in Figure 5.5 by introducing a greater-than machine and connecting a
control path from the multiplication machine to the greater-than machine. The
result is shown in Figure 5.6. Note that we are modifying a partially executed
program. Grasp allows us to modify a program at any point in its execution.

Figure 5.6: Extending the configuration to include a greater-than machine.

We see from Figure 5.6 that making the control connection is not enough.
Obviously, we have to insert a -50 as the second argument (ARG2) to the
greater-than machine. However, we also must specify that the result of the
multiplication machine is to be used as the first argument (ARG1) to the
greater-than machine. A reference pipe is an object used to specify that the value
of a variable is to be used at another variable; it denotes a path over which data
may flow in a program. A reference pipe is an objectification of a reference to a
variable. Grasp does not use names and environments to specify a relationship
between a reference and a variable. Instead, the programmer points at the
variable providing the value (the source variable) to create a reference pipe and
then attaches the reference pipe to the variable where the value will be used (the
target variable). Because of the directness of the specification, there is never any
question about what variable tne reference pipe refers to; this information is
hardwired into the reference pipe when it is created.

The result of specifying the arguments to the greater-than machine is

illustrated in Figure 5.7. The icon (#¥:_* pointing into ARG1 of the greater-than

116

machine is the representation of a reference pipe from ANS of the multiplication
machine to ARG1 of the greater-than machine. In this case, the representation is
ambiguous since more than one of the variables pictured has the same name. The
structure of the reference, however, isclear from the interactions that were used
to create it. (Unambiguous visual representations do exist; why Grasp does not
use them is a topic for Chapter 6.) Since names serve only as comments in Grasp,
we can change the name of the output variable of the multiplication machine to
expose the underlying structure. The result of changing the name from ANS to
Prod is shown in Figure 5.8. In subsequent examples, similar name changes will
be made to clarify the structure of the references.

SN

IPRE

Figure 5.8: Renaming exposes the structure of the configuration.

Attaching a reference pipe to ARG1 specifies a connection between Prod and
ARG1 but does not actually cause any flow of data to occur. The actual data flow is
triggered when the controller "reaches” ARG1. Control reaches an input variable
upon entering a machine and reaches an output variable upon exiting a machine.

117

The two views of Figure 5.9 show the controller at the entry point to the
greater-than machine both before and after the value of Prod has been brought to

ARG1.

(Fros T,

(a) Before data flow.

(Frod i

(b) After data flow.

Figure 5.9: Two views of the controller entering the greater-than machine.

Upon entering the greater-than machine, the controller causes the machine to
fire. Asindicated in Figure 5.10, the result is a boolean false value, which is
represented by a thumbs-down icon (truth is represented by thumbs-up). Asin
any configuration, the controller can be sent backwards to the beginning of the
computation (see Figure 5.11). This allows us to try out our configuration for
numbers other than 5 and -12.

118

(Frod

Figure 5.11: Returning to an initial configuration.

5.4.3 Variables

In the above examples, primitive machines used input and ouput variables
for holding the arguments and results of the primitive operation. Variables are
general Grasp interpretation structures whose purpose is to contain a value.
Variables need not be attached to machines - they can be used anywhere to
achieve a level of indirection in specifying a value. A Grasp variable which is not

attached to a machine is called an unattached variable.

As an example, the configuration discussed above compared the result of a
multiplication to -50. Suppose instead that we want to compare it to the value of
an unattached variable named Num (although names are only comments in Grasp,
I will continue to refer to them by name rather than structural features for ease of
exposition). We can create a new variable by this name and attach a reference
pipe from it to the second argument of the greater-than machine. The resulting

i

configuration is shown in Figure 5.12. If we now give the Num variable a value of
-100, we can run the computation forward as shown in Figure 5.13.

Figure 5.12: Adding an unattached variable to the configuration.

In this particular case, the introduction of the Num variable does not buy us
much. We could have just as well changed the value of the second argument of the
greater-than machine to -100. The variable does add an important level of
indirection, however. If we want to use the value of Num in another part of our
computation, we just need a reference pipe from it. In this way, unattached
variables in Grasp provide the same level of abstraction for referring to objects
that Scheme variables provide. In fact, a Grasp variable is no more than an
objectification of a binding in the Scheme environment model. Rather than
having environment frames which associate names and objects, Grasp provides an
interpretation structure for every association between a "spatial" name and an

object.

p—t

120

a3 1007

(b) The result of executing the configuration.

Figure 5.13: Before and after views of executing the new configuration.

‘4.4 Smashing Machines

The Grasp model is designed to allow the programmer to easily manipulate
the state of the abstract machine. One option open to the programmer is to change
the value of a variabic. Changing the value of a variable is an example of a side
effect, which refers to any mutation of the state of an abstract machine. Side
effects have many undesirable properties, most important of which is that they
obscure the natural parallelism inherent in a computation. An increased interest
of the computer science community in parallelism has led to a recent emphasis on
side-effectless models of computation, such as those embodied in functional
languuges. Although the functional programming paradigm has many

advantages, it did not fit into the goals of this project. Because a goal of Grasp is
to handle procedures with state (as in Scheme), it must provide some method for
programatically changing the value of a variable. Furthermore, since Grasp
allows the programmer to interactively change the values of variables, it makes
little sense to prevent a program from performing the same manipulation. For

9

these reasons, a structure for mutating a variable is included in the Grasp mode’.

The smashing machine is a special machine in Grasp whose purpose is to
change the value of a variable. It corresponds to the assignment operator in
conventional langauges; with respect to Scheme, it is the analog of seT:. A
representation of a smashing machine appears in Figure 5.14.

T

Figure 5.14: A smasher.

One specifies the variable to be mutated with a smasher. The smasher specifies a

' connection between a particular smashing machine and the variable to be
"o

!
mutated. A smasher is represented by the hammer icon, |

As an example of mutation, consider the situation depicted in Figure 5.15.

Figure 5.15: Configuration for mutating a variable.

121

122

In this configuration, the smasher of the smashing machine is connected to the
variable Var. (As with reference pipes, the connection between smashers and
smashing machines is represented by name in the interface.) Var contains the
value 19, but when the controller runs through the smashing machine, the
smasher changes it to 23. The result is pictured in Figure 5.16. The old value
contained by the variable appears as the result of the smashing machine. This
allows later machines to easily refer to the old value. Saving the old value in this
manner means that the side effect can be undone in a simple fashion: when the
controller moves backwards through a smashing machine, the result variable is
emptied and its value is reinstalled in the mutated variable. Thus, moving the
controller backward in Figure 5.16 returns the configuration to the state shown in

Figure 5.15.

e 1%

Figure 5.16: Configuration after the variable has been mutated.

Although the above example showed only a single smasher attached to a
variable, any number of smashers can be connected to a variable. This contrasts
with reference pipes, where only a single reference pipe may lead into a variable.
An interesting property of smashers is that they allow the programmer to tell
whether or not a variable can be mutated by a program. Furthermore, by finding
the smashing machine whence the smasher came, the programmer can determine
exactly what part of the program is responsible for changing a given variable.

5.4.5 Compound Machines

Abelson and Sussman note that a programming language is characterized
by three mechanisms {Abelson & Sussman 85al:

123

1. Primitive expressions for specifying basic operations.

2. A means of combination for forming more complex expresssions out

of simpler ones.

3. A means of abstraction for naming expressions and treating them as

‘dentifiable entities.

The above sections introduced many of Grasp's primitive structures. Although
machines can be wired together with data and control paths, these connections by
themselves are a limited means of combination since the resulting configuration
is not identifiable as a single unit. This section presents the compound machine,
which allows simpler structures to be grouped into a single unit. In conjunction
with data and control paths, the compound machine serves as Grasp's means of
combination by allowing programmers to build complex machines out of simpler

ones.

Like primitive machines, a compound machine has input and output
variables. The number of these may be specified by the programmer. Unlike
primitive machines, compound machines have an internal structure which
determines what the machine does. The programmer fillsin the internal
structure of a compound machine in order to specify its behavior.

Consider building a compound machine for squaring a number. First we
need to create a compound machine with one input variable and one output
variable. The representation for such a machine is shewn in Figure 5.17.

St :_' TAEE W

Figure 5.17: A compound machine with an empty internal structure.

The empty space between the two variables indicates that this compund machine
does not yet have any interal structure. Grasp allows us to name the compound
machine (in this case, SQUARE), but as with variables the name serves only as a
comment and has no semantics associated with it.

To specify that this should be a squaring machine, we fill the internal

structure with a configuration that multiplies the value of In1 by itself and puts
the product in Outl. The completed internal structure is shown in Figure 5.18.

124

Note that control paths have to be specified in addition to the data paths. The
control pathsillustrated in Figure 5.18 indicate that the controller should move
directly to the multiplication machine upon entering the squaring machine. After
the multiplication is done, the controller should exit the multiplication machine
and then exit the squaring machine. Note that values flow through the reference
pipes labelled In1 when the controller enters the multiplication machine, and the
result flows through the pipe labelled Prod when the controller exits the squaring

machine.

SOUTLERE

Figure 5.18: A squaring machine.

The important property of compound machines is that they can be treated
as single machines. The interface to Grasp provides an abbreviated
representation for compound machines which emphasizes their behavior as "black
boxes'" that compute outputs based on inputs. This representation is shown in

Figure 5.19.

Figure 5.19: SQUARE as a black box machine.

Compound machines are manipulated like their primitive counterparts.
Thus, we can form a configuration for testing out our squaring machine on an
input of -50. Figure 5.20 shows an initial configuration for performing this
computation and the final configuration showing the result.

(b} The final configuration

Figure 5.20: Initial and final cenfigurations for computing the square of -50.

Since Grasp saves all of the intermediate state of a process, we can inspect this
state by expanding the black box into its fuller form (Figure 5.21).

SIS ERE

Jp—

5

(Frod (| <2500

507

Figure 5.21: The saved state of the squaring computation.

To try the machine out on a different input, we can run the controller back to the
control house, insert a new number into In1, and send the controller forward

125

126

again. Alternately, we can make a copy of the compound machine and execute it
with a different input.

It is important to stress that, like primitive machines, compound machines
are the analog of procedure activations and not procedures. Construction of a
squaring machine and subsequently running it on -50 does not correspond to the
following creation and application of a Scheme squaring procedure:

=> (DEFINE (SQUARE X) (* X X))

SQUARE

=> (SQUARE -50)
2500

Rather, the squaring configuration contructed above much more closely resembles
the Scheme expression:

=> ((LAMBDA (X) (* X X)) -50)
2500

Although this expression creates a squaring procedure, it can only be applied once
since it is not named in any way. Immediate application of an unnamed Scheme
procedure bears some resemblance to the one-shot behavior of Grasp machines.

5.4.6 Blueprints and All-purpose Machines

The elements of Grasp which support a means of abstraction are the
blueprint and the all-purpose machine. A blueprint is a data object which
describes a configuration of Grasp elements. It serves as a template for
automatically constructing such a configuration within a program. The
all-purpose machine is a special machine in which the construction of the
configuration specified by a blueprint takes place. Blueprints serve the purpose of
Scheme's procedures, while all-purpose machines are Grasp's equivalent of
Scheme's appLy.

To illustrate these elements. first consider how an all-purpose machine
makes use of the information held by a blueprint (we will discuss later how to
construct a blueprint). Suppose we have a blueprint which describes the squaring
configuration we explored above. We use an all-purpose machine as a site for
automatically constructing a new squaring machine. As with compound
machines, we need to specify the number of input and output variables that the

127

all-purpose machine requires. For squaring, both of these numbers are one.
Figure 5.22 illustrates the representation of an all-purpose machine in Grasp with

one input variable and one output variable.

Figure 5.22: An all-purpose machine.

An all-purpose machine is similar in structure to a compound machine except that
it has a distinguished variable for holding the blueprint that describes the
computation to be built. Figure 5.22 shows that this special variable is located
above the internal structure of the machine in the visual representation.

To configure this all-purpose machine for use, we give it a blueprint, fill in
its argument (in this case, the number 12), and connect a controller to it. The

resulting configuration is shown in Figure 5.23.

R csen NS
=
i k)
S

() s
The squaring blueprint is represented as the icon “*z==3/. Thisis a shrunken
representation of its expanded form, which we will shall examine later.

When the controller enters an all-purpose machine, it first causes data to
flow into all of the input variables of the machine. For this purpose, the blueprint
variable is also considered an input variable of the machine. In our example, none
of the input variables have reference pipes into them, so this detail does not come

into play.

128

As its second action, the controller automatically constructs within the
empty internal structure of the machine the configuration described by the
blueprint. This process, called construction, is analagous te the application
prcecess in Scheme, in which a new environment frame is built for a procedure. In
fact, we will adopt Scheme terminology and say that a blueprint appearing in the
blueprint variable of an all-purpose machine is applied to the values in the input
variables of that machine. Views of the configuration before and after

construction are shown in Figure 5.24.

3 I e
B R A

AR s S

(b) After construction
Figure 5.24: The state of the configuration before and after construction.
As a third step, the controller moves forward as usual through the newly

constructed elements. Figure 5.25 shows the final configuration reached for this
program. As with compound machines, all-purpose machines can be depicted with

a shrunken representations that hide their internal details. Figure 5.26 shows an
abreviated form of the above computation.

(a) After

Figure 5.26: Black-box representations for the application of the squaring blueprint to 12.

129

130

Note that reference pipes may enter the blueprint variable like any other
variable. This means that instead of hardwiring a squaring blueprint into an
all-purpose machine, we could store it in a variable and refer to that variable via a
reference pipe. Figure 5.27 illustrates such a configuration.

Figure 5.27: Storing the blueprint in an unattached variable.
As explained above, a data object flows into the blueprint variable when the
controller enters the all-purpose machine. When the controller moves forward
through the configuration shown in Figure 5.27, the result is the configuration

displayed in Figure 5.28.

Figure 5.28: The squaring configuration after execution.

Thus far we have shown how blueprints may be used, but we have not
shown how they can be constructed. A blueprint is a data object with a template
for an all-purpose machine inside of it. We fill in the internal structure of that
template in the same way we want the controller to fill in an actual all-purpose
machine during the construction process. When it comes time to perform the

131

construction, the controller can copy‘ the structural information supplied by the
template into the internal structuce of an actual all-purpose machine.

In order to build the squaring blueprint used above, we first need to create a
blueprint for a machine which has one input variable and one output variable.
The representation of the blueprint is given in Figure 5.29.

Figure 5.29: A blueprint for a machine with one input and one output.

Now we fill in the internal structure in the same way we want the internal
structure to be filled in for each construction of the blueprint. The resulting
blueprint is shown in Figure 5.30.

Figure 5.30: A blueprint for squaring a number.

During the construction process, the internal structure of the all-purpose
machine template inside the blueprint is copied into the all-purpose machine
where the controller is. The copying process must be carried out in a careful
manner in order to preserve the appropriate structure. Complexities are
introduced by the fact that blueprints may have reference pipes or smashing
machines associated with variables not within the blueprint itself. These are
Grasp's equivalents of free variable references within the body of a Scheme
procedure. Scheme approaches the situation with lexical scoping; Grasp handles
it with an appropriate copying algorithm. The copying algorithm is the
equivalent of lexical scoping for a device programming system.

As an illustration of the copying scheme, consider a blueprint which
describes adding a number to the value of variable A, where A is outside the
"scope" of the blueprint. This situation is depicted in Figure 5.31.

Figure 5.31: A blueprint for adding a number to the value of A.

Suppose we put the blueprint in a variable called ADD-A and use it in an
all-purpose machine with the argument 3. This situation is indicated in Figure
5.32, which also shows that we have set the value of A to be 7.

132

133

Figure 5.32: A configuration for aﬁplying ADD-A to 3.

When the controller builds the internal structure to the all-purpose machine, the
variable In1 is matched with the variable X in the blueprint, and the variable Outl
is matched with the variable Sum in the blueprint. After a new primitive addition
machine is placed within the internal structure of the all-purpose machine,
reference pipes are used to associate the second addition argument with Inl and
Outl with the result of the addition. This copies the data flow connections
between two variables that are both within the blueprint itself. Any reference
pipes not copied by this scheme, such as the reference for A in our exarnple, must
refer to variables outside of the blueprint. For this case, a new reference pipe to
that external variable is created and inserted into the internal structure at the
appropriate point. The result of this process is shown for our example in Figure
5.33.

For side-effects, the copying of smashing machines introduces similar
complexities. If both the smashing machine and smasher are within the
blueprint, then copies of them are created and the structural connection between
them is maintained in the newly constructed configuration. If a smashing
machine is connected to a smasher that is attached to a variable external to the
blueprint, a new smasher must be added for every application of the blueprint. As
an example, observe the blueprint in Figure 5.34, which changes the value of the
variable X to be one greater than its old value (and also returns the new value).

(&dd- a0

(ans3

Figure 5.34: A blueprint which mutates an external variable.

134

135

If we apply this blueprint (which we shall store in the variable COUNT), then a
second smasher is added to X during the construction process. This situation is
illustrated by the before and after views of Figure 5.35. In this figure, the
structural connection between smashing machine an smasher has been
highlighted by changing the name of the new smasher to B.

This section has touched upon the basic properties of blueprints and
all-purpose machines in Grasp. There are many interesting uses for these
elements, such as the Grasp equivalent of higher order procedures in Scheme. For
examples of blueprints being passed as arguments and returned as results, refer

to the Appendix.

(a) Before

ke

/

A . S N
i iall3 f; I .
e Y EXERE S B s

(b) After

Figure 5.35: Applying the COUNT blueprint adds a new smasher to X.

136

5.4.7 Conditional Machines

The last major element of the Grasp model to intreduce is the conditional
machine. Until this point, we have only considered examples where the controller
could only move along a single control path through a configuration. Conditional
machines allow for the structured branching of control paths. Modelled after
Scheme's conp special form, conditional machines are built out of a number of
clauses that consist of a predicate and a sequence of actions to be performed.
Predicates are executed in order until one yields a boolean truth value; the
sequence of actions in the clause of the true predicate are then performed. The
representation for a conditional machine with two clauses is shown in Figure 5.36.

oL

/

0 0 i vt e
¥

Figure 5.36: A conditional machine with two clauses.

Each clause is enclosed in a gray rectangular border in the visual representation.
The boxes labelled IF are predicate machines, whose purpose is to test for a truth
value. Action sequences are performed by consequent machines, which are
represented as the boxes labelled THEN in Figure 5.36.

A predicate machine is a special machine which controls the direction of a
control switch. The relationship between the output variable of the predicate
machine and the control switch is illustrated in Figure 5.36. If the output
variable of the predicate machine contains the boolean true value (Figure 5.37a),
the switch flips to a position which allows the controller to go forward to the

consequent machine in the current clause. If the boolean false value is present in
the output variable of the predicate machine (Figure 5.37b), the switch flips to a
position which send the controller to the next clause. If the output variable does
not contain a truth value (Figure 5.37c¢), the switch flips to a position which sends
the controller into a reified error state (indicated in the representation by the

bt
ol

swamp icon, ===

Figure 5.37: The output variable value detemines the direction of the control switch.

).

.{ -~—
o et

(a) True value in output variable

N
K] » 'YI"%*
! } %

(b) False value in output variable

———
. bt
[.e— e 1 %

(¢) No va'ae in output variable

137

138

A control switc. by itself would be similar to a GOTO statement in
conventional languages. In an attempt to avoid control going off in arbitrary
directions, every control switch is associated with a control join in a conditional
clause. The control join elements represents the confluence of two control paths.

Control joins are represented by the icon (_lin the representation of Figure 5.36.
Their state is also dependent on the value in the output variable of the predicate

&,

machine. For a true value they appear as'—/; for a false value they look like '::D.

Allowing control switches and joins to appear only in pairs within conditional
clauses means that the possible ways the controller can mode forward is highly
constrained. In particular, the controller must exit the conditional machine on its
single control path regardless of the branches it took within the machine.

A structural aspect of the conditional machine which is not evident in the
representation of Figure 5.36 is that the output variables of the consequent
machines are all connected to the output variable of the conditional machine.
Conceptually there is a data join at the output variable to the conditional. Since
only one consequent machine can be a~tivated within any conditional machine,
there is no problem of multiple data values being specified for the output variable
of the conditional. Right before the controller exits the conditional machine, the
output variable of the conditional machine takes its vaiue from the output
variable of the consequent machine in the clause through which the controller

moved.

The details of the structure of the conditional machine are best illustrated
by an example. Consider the compound machine for computing absolute values
that is shown in Figure 5.38. This machine uses a conditional machine to test the
sign of the input number and negate the number if it is negative. The black-box
representation labelled POSITIVE? denotes a machine that returns true if the value
of NUM is greater than zero, and false ctherwise. The black-box representation
labelled NEGATE designates a compound machine that negates the value of NUM.
Note that the output variable of the predicate machine in the second clause has
already been assigned a the boolean true value; this situation is the analog of a
conditional clause beginning with an eLse in Scheme or a 71in other Lisps.

Figures 5.39-42 show various points in the computation of the absolute
value of -57. In Figure 5.39, the controller has just exited the predicate machine of
the first clause. The "thumbs-down" indicates that the number in question is not

139

positive, and the control switch has flipped to allow the controller to go to the
second clause. By Figure 5.40, the controller is on its way out of the conditional
machine. Note that the final answer is sitting in the Clause2 variable but has not
yet propogated. The controller exits the conditional macuine in Figure 5.41,
allowing the result of the second clause to appear in the output variable CondAns.
Finally in Figure 5.42, the controller leaves the ABSOLUTE-VALUE machine and
the final answer appears in the ouput variable Abs.

i AB5TLUTE WAaLUE

"

N =INT =

TRER]
. .

PRRPUTIT-

iy

B e A S\ Bbmtien s ot

Figure 5.38: A compound machine for computing the absolute value of a number.

q

ABSOLUTE-VALUE

CORD

e
Ed

THEIT

- AT dasmare

i

A s

R G R P e TP R S S AT R

Figure 5.39: The controller exits the first predicate machine.

140

ABSOLUTE-VALUE

Conda

Figure 5.40: The controller before exiting the conditional machine.

N P
‘. TEND T

141

142

ABEOLUTE-VALUE

\ h -_—-""{
L
: SIHD

(Hian_ 1|

A s gy s NN S

SRS ey

IO U . I

R

b AT AL S gt IRA A SR A RSO TL L AT Y A, YRS ce

{570

Figure 5.41: The controller after exiting the conditional machine.

143

\L ABSOLUTE-VALUE

\(SEND

i

I g

H

2 R

Ed

i [

N 3

s = 57 # S il et zvs g
¥
3

T

e 0re I 197 s S UL Dk

i .
3
3
p s
Ly -
ED —
g7
— Condai] (€7

Figure 5.42: The controller after exiting the ABSOLUTE-VALUE machine.

144

5.5 Summary

Embodying the procedural paradigm in a device programming model
requires viewing computational elements as physical devices. In the Grasp
system, a principle of reification is used to turn many implicit structures of a
procedural programming language into explicit ones. This chapter describes the
reified elements of the Grasp model, including structures which implement
procedures, procedure activations, variable bindings, variable references, and
control flow. An interesting outcome of the reification process is that programs
can be viewed as computational time lines where control can move forward and
backward through a process. Although the device-based Grasp model differs in
many respects from the expression-oriented Scheme model, Grasp is similar to
Scheme in many respects, especially in its support of first-class procedure objects

(blueprints).

CHAPTER 6

A VISIBLE AND MANIPULABLE INTERFACE
TO THE GRASP MODEL

The previous chapter motivated the elements of the Grasp model. The
purpose of this chapter is to describe the design of Grasp's user interface. As noted
above, this order of presentation does not reflect the order in which the project
actually progressed. Representational considerations were often a strong
motivating factor of crafting the elements of the model; after all, it is important to
have computational elements amenable to visible and manipulable
representations if the goal is to display them through a graphical medium. The
order of presentation followed here is intended to clarify the conceptual matter by
factoring the representational issues from the issues more intrinsic to the

formation of the model.

Visibility and manipulability are aimed at making a transparent interface
that facilitates the programmer's interactions with the abstract machine.
Allowing novices to easily inspect and manipulate the kinds of reified elements
introduced in Chapter 5 should help them gain a firmer understanding of the
structure of procedural programs. In Grasp, incorporating these two principles
into the interface leads to a system where the user can believe that the visual
information displayed on the screen is the state of the system. Since users will
naively make this assumption anyway, it is better to purposely set out to
maintain this illusion than to contradict their expectations and intuitions.
DiSessa calls this powerful principle naive realism; this principle is the
cornerstone of the Boxer system [diSessa 85a]. A similar idea is expressed by the
designers of Star when they note how "the display becomes the reality"” in their
system [Smith et al. 82]. The following sections explore how visibility and
manipulability make the structure of Grasp programs "real” to the user.

6.1 VISIBILITY

The principle of visibility is intended to help programmers build more
robust models by making information about the state and behavior of the model
available to them on the display screen. Two important questions to consider are:

1. What information should be displayed?
2. How should that information be displayed?

Since the goal of this project is to make the structure of programs explicit,
the answer to the what question is fairly straightforward: display as much
structural information as possible. Since all the relevant information may not be
able to fit on a single screenful, some means must be provided for structuring the
information so that only a part of it need be viewed at any one time. Yet, the
programmer should have easy access to all the information which is not
immediately visible on the screen.

On the other hand, the answer to the how question is not so clear. Because
pieces of programming structure are abstract in nature they do not conjure up
well-defined images. Other criteria must be used in order to choose the graphical
representations for computational information. The following sections describe
the criteria that were used in designing visible representations for the Grasp

system.

6.1.1 Direct Mappings

Visual representations should demonstrate a clear relationship to the
underlying structure they are presenting. A mapping describes the
correspondence between the visual information and the structural information.
The directness of the mapping is a measure of how well the properties of the
underlying structure match the properties of the visible representation. In a
one-to-one mapping, the most direct kind of mapping, the underlying structure
can be completely deduced from the visual structure alone; the converse is also
true. Lessdirect mappings may show important structural features, but not all of
them. For example, the box-and-pointer notation discussed in Chapter 3 is a
one-to-one mapping for list structures, while parenthesis notation is much less
direct since it does not show sharing. Since the Grasp system is concerned with
the presentation of structural information, direct mappings are a chief

146

consideration in the design of visible representations for the Grasp computational

elements.

The key goal of direct mappings in Grasp is to visually represent the
structure of the underlying computational configuration. Each piece of structure
should have a corresponding visual representation so that the structure can be
determined from the visual representation. Beyond this constraint, other
guidelines may be used to determine exactly what the representation should look
like.

Consider the representation of booleans in Grasp. There are two pieces of
information that need to be represented for a boolean: its type and its value. Both
of these are encoded in its visual representation. The boolean truth value is
represented by a "thumbs up" icon; the boolean false value by a "thumbs down"

icon (Figure 6.1).
Wy 0
Truth Falsity

Figure 6.1: Boolean icons.

Here the hand with protruding thumb represents objects of type boolean, and the
orientation of the hand encodes the value. Of course, the number of different
visual encodings for these two pieces of information are practically unlimited.
The choice of a hand rather than some other representation is due to additional

considerations which are discussed later.

Although one-to-one mappings are desirable for visual representations, in
some cases they are not feasible. Consider the choice of representation for a
reference pipe. A reference pipe has three pieces of information: its type, the
variable that is the source of the pipe, and the variable that is the target of the
pipe (the target of a reference pipe is undefined in the case that it is not connected
to a variable). The type and target variable are represented in a direct manner in
the Grasp interface. A unique pipe icon distinguishes the reference pipe from
other types of objects. When a pipe is connected to a target variable, it appears in
a special position relative to the variable. Thus, in Figure 6.2, the reference pipe
labelled Ref has the variable A as its target, while the other reference pipes have

undefined targets.

147

148

Figure 6.2: Connected and unconnected reference pipes.

The representation of the source variable for a reference pipe, however, is
ambiguous. Grasp encodes this information by displaying the name of the source
variable on the pipe. An ambiguity arises because more than one variable can
have the same name in the Grasp environment. Consider the example in Figure
6.3 - it is impossible to determine from the provided representations which

variable A is connect to variable B.

Figure 6.3: An ambiguous referencer.

This does not mean that the structural information is totally inaccessible to the
programmer. The user is free to change the name of one of the variables labelled
A; the effects of such a change are immediately displayed on the screen. Suppose
the topmost variable A is really the source of the reference pipe. Then changing
its name to Z results in the configuration illustrated in Figure 6.4.

Figure 6.4: The result of changing a variable name.

By observing the effects of such a change, the user can indirectly determine the

hidden structural connection.

Why not show an explicit structural connection between the reference pipe
and its source variable? In the case of control paths, explicit connections are
shown at both ends of the path. Why not do the same for reference pipes? The
problem is that control is local in computations v hereas reference is not. The
notion of lexical scoping in a language means that the value of a variable can be
used in a place arbitrarily far away from the location of the variable. To explicitly
show both ends of a data flow connection would result in a veritable spaghetti of
reference pipes crisscrossing the screen. There is a tradeoff here between the
potential ambiguity which results from missing information and the potential
confusion which results from presenting too much information. In this case,
Grasp shows less information to keep the screen less cluttered.

Despite the above discussion, the method of determining the source
variable of a referencer could clearly stand some improvement. Having to query a
variable for its underlying structure smacks of the indirection of command
language interfaces, in which the programmer indirectly pokes around to discover
the structure of a program. A better approach would be to give the user the option
of temporarily showing an explicit structural connection between the reference
pipe and its source variable. It is easy to imagine querying a reference pipe to
show an uninterrupted data path to its source variable, or asking a variable to
display all outgoing paths. Such a path might be displayed as in Figure 6.5.

Figure 6.5: An uninterrupted data path.

In some cases, direct mappings conflict with the pedagogic goals of the
system. Consider the case of blueprints. As discussed in Chapter 4, novices tend
to attach too much meaning to the names of procedures; often they believe that a
procedure knows the name by which it is referred to in the environment. The
Grasp interface stresses the object nature of blueprints and shows that the only
information they hold is a template for an apply machine. However, since the

149

150

visual representations for blueprints are huge, for the purposes of putting them in
variables they are shown in the shrunken form shown in Figure 6.6.

Figure 6.6: The shrunken icon for blueprints.

Note that the type of the object is indicated by the icon, but there is no way
to distinguish one blueprint icon from another in the shrunken form. Atsuch a
fine level of detail, it is not possible to show structural features of the template. It
is tempting to at least give each blueprint a name and to display that name within
the shrunken icon. The name would not have any semantic import; much as in the
case of variable names, it would serve as a comment and as a means of
distinguishing objects. Yet, giving blueprints a name would also reinforce a
model that a name is a piece of information intrinsic to a blueprint - a model

Grasp strives to avoid.

The most straightforward way of handling the naming of blueprints in
Grasp is to take the Scheme approach - make a binding between a variable and a
blueprint. Grasp variables hold onto any object, including blueprints;
furthermore, they have names associated with them as comments. For example,
by storing a squaring blueprint in a variable named SQUARE, we are able to
effectively able to name the blueprint. This siutation is illstrated in Figure 6.7.
A blueprint that is not stored in any variable resembles the "anonymous" Scheme
procedures created through LaMepa but not named by DEFINE.

Suare

Figure 6.7: A squaring configuration.

Another structural connection which is not reflected in the Grasp interface
is the sharing of blueprints. For immutable objects like numbers and booleans, a
behavioral difference between shared and unshared objects is impossible to detect.
Thus, in Figure 6.7, it does not matter whether the value in the variable Inlis a
copy of the value in variable A or the exact same value stored in variable A.

Blueprints on the other hand are mutable objects - we can expand them and
change the configuration which they specify. It therefore matters a great deal
whether the value of the variable labelled Blueprint is the same object as the
value in the Square variable or just a copy of it. In the underlying model, the two
are in fact the same object. However, showing the explicit connections between
blueprints would clutter the screen in much the same way as showing explicit
data flow connections between variables. For this reason, Grasp does not show the

explicit connection between blueprints.

As with reference pipes, however, the programmer should be provided with
a way of unveiling hidden structure in the case of shared data objects. Perhaps
the user could request that explicit sharing be shown for a particular blueprint.
The representation for such sharing might appear as in Figure 6.8, where a
graphical "tentacle" connects the blueprint in the Square variable to another

variable that shares it.

Figure 6.8: Possible representation for sharing of data objects.

The reason for choosing a tentacle over the traditional pointer notation for
sharing is that it emphasizes in a physical way that that a data object may be
"rooted" in several locations at the same time.

151

152

It should be clear from the above discussion that although the principle of
direct mappings is desirable for making structure visible, it should not necessarily
be incorporated into a system at all costs. In choosing visual representations,
there are many tradeoffs. Though it is nice to explicitly show structural
information through visual representations, there is the danger that too much
structural information can overwhelm the user, leading to confusion and
decreased usability of the system. In fact, the current Grasp system tends to show
altogether too much structure - although this may be useful to novices using the
system for the first time, it will probably soon become cumbersome.
Representations which show less of the structure are required to improve the
usability of the system for programmers more advanced than the first-time
novice. This idea is explored further in the discussion of Chapter 7.

6.1.2 Continuous Representations

The direct mapping principle guides the static aspects of a visual
representation - it applies to a representation at a particular point in time. Naive
realism, on the other hand, requires that the visual representations on the screen
should reflect the underlying state at all times. Thisrequirement motivates a
principle of continuous representations, which constrains the evolution of a visual
representation over time by dictating that the state be represented continuously.

The principle of continuous representations is largely orthogonal to the
issue of direct mappings discussed above. It is founded on two requirements:

1. All changes to the underlying structure must be reflected in visual

representations.

2. Any changes made to the visual representations must be
accompanied by appropriate changes to the underlying structure.

These ideas have been formalized by Ciccarelli in his notion of a presentation
system [Ciccarelli 84]. A presentation system consists of two data bases: an
application data base and a presentation data base responsible for visually
presenting the application data base. In a presentation system, a presenter is
responsible for maintaining a current view of the application data base, while a
recognizer translates modifications to the presentation into actions performed on
the application data base. If the Grasp system is view in this framework, the data

base consists of elements of the Grasp model, and the presentation data base is

responsible for providing an interface to those elements.

As an illustration of the issues involved in continuous representations,
consider possible interfaces for presenting Lisp list structures. The most common
method of presentation is parenthesis notation within a text editor. Not only is
the representation ambiguous and non-unique (see Chapter 3), but the interface
does not meet the two requirements stated above. Changing parenthesis notation
within a text editor does not effect a change in the corresponding list structure;
moreover, mutations to the list structure will not be reflected within the text
editor. In both the text editor and the reap-evaL-prINT loOp, there is no guarantee
that representations appearing on the screen faithfully mirror the state of the
Lisp environment. Such interfaces impede the structural reasoning process and
are partially responsible for the poor structural models of novice programmers.

The problems exhibited by the text editor and reap-gvaL-prInT loop are not
inherent in parenthesis notation. For example, in Interlisp-D's list structure
editor, DEdit, changes to the notation are accompanied with changesin the
underlying structure [Interlisp 83]. However, if the list structure being edited is
mutated by some other means than through DEdit, the representation in the
editor is not properly updated. We can also imagine a system which reflects
mutations properly in its list notations, but does not allow the user to
interactively edit the notation.

Of course, it is best to have an interface which meets both of the
requirements listed above. Although its major data structureisa
two-dimensional box rather than a one-dimensional list, Boxer is worth
mentioning in this regard. Not only can boxes be modified interactively by
making changes to their visual representations, but Boxer ensures that the
current state of a box is correctly displayed regardless of how modifications are
made to its underlying structure. A similar approach can be taken for list
structures; the benefits are even greater if the approach is applied to
box-and-pointer diagrams rather than parenthesis notation. The KAESTLE
system includes an interactive box-and-pointer editor, though it is unclear
whether the editor properly reflects modifications made from sources outside of
the editor [Bocker et al. 86].

153

In order to maintain the illusion that the representations which are visible
on the screen are the state of the system, Grasp meets the two requirements of
continuous representations. This means that all state changesin the underlying
model of computation, whether resulting from the user's direct interactions with
the interface or from the running of a program, are continuously reflected in the
interface.

Consider assigning a value to a variable. The programmer may do this
directly through the interface by picking up a data object and placing it over a
variable. As discussed below in the section on manipulabiity, this action is
interpreted as assigning the data object to the variable. Figure 6.9 demonstrate
how the representation of the variable changes to show that an assignment has

taken place.

Before assignment After assignment

Figure 6.9: Changes in representation indicate an assignment.

The grayshade background indicative of an empty variable changes to white when
the variable contains a value. Furthermore, the iconic representation of the data
value appears centered in the variable box after an assignment. If the variable or
a structure to which it is attached is moved, the variable's value always remains
visibly contained by the variable in this manner. When the data object is "picked
up" from a variable, the box assumes the grayshade background associated with

an empty variable.

Variables can also dynamically take on values during the running of a
program. For example, when control reaches a machine, all input variables to the
machine which are the targets of reference pipes receive the value stored in the
source of their reference pipe. When control exits a machine, values appear in its
output variable. In both cases, the change in the state of the variable is shown in
the interface in the same way as if the user had explicitly assigned a vaiue to the
variable. The key aspect of these interactions is that the state of the variable is
continually refelected in its representation irrespective of the manner in which it

arrived at that state.

154

155

Grasp supports continuous representations to a similar degree throughout
the interface. Control path connections, reference pipe connections, and
composition of internal structure - whether directly manipulated by the
programmer or carried out by the system (during the construction process, for
example) - are consistently mirrored in the interfacs at all times. This continuity
of representation is a chief way in which Grasp supports naive realism; they allow
the programmer to readily believe that the representations on the screen are the

Grasp elements of computation.

6.1.3 Additional Representational Considerations

The design of visual representations involves considerations beyond the
goal of representing information. Certainly it would be possible to represent
booleans in a much different fashion. One could choose the symbols true and false,
the numbers 0 and 7, the shades white and black, or even an obscure and arbitrary
association like % for truth and & for falsity. Yet none of these choices for
booleans seems as appropriate for Grasp as the hand icons. What are some of the
other forces at work in the design of a visual representation?

6.1.3.1 Familiar Representations

One goal in designing representations is to make them as "familiar" as
possible. In the world of document preparation systems, this task is simplified by .
the existence of straightforward physical analogs for most of the elements of the
system. Star'siconic representations are designed to take advantage of an office
worker's familiarity with sheets of paper, envelopes, in and out boxes, and other
objects common in the office environment. For the Grasp system, the notion of a
"familiar" representation is much hazier, since computational elements are not
physical objects we encounter in everyday life. Yet, commonalities in the
representations generated among teachers and students suggest that certain
representations are intuitively appealing for computational elements.

Grasp's representation of procedure activations as input/output machines is
an example of such a "natural representation." Algebra and calculus texts often
introduce functions as machines which compute outputs based on inputs (Swann
& Johnson's delightful introduction to calculus uses this approach extensively

156

[Swann & Johnson 77]). When asked to describe procedures in a recent
questionnaire [Turbak 86], several students in the Scheme course gave responses
which stressed the input/output nature of procedures. Students were also asked to
sketch the way they visualized the following interaction with Scheme:

=> (DEFINE A 5)

A

=> (DEFINE (SQUARE X) (* X X))

SQUARE
=> (SQUARE A)
25

Of those who provided a sketch, most showed a box with an input coming in on the
left and an ouput leaving the box toward the right, as in Figure 6.10.

A__°> SQUARE 5 S

Figure 6.10: Typical student sketch of (SQUARE A)

These sketches bear a great resemblance to standard graphical representations
used for describing data flow programs (see, for example, [Dennis 75]).

The iconic representations chosen for Grasp machines are harmonious with
the representations which programmers sponaneously generate. Grasp machines
are essentially box-like, with inputs arriving on the left hand side, and outputs
leaving on the right hand side. (The common tendency to show data flow from left
to right is probably related to people's familiarity with reading from left to right
in English.) The Grasp representations differ from programmers' sketches mainly
in their explicit representation of control. Grasp machines have input and output
control paths in addition to the specifications for inputs and outputs. People's
sketches of programs rarely represent control in such an explicit fashion.

There are many other cases of "natural” representations chosen for Grasp.
Variables are often introduced in programming courses as boxes or containers for
values; Grasp represents them visually as boxes. The term "data flow" is often
bandied about in computational lingo. Grasp makes use of this notion in its choice
of reference pipes to allow values to "flow" from one variable to another. The
visual representation of a a reference pipe as a section of pipe (—=) supports the
view of data structures as physically flowing objects. The analogy is made even

157

stronger by the fact that the icons for data objects actually move in a continuous

path across the screen from one spatially-located variable to another.

Representing the controller as a little person is intended to take advantage
of people's familiarity with animate agents. Grasp is designed so that actionin a
program is localized around the position of the controller in the visual
representation. The novice is thus led to believe that the homunculus on the
screen is actually responsible for all of the action in a computation. The fact that
the controller actually "walks" along the control paths from machine to machine
reinforces the view of the controller as an active agent and also provides a visual

representation for "control flow."

d
. XN

Figure 6.11: Icons used to animate the "walking" of the controller.

Figure 6.11 shows some of the icons used to animate the walking sequence. The
object in the controller's hand is a flashlight; this corresponds to a model (popular
at Xerox) that views control as a pencil-beam flashlight which illuminates small
areas of code as it traverses the expressions of a program in the order they are
executed.

The choice of "thumbs-up" and "thumbs-down" icons for booleans is an
especially interesting one. In programming semantics, the only interesting
property of booleans is that they specify which branch of a conditional to take.
However, the terms "truth" and "falsity" have important connotations in English.
Not only are they deemed to be opposites, but they are generally asociated with
goodness and badness, respectively. The hand icons also share these connotations.
They are not the only representation to share these properties; icons of an angel
and a devil would have similar characteristics. However, "thumbs-up" and
"thumbs-down" also have a clear directionality associated with them. This
directionality is useful for showing how the result of a predicate machinein a
conditional clause determines which control branch is taken. In the Grasp
representation of a conditional clause, the control switch flips in the direction
pointed to by the thumb in the output variable of the predicate machine (Figure

6.12).

7] .{' >~— -— I+
o it O e
L 4 # |4 N :::—‘_%

Figure 6.12: Relationship between thumb direction and switch direction.

Regardless of the design criteria used to develop visual representations, the
results will always possess some accidental properties. These are visual properties
to which users will assign a meaning not intended by the designer. In the case of
the hand icons for booleans, for example, some users might associate the
"thumbs-up" with success and the "thumbs-down" with failure. In such an
interpretation, the "thumbs-down" might be disturbing, and the user might want
to avoid it. This may sound silly, but users can find certain representations
particularly annoying or frustrating. Experience from the Scheme course shows
that part of the trouble students have with procedures is that the the
procedure-creating construct is named tamsoa. Not only does the name of a Greek
character give no clue as to the purpose of the construct, but I even think that the
obscurity of and mathematical ring to the name fuels the view that procedures are
hard to understand. A different name, such as make-proceoure, would be much more
suitable for avoiding this type of problem. One representation with which Grasp
tries to carefully avoid undesirable accidental properties is that for the controller.
The icons for the controller are designed to be unisexual in order not to offend

programmers of a particular gender.

6.1.3.2 Visual Hints

Certain properties of Grasp representations are useful for reasoning about
programs even though they are not strictly necessary for conveying structural
information. The properties are called visual hints. For example, the lines
representing control paths thicken after the controller has traversed them. The
thickening does not represent a piece of information stored in the control path
element of the abstract machine. Conceptually, a control path keeps track of just
two pieces of information: the machine whence it comes and the machine to which
it leads. The thickening of the control path is a purely visual mechanism that

158

provides a "trace" of the program executions and is especially useful for seeing the
path taken by the controller through a conditional machine. Another example of
a visual hint is the relationship (illustrated above in Figure 6.12) between the
thumb direction and the control switch direction in a conditional clause,

Some visual hints are intended to emphasize the similarities and
differences between Grasp objects. Representations adhere to the principle that
structurally similar objects should look similar and structurally different
elements should look different. Thus, all machines share a central rectangular
shape flanked by variables; data objects are always enclosed by elliptical borders;
connectors (reference pipes and control paths) are long and thin with arrows
indicating the direction of flow. These shape differences underscore the different
uses for the objects. For instance, even briefinteractions with the system make it
clear that only the elliptically-shaped data objects can be the value of a variable; it
makes no sense to consider interpretation structures such as machines or
reference pipes as a variable value. The consistent representation chosen for data
objects also stresses that blueprints are closely related to numbers and booleans in
terms of their properties as data objects. Unlike Scheme, Grasp succeeds at

making "procedures" look like data.

6.1.3.3 The World is not a Box

Although rectangular shapes are particularly easy to display in a graphical
environment, they are not the only shapes available. Bitmapped display screens
allow for more complex shapes than simple rectangles. Grasp tries to make use of
some of these shapes. A greater renertoire of shapes is certainly not necessary for
achieving visibility, but it helps. If elliptical shapes were not provided, some
other representational feature would have to be used to distinguish data objects
from other objects. Furthermore, as discussed in a later section on
manipulability, interactions with non-rectangular shapes makes manipulability
more apparent. Finally, representations that are not mere boxes provide for a
more varied and visually pleasing graphical environment. For these reasons,
Grasp supports non-rectangular representations for data objects and various other

icons.

159

160

6.1.4 Information Suppression

The limited size of the display screen makes it impossible to show all of the
state and structural information associated with a computational environment.
Even simple programs contain a surprisingly large amount of information. The
user must be provided with some means of navigating through a potentially large
space of information. Grasp provides two simple mechanisms for suppressing

unwanted information: scrolling and shrinking.

Grasp interactions take place through windows supported by the
Interlisp-D window management system. Each Grasp window is scrollable in
both the horizontal and vertical directions. This allows the window to contain
more visual information than can fit on a single screenful. However, it is not an
extremely useful way to maintain large amounts of information. In the case ofa
computation, scrolling is not a particularly convenient way to access a particular
point in a program or to get a high-level view of the "shape" of the program. The
situation is similar to viewing the world through a long tube; many details are

apparent, but the "big picture" is hard to see.

Shrinking is a more effective way of structuring visual information. This
mechanism essentially involves having expanded and shrunken forms of
representations. The expanded form is used for the examination of the detailed
structure of a representation. When the detailed view is not necessary, the
representation can be shrunken to a form which takes up much less space. This
method of hiding detail is common in user interface designs. The Star designers
refer to this type of mechanism as "progressive disclosure" - hiding detailed
information until the user indicates that he or she wants to see it. For example,
the shrunken form of a Star document is a small rectangle which can be positioned
on the "desktop" represented by the screen. The expanded version much more
closely resembles the 8.5 X 11 inch paper which writers are familar with. [Smith
et al. 82] Boxer provides a mechanism for shrinking and expanding any of the
bozxes in the system. Not only does this help users suppress unwanted
information, but it allows them to treat a hierachically arranged collection of
boxes as a simple file system through which they can easily navigate via
shrinking and expanding [diSessa 85a].

The main shrinkable unit in Grasp is the machine. Primitive machines
have no shrunken representation, but both compound and all-purpose machines

161

have "black-box" shrunken forms which hide the details of their internal
structure. Figure 6.13 shows how the internal details of a compound machine
may be hidden by shrinking. The internal details of conditional machines,
predicate machines, and consequent machines can be hidden in a similar fashion.

F‘: =)

SOUARE

Il [

——ee.

(Frod (| o3

Shrunken form

Figure 6.13: Expanded and shrunken forms of a compound machine.

Another shrinkable unit in the Grasp interface is the blueprint. Since
blueprints have a visual representation which consumes a large area of space,
Grasp allows the user to shrink them to a small iconic representation. The
shrunken representation is used when assigning a blueprint to a variable. Both
expanded and shrunken forms are shown in Figure 6.14 for a simple blueprint. As
noted above, the current implementation of Grasp does not provide a way to
distinguish between the shrunken representations of different blueprints.

Expanded form

Shrunken form

Figure 6.14: Expanded and shrunken forms of a blueprint.

An important property of the expansion scheme Grasp utilizes is that it
maintains the context of surrounding objects. Consider the ABSOLUTE-VALUE

machine shown in Figure 6.15.

ABSOLUTE-VALUE

M ESUARE

_—

Figure 6.15: An absolute value machine.

162

163

This machine computes the absolute value of a number by squaring it and then
taking the square root. If we expand the black box SQUARE machine, we get the
configuration illustrated in Figure 6.16.

LN

D
ey b

B .

ey

i ABSCLUTE VALUE

T ST ARE e

Figure 6.16: After expansion of the SQUARE machine.

Note that the elements surrounding the shrunken SQUARE representation remain
in view when it is expanded. This type of context is important for determining
where the expanded information belongs in the larger information space.

Many other systems do not show the context of surrounding objects when a
shruken object is expanded. The Star system is a good example - expanding a
shrunken document icon makes it appear in an expanded form in a totally
different part of the screen. [Smith et al. 82] The Pict/D graphical programming
system [Glinert & Tanimoto 84] and Robot Odyssey [Dewdney 85] use what might
be called a "room-based" approach to expansion. In these systems, an expanded
object takes up the entire screen; the context of surrounding objects is not shown.
This approach is similar to entering a room through a doorway - one loses sight of

the areas outside of the room.

In contrast to these systems, Boxer [diSessa 85a] and BOCHSER
[Eisenberg 85] have a more versatile expansion mechanism. In these systems, a
shrunken box can be expanded in two ways: one in which the context of the
surrounding regions is shown, and one in which the expanded box fills the entire
screen. This type of expansion scheme gives the user a finer control over the

amount of context to display on the screen.

164

6.2 MANIPULABILITY

The principle of manipulability dictates that interactions with the visual
representations displayed in the interface should parallel interactions with
objects in the physical world. In a device programming system, the principle is
intended to give the programmer a more intuitive understanding of the devices
and the way they may be interconnected to form useful configurations. From the
standpoint of usability, manipulability allows the programmer to construct
configurations in a more direct way than entering expressions in a command

language interface.

Possible interactions with a two-dimensional display medium are rather
limited by the widely available technology - typically a keyboard and a pointing
device known as a "mouse." There is little about these means of interaction which
mimics a physical system. Feeling the plastic of the keys or mouse buttons
against our fingertips is hardly the kind of tactile feedback we would experience if
we were interacting with physical manifestations of the objects represented on the
screen. Realistic tactile feedback, though, is not a requirement for a manipulable
system. The important feature of such a system is that it encourages the user to
manipulate the structure of the system in a straightforward manner. The
structure of Grasp programs is mainly determined by the way reference pipes and
control paths connect machines. For these simple kinds of structures, visual
feedback is sufficient for achieving manipulability. Manipulability in this
context means that interactions with visual representations look like interactions
with physical objects.

If visual feedback is so crucial to manipulabilty, then what is the difference
between visibility and manipulability? Visibility is the principle which governs
the visual representation of the information maintained by static structures.
Manipulability is concerned with representing the dynamic interactions which
bring about changes to those structures. Certain characteristics of the visual
representations in Grasp are designed to bear information about the underlying
structure; these are the features of visibility described in the previous section.
The representations are also endowed with other characteristics to improve their
resemblance to physical objects. The purpose of this section is to describe those
characteristics which support manipulability in the Grasp interface.

Not all of the characteristics described below are directly related to the goal
of manipulating structure. A manipulable interface for Grasp would certainly be
possible without such features as continuous motion, fine-grained positioning,
and animated control and data flow. Although many of these might be criticized
as unnecessary frills, I strongly disagree with such an assessment. These kinds of
features are important for supporting the illusion of naive realism. It is much
easier for the user to believe that the "display screen is the reality" if it acts like
reality. The fact that Grasp objects can be "picked up", moved smoothly across the
screen, and positioned at arbitrary locations may not have a direct relevance to
the underlying computational model, but it certainly gives Grasp the "feel" of a
real physical system. Since understanding computation in terms of what appear
to be physical devices is the focus of Grasp, it is desirable to incorporate into the
interface any features that help to support this illusion. In addition, the extra
manipulability features make the system fun to interact with.

6.2.1 The Physical Object Metaphor

Iconic representations in Grasp were chosen not only to convey information
about the underlying structure but also to emphasize their resemblance to
physical objects. In this way Grasp embraces what might be called a physical
object metaphor. Of course, Grasp is rather limited in the ways that it can
represent objects. A two-dimensional display screen cannot capture the essence of
three-dimensional objects, but two dimensions suffice for displaying the kinds of

structure which Grasp tries to show.

All icons in Grasp have distinct borders to show the spatial limitations of
the representations. The borders help to clarify exactly where the object is on the
screen. Bordered representations, like other Grasp features supporting
manipulability, emphasize the objectness of objects. Expression-based systems
such as Scheme do a poor job at displaying what is and what is not an object. One
of the reasons why novices erroneously include quoted symbols in box-and-pointer
diagrams (see Chapter 3) is that the interface does not make the extent of objects
clear-isitaor 'athatisthe object? Since Grasp objects are not plain rectangles in
general, bordered representations are useful for helping users determine the

extent of the objects they are manipulating.

165

166

6.2.2 Fine-grained Positioning

Objects in Grasp may be positioned at arbitrary locations within a Grasp
window. This is in contrast with systems in which the placement of objects is
much more constrained. In Star, for example, icons can only appear in one of the
154 invisible grid boxes tesselating the screen [Smith et al. 82]. In Boxer, boxes
are constrained to appear as large characters in a line of text [diSessa 85al. The
positioning provided by Grasp more resembles the physical world, in which objects
can be placed arbitrarily in the continuum of space.

6.2.3 Occlusion

In the Grasp interface, an object is allowed to be "on top of" another object.
Here certain qualities of three-dimensional space are ignored. In particular,
objects placed on top of other objects in the physical world are often unstable and
fall off. In the Grasp system, the representations do not "fall off" - perhaps it is
best to think of them as being suspended above the other objects rather than
resting on them.

An object suspended above other objects occludes them in an appropriate
fashion. That is, the area within the border of an object will hide objects below,
while any area outside the border of an object will show any objects below. An
example of this type of occlusion occurs in Figure 6.17, where a blueprint icon

partially hides the truth icon.

Figure 6.17: Blueprint partially obscuring truth.

Many windowing systems deal with occlusion in this manner (the window system
provided by Interlisp-D is an example [Interlisp 83]). However, windows are
generally monolithic rectangular shapes for which this behavior is easy to
implement. Providing the proper occlusion for the more complicated shapesin
Grasp requires much more care in the implementation.

6.2.4 Mouse Sensitivity

A pointing device known as a "mouse" is used to interact with the visual
representationsin the Grasp window. When the user moves the mouse, a cursor
(represented asX) follows the motion on the screen. In order to manipulate a
Grasp object, the user points the tip of the cursor at the desired object and presses

one of the three? mouse buttons to specify an action:

Left Button - used for "picking up" the object to move it. See the section
on movement of objects below.

Middle Button - used for actions specific to an object. Depressing the
middle button often brings up a menu of options for an object. Menus
hardly fit into the physical object metaphor, but they are useful for
extending the functionality in a prototype system. For example, the
middle-button menu for a variable appears in Figure 6.18.

Figure 6.18: Middle-button options menu for a variable.

The top option creates a reference pipe for the variable, while the
ChangeName option prompts the user for a new name for the variable.

Right Button - used to bring up a window menu for the Grasp window.
By convention, almost all windows in the Interlisp-D world support this
behavior for the right button.

An object in Grasp is selected by positioning the top-left point of the cursor
within the borders of an object and depressing the left or middle mouse button.
Thus, in Figure 6.19a no object can be selected, in Figure 6.19b the blueprint can
be selected, and in Figure 6.19¢ the boolean can be selected.

Figure 6.19: Selecting different objects.

Note in particular that the sensitive region of an object is actually within
its visible borders and not simply within a rectangular region surrounding the
object. Many other systems take the latter approach, which is considerably easier

167

168

to implement. For example, in the Interlisp-D window sysiem, clicking a mouse
button in the configuration shown in Figure 6.20 will select the LOOPS icon and
not the History icon to which the cursor seems to be pointing.

Figure 6.20: A selection in the Interlisp-D window system.

Such behavior results from a simple implementation strategy. Great care is taken
in Grasp to ensuré that objects can only be selected when the cursor is directly
pointing to them. Thisis an important way in which Grasp embraces

manipulability.

6.2.5 Movement of Objects

Perhaps the most obvious way in which Grasp supports manipulability is
the way it allows objects to be moved. Most interactions with Grasp are carried
out by moving objects. Creating a computational configuration requires "wiring"
together machines with control paths and reference pipes and putting data objects
in appropriate variables. All of these manipulations are carried out by moving
the visual representations on the screen. The Grasp system guarantees that the
appropriate changes are made to the underlying structure.

Objects are moved in the following way. The user points the mouse at the
desired object and depresses the left mouse button. This action "picks up" the
object. Ifit was partially occluded by other objects, picking it up brings it to the
forefront of the display; this behavior is illustrated in Figure 6.21.

Before picking up After picking up

Figure 6.21: Picking up an object brings it to the forefront of the display.

Keeping the left mouse button depressed, the user can move the object to its
new location. The object moves smoothly acress the screen along with the cursor.
The bitmap representations are not constrained to appear on a coarse grid but can
fill any area of pixels on the screen. The same kind of occlusion which occurs in
static representations applies to moving objects as well. When a moving object
passes over other representations on the screen, it occludes them in an
appropriate manner. The smooth motion and dynamic occlusion contribute
greatly to the physical "feel" of the system.

In the case of control paths, the user picks up the arrow at the end of the

path. As the arrow is moved, the line connecting it to the source object follows the
arrow in a "rubber-band" fashion. This kind of behavior is illustrated in Figure

6.22.

Figure 6.22: Snapshots of a moving control path.

Dynamically maintaining the control path connection is another way in which the
system attempts to resemble the physical world.

To place a moving object, the user releases the left mouse button.
Depressing the button corresponds to grasping the object; releasing the button
means to "drop" the object at the current postion. As noted above, objects may be

placed in arbitrary postions on the screen.

6.2.6 Making Connections

Fitting objects together by positioning them in an appropriate way is a
familiar experience from everyday life. We are used to plugging in power cords,
buttoning up shirts, and inserting keys into locks. Grasp takes advantage of these
physical experiences by allowing the programmer to specify computations by
properly positioning visual representations on the screen. Constructing programs
by moving and placing objects is the essence of the device programming style.

In some cases, placing an object in Grasp has no great structural
significance. "Dropping" a number in the Grasp window or a variable within the

169

170

internal structure of a compound machine simply indicates that the window or
machine now contains a new object. However, in other instances, the placement of
an object may carry an important semantic interpretation. For example, placing a
data object on top of an empty variable means that the variable now has that
object as its value. In such an instance, the system may reposition the object and
make other representational changes as well (see Figure 6.9 for an example of
placing a data object in a variable).

Wiring together machines with data and control paths procedes in a similar
manner. When a reference pipe is placed over a variable, it becomes "connected"
to that variable. Positioning a control arrow above a machine indicates that the
control path will terminate at that machine. These connections may be broken by
picking up the reference pipe or control arrow. However, data and control
connections are maintained when the user moves the elements to which they are
connected.

Making structural connections by placement clearly resembles the physical
world. The physical world, though, is not as forgiving as the Grasp environment.
We cannot expect to plug in a power cord simply by placing it near an electrical
socket - we must carefully orient the prongs and insert the pluginto the socket. In
Grasp, we can connect a reference pipe to a variable by positioning its right-hand
side anywhere above a variable. Grasp could more accurately model the physical
world by having distinguished reception sites for connectors like the reference
pipe and control arrow, but such strict adherence to the physical object metaphor
impedes the user's interactions with the system. There is a clear tradeoff between
faithfulness to the physical object metaphor and usability; on this issue I favored
usability.

6.2.7 Permanence

Grasp objects exhibit permanence. Once the programmer creates a Grasp
object, it remains in the Grasp environment until the programmer explicitly
destroys it.> This resembles the situation in the physical world, where objects
tend to remain in place except when explicitly removed.

Objects are destroyed in Grasp via the thundercloud. When the

thundercloud is placed over an object, it "zaps" the object, and the object
disappears. Figure 6.23 shows three snapshots of a thundercloud destroying the

variable A.

Impending doom . . . Zap!

Figure 6.23: Destroying the variable A.

Notice that the reference pipe to A disappears when its source variable does. The
Grasp system must guarantee that no "dangling references" or other meaningless
structures are left behind when objects are destroyed.

6.2.8 Animated Control and Data Flow

Both control and data flow in the Grasp system are animated. When
control goes forward through a computation, the controller homunculus walks
along or slides down the control paths (see Figure 6.11 for some appropriate icons).
Data flow occurs into input and output variables when control enters and exits a
machine. In this situation, a copy of the value from the source varianle for the
reference pipe moves across the screen and enters the target variable. Such
animation is not necessary to illustrate the semantics of the underlying
computation - the system could simply show the controller and data chjects
"jumping" through space to their new positions. However, since physical objects
can only get from one position to another by continuous motion through space, the
animation reinforces the view of the controller and data values as physical objects.

6.3 Summary

This chapter discusses the representational principles used in designing
the interface to the Grasp system. The principle of visibility dictates that visual
representations appearing on the display screen reflect the structure of the
underlying computational model. Visibility is achieved in Grasp by direct
mappings, continuous representations, familiar representations, and visual hints
that aid reasoning about program structure. The principle of manipulability
states that interactions with the representations on the screen should resemble
interactions with physical objects. The most important features of manipulability
in Grasp are those which allow the user to make and break structural connections

171

by "picking up" and moving object. Other features, such as continuous motion,
fine-grained positioning, and occlusion, though not necessary for structural
manipulation, make the system appear more "real.”"” In conjunction with visible
representations, these features support naive realism - the illusion that the
representations on the screen are themselves the elements of the Grasp model of

computation.

172

CHAPTER 7
DISCUSSION

The previous two chapters concentrated on the important principles behind
the design of the Grasp model and interface. For the Grasp model, the key
principle is reification. In order to build programs out of compuational piecesin a
device programming style, it is necessary to make traditionally implicit
structures explicit elements in the Grasp model. The application of reification
results in such elements as machines, variables, reference pipes, the controller,
and control paths. In the interface, the important principles are visibility and
manipulability. Visibility is achieved by continuously representing direct
mappings of structure in visual representations. Manipulability results from
extending the ideas of direct manipulation interfaces to elements which more
closely resemble physical objects. Together, visibility and manipulability support
naive realism, the illusion that the visual representations on the display are the
actual pieces of the underlying model.

The purpose of this chapter is to evaluate the Grasp system by discussing
its advantages and drawbacks. I will argue that embodying the device
programming style in a visible and manipulable interface is superior to textual
notations for presenting the major ideas of the procedural programming
paradigm. However, the approach taken by Grasp introduces new problems and
limitations which are not associated with the text-based view of programming. In
discussing these issues, I will also compare Grasp to several other novice-oriented
programming systems. »

Of course, I will be in a much better positfon to evaluate the Grasp system
when I actually test it out with novices. The major thrust of this project up to this
point has been a principled design of a device programming system for procedural
programming. Although a prototype implementation of Grasp exists, the system
is still very much under development. Several crucial features, such as blueprints
and all-purpose machines, have not yet been completely implemented. Thus, the

173

system has not yet reached a state where it can be adequately tested. Most of the
comments and observations I make in this chapter are of necessity based only on

my own interactions with the system.

7.1 ADVANTAGES OF GRASP

In this section , I explore the key features of the Grasp model and system
and argue why they should help novices build more robust models of the
procedural paradigm. In particular, I explain why the Grasp model should help
eliminate many of the confusions about the procedural paradigm discussed in
Chapter 4.

7.1.1 Device Programming Style

Many advantages of the Grasp system stem from the device programming
methodology which it supports. In contrast with the linguistic approach to
programming, this methodology focuses on the run-time structures used in the
evolution of a process rather than on the textual expressions which describe a
process. Grasp provides a microworld for exploring how processes can be
constructed out of computational devices in an erector set style. Such an
environment encourages people to use their familiarity with connected objects in
the physical world to reason about the structure of computations.

When embedded in a visible and manipulable interface, the device
programming style allows programmers to get "hands-on" experience with the
elements of the abstract machine. Rather than typing expressions at a command
language interface to indirectly manipulate implicit interpretation structures,
the programmer can make direct modifications to explicit visual representations
of those structures. The visibility of computational elements and the directness
with which programmers can interact with them should help make the structure
of programs much more apparent tc the novice.

As an example, reconsider the two models for variable binding which I
induced from examples when I took the Scheme course (see Chapter 3). The
reason that two very different models were possible was that the interface did not
provide enough visual information about the state of implicit binding
mechanisms; futhermore, the bindings could only be indirectly manipulated by

174

175

perine and SeT! expressions, whose semantics were not obvious from their form. In
Grasp, the implicit binding becomes reified as a variable object which has an
associated value. The variable object and its contained value are graphically
represented on the display screen. berINe expressions are not necessary in Grasp;
the programmer directly creates variables and manipulates their values on the
display screen. The information provided through the static graphical
representations and the dynamic interactions make it obvious that variables in
Grasp are associated with data objects. The alternate model that variables could
be associated with unevaluated expressions would simply never arise in such a
system. By making the structural features of a computational model more
evident, a transparent interface to a device programming system helps the
programmer form more robust structural models.

In addition to making structural information more accessible, the Grasp
system has the important property that visual patterns make good structural
sense. A problem with text-based languages such as Scheme is that syntactic
patterns do not necessarily indicate a semantic relationship. This is the basis for
the "procedure as pattern" bug in which the programmer attaches undue
importance to the syntactic similarities between the forms for defining a
procedure and for invoking it. Since the visual representationsin the Grasp
system are intentionally chosen to convey the structure of the computational
elements, reasoning based on visual similarities is valid in Grasp.

7.1.2 Primacy of Procedure Activations

Unlike Scheme and other procedural programming languages, Grasp
focuses on the procedure activation (machine) rather than the procedure
(blueprint) asits basic unit of computation. Traditional programming languages
embody a linguistic approach to programming in which textual specifications are
easy to construct. In these languages, procedure activations are created only as a
by-product of using a procedure. In the device programming style that Grasp
embraces, however, procedure activa : 1s are more natural than procedures as
the fundamental "device." o

This shift in focus has several advantages for novice programmers. First of

ail, amodel which emphasizes the primacy of procedure activations is likely to
prevent the formation of the "procedure as doer" bug. Novices have a desire to

176

associate observed action with a computational element, and the interface to the
Scheme language makes procedures seem the logical choice. However, the
common intuitive notion of active computational units that produce outputs based
on inputs better fits a procedure activation than a procedure; procedures are
abstract specifications for a collection of "active" units. In the Grasp abstract
machine, the emphasis on procedure activations should lead novices to attribute
activity to the activation rather than the procedure.

Second, Grasp permits novices to experiment with individual concrete
activations without having to first construct abstract specifications. In Scheme,
this style of interaction is not possible. The Scheme equivalents of activations
(i.e., environment frames) can only be created after constructing a procedure, and
even then they are only accessible to the programmer through arcane debugging

tools.

Third, the machine-based view provides a new way for understanding
procedures. An important advantage of the Grasp approach is that once the
novice gets used to primitive and compound machines, blueprints and all-purpose
machines can be motivated as a means for automating the process of building
machines by hand. Blueprints can be understood as templates for the internal
structure of an all-purpose machine; the programmer builds structure in the
blueprint in the same way the controller should build structure in the all-purpose
machine. With this representation, the actual application process can be
understood in terms of a semantically straightforward copying scheme.

7.1.3 First-Class Procedures

From the standpoint of computational power, the device progamming
approach has a serious drawback: the lack of linguistic abstraction mechanisms.
If a device programming system too closely resembles the physical world, it will
suffer the limitations of the physical world as well. An important characteristic of
the linguistic view of proegramming is that it allows abstraction to be handled in a
way unattainable with physical devices. As an illustration, suppose we combine
several physical components to construct a device that exhibits a desirable
behavior. Then we can use this device as a higher order component in other
systems based on its behavioral characteristics without worrying about the ‘
details of its implementation. As with Scheme procedures, there seems to be an

177

abstraction barrier here which separates the use of a physical element from its
implementation. However, we cannot take full advantage of two important
Scheme abstraction mechanisms with the physical device:

1. Procedural Abstraction: Procedural abstraction allows us to build
procedures, each of which is an abstract description of a class of
processes. To construct an actual instance of a process, we simply
call the appropriate procedure with arguments. In the physical
world, we can similarly create an abstract description for a device.
However, every time we want to use an instance of the device, we
must construct it by hand. In computation, the interpreter
automatically builds an activation of it for us hased on the
specification information in the procedure; in the physical world,
humans are the only interpreters of specifications for devices.

2. Naming: In the procedural paradigm, we can name a procedure and
indicate a use of the procedure by referring to its name. Naming
provides a level of indirection which ensures that future
modifications to the procedure will be reflected in all the places itis
used. Indicating the use of a device in the physical world implies
having a distinct physical copy of it. Should we ever decide to update
the design of the device, it is not enough to change its specification;
we must also individually modify every instance of the device

already in existence.

If a device programming system also incorporates enough of the linguistic
view of programming to support the two abstraction mechanisms described above,
then it is possible to reap the benefits of both views. Thisis the approach taken in
the Grasp model. On the one hand, reified interpretation structures allow
programmer to user their physical intuitions to build executable configurations in
a device programming style. On the other hand, the Grasp model supports both
procedural abstraction and naming. A blueprints acts as template for a family of
Grasp machines in the same way that a procedure is a template for a class of
procedure activations. All-purpose machines are used to automatically construct
machines based on blueprints. The level of indirection provided by names in
textual languages is realized in Grasp with variables and reference pipes. By
incorporating the ideas of two very different views of programming, Grasp is able
to support a device programming style without sacrificing computational power.

178

In addition, the Grasp approach to the procedural paradigm exploits the
full power of procedures as first-class objects. Blueprints share the same data
structure properties as numbers and booleans - they can be stored in a variable,
given as arguments to a machine, and returned as results from a machine. In fact,
since inputs and ouputs of machines in Grasp are just variables, the second two
properties are subsumed by the first. Treating blueprints as first-class objects
gives Grasp all the advantages that Scheme derives from first-class procedures.

Grasp biueprints have some interesting properties to help the programmer
understand their status as first-class objects and their purpose as abstraction
mechanisms. First of all, Grasp procedures look like the other data objects in the
Grasp system - all are encased in elliptical borders. This notation underscores the
properties of blueprints as first class objects. Second, the "body" of the blueprint
is constructed with the same manipulations used to build any of the programming
configurations. Thus, building a blueprint may be thought of as forming a
template or prototype for a class of machines. Third, Grasp has no element
equivalent to Scheme's Lavsoa. Rather than writing an expression which dictates
that a procedure is to be created at a later time, the user interactively creates
blueprints and specifies their templates before the program is even exectued. The
effect of procedures creating and returning other procedures is achieved by
putting blueprints inside of other blueprints; the copying mechanism guarantees
that a new blueprint will be returned for every invocation of the surrounding

blueprint.

Other novice-oriented systems are characterized by restrictions and
limitations on the use of procedures. Like most conventional languages, many of
them support procedure-like specifications but do not treat these specifications as
data objects. Sutherland's system provides a macro facility for representing data
flow configurations by a single symbol; data lines in his system, however, can only
carry only numbers, booleans, and symbols [Sutherland 66]. In systems based on
the PASCAL view of the world, such as Pict/D [Glinert and Tanimoto 84] and
PECAN [Reiss 84], first-class procedures have no place because PASCAL does not
support them.! Boxer marginally allows the use of higher order procedures in the
sense that it allows "data boxes" to encapsulate specifications that can be applied
to other objects. However, the "doit boxes" normally used in Boxer for specifying
procedures cannot be treated as data objects unless explicity enclosed within a
data box [diSessa 85a]. Eisenberg's BOCHSER, which provides a Boxer-style

179

interface to the Scheme environment model, is the only other novice-oriented
system of which I am aware that supports first-class procedures in the Scheme

sense [Eisenberg 85].

7.1.4 Structural Reference

Another important aspect of Grasp is that it supports a binding mechanism
and a means of reference that are close in spirit to the environment structures and
lexical scoping provided by Scheme. The reason I use the phrase "close in spirit" is
because lexical scoping is inherently a text-based notion and Grasp is not a
text-based system. However, the intent of lexical scoping is that references be
wired down at the point of procedure creations rather than at the point of
procedure call. Textual languages must indirectly achieve this affect by using
names, environment structures, and closares in the mannner dictated by
Scheme's lexical scoping rules. Grasp implements the same intent in a way which
underscores the structural connection between the variable and references to it -
when programmers want to refer to a variable, they directly point to it, request a
reference pipe, and show where the referred value is to be used.

Note that because reference is determined by structure rather than name,
it is possible in Grasp to have more than one variable with the same name in the
same "environment." The utility of such a situation might seem questionable,
but note that it means that the programmer is not required to be aware of all the
other variables and their names when he or she creates a new one. In Grasp,
creating a variable always indicates the introduction of a new binding structure
which is different from all those that were created before it. Compare this with
the use of perIne in Scheme, where the programmers can never be sure whether
they are creating a new variable or modifying one that is already present in the

current environment frame.

Since Grasp allows variables to be placed anywhere, it supports a
mechanism resembling Scheme's block structure. Because reference is
determined by structure rather than name, however, there is no notion of a "hole
in the scope" of a variable. Consider the following Scheme code:

(DEFINE A 5)

(DEFINE (ADD-100 A)
(+ A 100)

180

The A within the body of the aoo-100 procedure refers to the formal parameter of the
procedure, not the value of the global variable of a. The body is said to be in a hole
in the scope of the global variable a because the choice of parameter name make it
impossible to refer to that variable within the procedure. If we wanted instead to
write and Aoo-a procedure which took an argument and added the value of the
global a to it, we could no longer use a as a formal parameter to such a procedure.
Grasp has no such problem because the reference is purely structural.

Although Grasp emphasizes structure, it does not totally ignore text. Well
chosen textual names provide important information about the function of a
program. Although text does not have any meaning in Grasp, variables (and
machines) may be given textual names as comments. In fact, textual names are
important in the interface for showing the relationship between a reference pipe
and its source, or for describing the function of a shrunken machine. In its support
of textual comments, Grasp differs from some other graphical systems which try
to avoid names entirely. Sutherland's data flow system, for example, has no
names; programs are specified totally by how functional units were wired together
with data paths [Sutherland 66]. Names however, give important clues about how
a program works, and without them some of Sutherland's example programs are
nearly impossible to decipher (as an example, see Figure 7.1 later in this chapter).
The Pict/D system scorns textual names. All names, even those of variables, are
denoted by icons. The designers of this system admit that a total avoidance of
names is too restrictive and that some form of textual names should be added to

future versions of the system [Glinert & Tanimoto 84].

Grasp's representations of variables, their values, and their reference pipes
should help clear up some of the misconceptions novices have about names and
environments. Because Grasp does not rely on names and because its
representations emphasize the distinction between variables and values, it is
unlikely that novices would develop the "procedure as name" bug or the
"formal/actual” confusion in Grasp. In adclition, the stress Grasp puts on the
structure of reference clarifies exactly what reference means in a program. Models
of alternate parameter-passing mechanisms and scoping rules are not
well-supported by the visual evidence available on the display screen.

As with procedures as first-class objects, other novice-oriented systems
often deal with variables in a nonstandard or restricted way. The Pict/D system,
for example, displays four variables on the screen at all times. When defining a

181

procedure, the programmer specifies for each of the variables whether it is to be
local or non-local to the procedure. Since the four displayed areas for variables
represent more than four conceptual variables, this visual representation is a
potentially confusing one. Furthermore, the value of Pict/D variables is limited to
six-digit integers. Compare these properties with those of Grasp variables, where
the number of variables is arbitrary (limited only by the memory space of the
machine), each variable has a distinct visual representation, and variables can
contain not only any number supported by Interlisp, but booleans and blueprints
as well.

Unlike Pict/D, Boxer handles variables and references to them in a much
more standard way. Variables are named boxes on the screen, and references to
them are specified by use of the names within textual code. It employs a copy and
execute model for procedure application to determine what the references mean.
In this model, the code for a procedure is conceptually copied to the point of
application and is then executed in the calling environment. Since names refer to
the closest box with tke same name in the hierarchy of surrounding boxes, this
gives the effect of dynamic scoping. However, a mechanism known as a port is
available to achieve the effect of lexical scoping when the programmer wantsit. A
port is a method of hardwiring a reference to a box into a particular spot in a
program. In this respect, ports have a similar functionality to Grasp's reference
pipes.

It is interesting to note that Grasp, like Boxer, uses a copy and execute
model for procedure application, When the controller comes to an all-purpose
machine, it first copies the structure specified by the blueprint into the internal
structure of the all-purpose machine, and then forges ahead. The important
difference is that since Grasp copies structure rather than text, there is no
possibility of getting into any situation akin to dynamic scoping. Dynamic
scoping is purely the result of a text-based model and has no analogina
structure-oriented model. Copying models in a text-based languages can lead to
other semantic subtleties as well. In Algol 60, for example, a copying model for
procedure execution introduced the need for a call-by-name parameter-passing
mechanism. Since blueprint application in Grasp is based on the copying of
structural connections (i.e., reference pipes and control paths), a copying model is
semantically more well-defined for Grasp than for textual languages.

182

7.1.5 Agent-Centered Control

Grasp's representation of the controller as a little person takes advantage
of people's tendency to associate action with animate beings. The Grasp model is
designed so that activity in the system is localized around the controller, both at
the conceptual level and in the visual representations displayed on the screen. In
this manner, the controller may be considered the true "agent" in the model;
machines may be locations of actions, but it is the controller who sets them into
motion. The controller appears responsible for activating machines, constructing
the internal structure of all-purpose machines, and causing data to flow through

reference pipes.

Because of its close relationship to activity in Grasp configurations, the
controller can fruitfully be viewed as a reification of the interpreter itself. There
are two advantages of this point of view. First, understanding the distinction
between procedures, procedure activations, and the interpreter is a stumbling
block to many novices since all three seem to be lumped together in the "action" of
a program. Grasp clearly distinguishes these elements: procedures are
represented as blueprints, activations as machines, and the interpreter as the
controller. The explicit differences between these elements should help novices
appreciate the subtle distinctions between them.

Second, the choice of a human-like representation of control makes it likely
that programmers will project themselves onto the controller when reasoning
about programs. Predicting and explaining the behavior of code requires an
ability to "play interpreter” - to imagine oneself as the interpreter and to simulate
the actions specified by the code. It can be difficult for novices to understand that
the behavior of the computer is totally determined by a small set of interpretation
rules until they become good at "playing interpreter." The representation of the
controller as an animate being will hopefully lead novices to reason naturally
along the lines of "If I were the controller, I would be doing the following in this

situation ..."

Several other computational models make use of animate entities to
explain the dynamic behavior of the computer. The actor model taught in the
Scheme course represents procedure activations as actors standing in an
unemployment line; a procedure application is handled by taking an actor off the
unemployment line and handing him a "script" containing the body of the

183

procedure. Other computational models that rely on human-like elements include
the "little-man" model of LOGO [diSessa 86a] and Malone's organizational model
of Lisp [Malone 85].

7.1.6 Computational Time Line

The device programming style is motivated by the desire to take advantage
of people's intuitions about physical objects and devices. Such intuitions can be
valuable for reasoning about the static structure of a configuration - what the
elements are and how they are connected. However, these intuitions are not
necessarily appropriate for helping people reason about the dynamic behavior of a
given structural configuration. Determining the behavior of a system from the
behavior of its parts is not always the easiest of tasks. Sometimes it is possible to
envision the behavior of a system in a step by step fashion, but many physical
systems are notorious'y hard to simulate in this manner.

Consider an electrical system of interconnected resistors, capacitors,
inductors, and op-amps. Understanding the topology of the system - how the
elements are connected in a network - is straighforward. However, determining
the behavior of the system knowing the behavior of the parts is decidedly
nontrivial. Trying to envision the time behavior of the circuit by imagining the
time variations of voltages and currents throughout the circuit is often infeasible
due to overwhelming complexity. Moreover, time simulation is simply the wrong
approach for most circuits; considering the network from the viewpoint of
constraint satisfaction is often a far more fruitful approach for analyzing

electrical systems.

An important property of the procedural paradigm is that step-by-step
simulation is a valid approach for reasoning about the dynamic behavior of
programs. The procedural paradigm is intrinsically related to procedural
epistemology - the study of knowledge based on the imperative notion of "how to"
rather than the declarative notion of "what is" [Abelson & Sussman 85a]. A major
difficulty novices have in learning programming is that they are not comfortable
with expressing their knowledge in procedural terms [Sheil 81]. A major thrust
of the LOGO movement is that procedural specifications can, in fact, often be a
more effective means of description than declarative ones [Papert 80]. The way
"how to" knowledge is normally expressed is as a series of steps to perform. In the

184

linguistic view of procedural programming, programs consist of sequences of
expressions to be evaluated. The dynamic behavior of the program derives wholly

from the sequential evaluation of its component expressions.

This imperative approach generally imposes too much sequentiality on
programs. In many cases the exact order of evaluation does not affect the
behavior of the program. In side-effect free Scheme programs, for example, the
order of evaluation of arguments in a procedure call can have no bearing on the
computed result. Recent research in parallelism has aimed to remove much of the
arbitrary sequentiality from procedural programs. The data flow approach, for
example, is based on the idea that order of expression evaluation in applicative
programs is constrained only by data dependencies between expressions, not by
the order in which a programmer happened to include expressions in a program
(see, for example, [Arvind & Ianucci 85]).

Although this shift of attention away from sequentiality is a fruitful
avenue of exploration for computer scientists, it is not clear how good it is from the
viewpoint of novices trying to understand computation. Itis good in the sense
that it separates the novice from details which are not intrinsic to the problem
domain. In financial spreadsheet programs, for example, specifying a
computation is simplified for the user because the order of expression evaluation
does not have to be given - it is determined from data dependencies alone.

On the other hand, removing sequentiality adds nondeterminism into the
process of envisioning the evolut.on of a computation. Although this
nondeterminism cannot effect the behavior of a program, it means that the
envisioner has to make the choice of which order to use. A problem here is that it
is easily possible to get lost in simulations when too many things are going on in
parallel. Consider a program from Sutherland's data flow system for computing
square roots (see Figure 7.1). The trapezoidal forms are functional units; the lines
connecting them are data paths. Most of the functional units compute familiar
arithmetic functions, except for the unit marked with a <—, which acts as a filter
for passing its upper input if only if the lower input is a boolean truth value. This
particular program computes square roots by Newton's method (compare with the
Scheme code for this computation presented in Chapter 4).

185

T\
~ \
AN

input line

/ # output line

Figure 7.1: Square root program in Sutherland's system.

Trying to mentally run this example on a particular input quickly leads to
confusion. Part of the problem is that there are no textual names to help the
programmer understand the purpose of different parts of the configuration. A
more intrinsic problem is that there are simply too many things happening in
parallel to keep track of. Of course, we can impose our own sequentiality on the
program, but we must be careful to remember all of our choices along the way.

To avoid the possible confusions of parallelism, Grasp embraces the the
traditional sequential approach to procedural programming. This approach has
the advantage that it is ruthlessly deterministic; the programmer never has to
make any choices when simulating the program. Sequential programs are simply
more conducive to mental simulation. In this respect, Grasp departs from the
device programming style envisioned by diSessa, who sees parallelism as one of
the most important features of physical devices [diSessa 86b].

Just because the procedural paradigm is more amenable to sequential
simulation does not mean that all models for this paradigm aid in the envisioning
process. Many models have two properties which make envisioning difficult:

1. Creation of structures at run-time - In many models, new
interpretation structures are created at many steps during the
evolution of a process. In the procedural paradigm, thisis an

inherent property; new procedure activations must be created every
time a procedure is invoked. In the environment model, for
example, a new environment must be created whenever a procedure
is applied because an environment is the repository of much of the
state information of the activation.

The problem with creation of structure at run time is that thereisa
tendency to lose track of the envisioning process by getting bogged
down in the details of structure creation. Students often apply the
rules of the environment model blindly without trying to relate the
intermediate results to a high-level view of what is happening in the
process. Many never become facile enough with the model to realize
that the shape of the environment frames for an application of a
particular procedure is always the same and is in fact easily
derivable from the text of the procedure (see [Sussman 85] for an
explanation of this point). Thus, experts can look at the definition of
a procedure and quickly mentally contruct the configuration of
environment frames which corresponds to a call of that procedure.
Novices tend to apply the rules that dictate that environment frames
are not created until they are needed. Rather than envisioning the
environment configuration in a single step, they take many steps.
With each extra step, there is a chance to make a mistake or get lost

in the simulation.

. Reuse of structures over time - Interpretation structures are often
reused during the course of a computation, usually for efficiency
reasons. In the actor model, an actor returns to the unemployment
line once he is done with his script. The contents of the registers and
stack in the explicit control evaluator change at almost every step of
the computation. Sometimes this type of reuse is intrinsic to the
model of computation. Reuse of variables is intrinsic in the
procedural paradigm, since the value of variables may be changed
over time via assignment. Often, though, reuse is for efficiency
reasons alone. If infinite memory were available, there would be no
compelling reason to throw away the structures associated with a
procedure activation when it returned its result.

186

187

Reuse of interpretation structures makes reasoning about the past
and future of a computation difficult. It requires the programmer to
keep track of the uses of the structures at different points in time.
For example, when using the explicit control evaluator, it is helpful
to unfold the contents of the registers and stack over time by
considering sequences of contents. By examining such sequences, it
is possible to see the common patterns of register movement and
stack use which take place over time. Such patterns are difficult to
detect if the elements are reused since information about the pastis

lost along the way.

Run-time creation and reuse of interpretation structures underscore the
intimate realtionship these structures have with time. What a model of a process
describes at any particular point in time is a static snapshot of the process at that
time. The dynamic evolution of a process must then be viewed as a sequence of
these static snapshots, much in the same way that movies are created out of
sequences of discrete frames. The unfolding in time of the register and stack

contents suggested above is an example of this idea.?

In order to better support the envisioning process, Grasp attempts to reduce
the dependence between interpretation structures and time. Consider the problem
of creation of structure at run-time. As noted above, structure creation is inherent
in procedure applications. In Grasp, however, not all work is done by procedure
applications. Itis possible to use primitive and compound machines anywhere in
a program - these are in effect hardwired procedure activations. They give an
effect similar to what one might see when procedure calls are open-coded by a
compiler. In Scheme, it is not possible to manipulate activations in this manner -
only procedures can be manipulated. When machines are used in the Grasp
fashion, the creation is done at define-time rather than run-time. When
reasoning about the evolution of the process, the programmer does not have to
worry about a structure being created on the fly - it was already explicitly created
before the execution of the program even began.

This line of reasoning does not hold true for all-purpose machines. The
internal structure of an all-purpose machine is created on the fly when control
actually reaches the machine. This corresponds to the dynamic creation of a
procedure activation when a procedure is called. Yet, all-purpose machines
themselves are explicitly inserted into the program at define-time. They mark a

188

site where creation of structure is going to occur. Even though Grasp cannot avoid
the creation of structure, at least it localizes it to areas which are determined at
define-time. In reasoning about a program, a programmer can use the fact that
any new structure dynamically created during the execution of the programs
must be associated with an all-purpose machine.

Grasp also avoids reusing interpretation structures when possible. To do
this, it employs the same trick used by applicative languages to get rid of side
effects on variables - mapping aspects of the time dimension into the space
dimension. Applicative languages conceptually deal with unmodifiable sequences
of values to represent the history of a changing variable over time. In Grasp,
processes are represented as machines connected together by control paths and
reference pipes. The key property of the machines is that they are one-shots -
when control reaches them, they fire, but once they have fired, they cannot be
used again. In this way a machine has a direct correspondence to a procedure
activation at a particular point in time. To represent a use of the same procedure
at a different point in time would require a separate machine.

The choice to make machines one-shots has some consequences for control
flow. Since it is not meaningful to reuse a machine, there is never a case where
control would need to come back to the same machine. As a consequence,
machines have a single control path entering them and a single control path
exiting them. This also means that as a process evolves, the controller moves ever
forward from machine to machine and never retraces its path. Each machine
represents a point in time, and the traversal of the controller over the control path

can be interpreted as a passage of time.

I refer to the above idea as a computational time line. As a process evolves,
the controller is essentially navigating along a time line through a space of
interpretation structures. The time line is not simply linear - Grasp includes
structured branches of control paths to handle conditionals. The notion of a time
line is intended to aid reasoning about the evolution of a process. A particular
point of the computation is marked by the current postion of the controller. The
past of the computation is exactly the set of paths traversed by the controller up to
its current position. Its future could be any of the possible paths which lead
forward from its current position along the time line.

189

Grasp machines differ from traditional procedure activations in that they
do not go away once they have finished computing. Rather, like all object in the
Grasp model, they remain a part of the computation until the programmer
explicitly destroys them. This means that after a process has evolved, a complete
history of its evolution is maintained in the interpretation structures used for the
process.

Saving the entire history of a computation may seem wasteful, butitisan
important aid for reasoning about the structure of programs. The most
straightforward use is for debugging programs. If a program does not exhibit the
expected behavior, the programmer merely need examine the history of the
process. It is not necessary to enter a separate debugger. Rather, the
interpretation structures of the history can be inspected and manipulated like any
other interpretation strucuture. It is a low level property of the Grasp model that
the programming environment and the debugger are the same. This feature is
designed for novices, who typically have a hard time learning a separate

debugger.

Interpreting control flow as a passage of time has important consequences
for debugging in Grasp. Because distinct points in time map to different
structures in space it is perfectly meaningful to run a process backwards in time
by having control traverse control paths in the opposite direction. At each point in
backward flow, the controller undoes action. If the sites for smashing machines
store the old values of variables, even side effects can be undone in a reasonable
manner. This feature is valuable for debugging. If a programmer finds a fault in
the program, he or she can send the controller back to the pomt of the error, fix the

error, and send the controller forward again.

The saved state information is not only useful for debugging - it can aid the
explanation process as well. In traditional programs, the returned value is the
only inspectable result of a process. In Grasp, however, the entire history of the
process is avaiable for inspection. It is thus possible to inspect all the
intermediate steps used in reaching the result. Programmers can see not only
that they got the right answer but how they got the right answer. The notion of
"process" is often a hazy one for novices; the ability to examine the state
associated with a correctly working process might give novices a firmer
understanding of this idea. In addition, the process history is useful for reasoning
about about the time and space requirements of a process. The programmer can

190

easily find out how many times a particular procedure was called in a
computation. Explicit process histories also facilitate the comparison of processes.

Other novice-oriented systems share some of the aspects of Grasp's
computational time line. In the Pict/D system, control is reified as a white box
which travels forward along explicit control paths through an iconinc program
[Glinert & Tanimoto 84]. Reiss's PECAN system allows the user to go both
forward and backwads in their programs [Reiss 84]. The design of Boxer includes
a single stepper which shows intermediate steps in an evaluation using the copy
and execute model. As with the stepper in Scheme, however, the Boxer stepper
must be explicitly invoked before the beginning of a computation.

7.1.7 An Integrated Environment

The Grasp environment is integrated in the sense that it allows programs to
be defined, executed, and debugged within a single environment. The level of
integration in Grasp makes inspection and manipulation of the structure of
programs more direct than in programming environments that support separate
editors, interpreters, and debuggers.

Consider the task of inspecting the state of a procedure activation. In
Scheme, one needs to TrRacE a procedure to see the arguments it receives and the
result it computes. If one desires to change the state associated with a particular
activation, one must sreak the procedure, and use an arcane environment inspector
to modify the state of the activation. This approach suffers from the problems
associated with any command-language interface. At all times the user must
mentally keep track of where he or she "is" in the system. Furthermore, the
programmer must have familiarity with the special debugging procedures and
tools. The task is usually so imposing to novices that many never learn how to use
the debugging facilities to their full extent. Furthermore, even those who know
how to use them will only resort to them in cases of dire problems. It is possible to
manipulate an activation in Scheme, but it is not very likely that novices will do
SO.

In contrast, the Grasp interface is designed to facilitate such interactions.
Since the environment is always in "debugging mode," relevant state information
is always available through the interface. To manipulate a particular activation,
the programmer searches for it spatially and. upon finding it, manipulates it in

191

the same direct he or she is accustomed to. The Grasp system facilitates the kinds
of manipulations which novices can find difficult or impossible in conventional

environments.

Several other novice-oriented systems are worth mentioning in this
respect. Boxer, for example, is integrated in the sense that the text editor, file
system, and interpreter are all rolled up into one environment. As in Grasp, the
programmer creates and runs a program within a single environment. However,
Boxer stresses the static rather than dynamic aspects of a program. The effects of
a program on data structures is visible, but how those effects come about is
generally not visible. The programmer must use a special stepper in order to see
the details of program execution. Since Boxer is a text based environment,
however, integration means that the user can easily put text anywhere. Compare
this to Grasp, in which text can only be associated with variables and machines in
the form of short names. A key advantage of the Boxer approach is that it
supports a general computing environment rather than just a programming
language. Itisjust as useful to people who want to do word processing as those
who want to do programming [diSessa 85a]. Grasp is aimed only at programmers.

Several other interfaces provide more of the Grasp style of integration. In
Sutherland's data flow system, the programmer constructs data flow
configurations by moving visual representations on the screen. The resulting
configurations can then be run in the same environment. The values on the data
paths can also be viewed, but only in a special "debugging mode" [Sutherland 66].
Pict/D allows users to construct and run their programs within a single
environment. Like Grasp, Pict/D has an explicit representation of control flowing
through a program, and thus displays the dynamics as well as the static changes
[Glinert & Tanimoto 84]. The Programming by Rehearsal system [Gould &
Finzer 84] provides an integrated environment in which the graphical
representations of computational performers can be auditioned, rehearsed, and
performed. The dynamic actions of the program can be observed, although there
is no explicit representation of control. Curry's prototype Programming by
Abstract Demonstration system also uses a single integrated environment for
program definition, review, and execution [Curry 78].

192

7.2 DRAWBACKS OF GRASP

Conventional wisdom proclaims that "nothing is for free." This notion is
quite true in Grasp, where the above advantages are not gained without cost. The
purpose of this section is to describe some of the drawbacks of the Grasp system.

7.2.1 Too Much Information

Without a doubt, the major problem with Grasp is that it tries to display too
much information. A major goal of Grasp is to explicitly represent the
traditionally hidden state and behavior of programs. Unfortunately, even small
programs have a nontrivial amount of state information associated with them. In
trying to display all the structural information associated with a program, Grasp
makes it unwieldy to deal with anything other than small programming

examples.

The main problem here is that the principle of direct mappings is
double-edged. In specifying that the structure of the underlying model should be
fully reflected in the visual representation, this principle is a statement about the
quality of the representation. However, since visual information takes space on
the screen, the quantity of information which can be displayed at any one time is
limited. Presenting the detailed structural information implied by direct
mappings means that the bandwidth of the display is being used to convey a
fine-grained view of a small piece of the structural space. Relaxing the directness
of the mappings allows for a coarser-grained view of a larger region of the
structural space. Displaying a wider range of information at the cost of reduced
detail is important for gaining a high level view of the structural space and
determining the context of a particular piece of information.

To see the tradeoffs involved with direct mappings, reconsider the visual
representations of list structures discussed in Chapter 3. Based on the analysis in
that chapter, it appears that embedding the box and pointer notation into a direct
manipulation editor would clearly aid the programmer in reasoning about list
structures. Why is it that such editors are so rare? Part of the reason is tradition -
textual notation and the reap-evaL-prinT loop have Leen carried down from the era of
the teletype to the present day. However, I believe the problem is more
fundamentally rooted in tradeoffs implied by direct mappings. It is important for
new programmers to see how pairs are chained together to form lists, but once

193

they become familiar with this idea, the extra information conveyed by
box-and-pointer diagrams becomes cumbersome. For anything larger than simple
examples, box-and-pointer diagrams simply become unmanageable. Textual
representations, though hiding some information, are much more concise and
scale more gracefully. These characteristics make them the notation of choice in

the Lisp community.

Notice that the problem here 's with direct mappings and not naive
realism. Naive realism is still a useful principle for interfaces aimed at the
programming community at large. This is the driving force behind the Boxer
project - that naive realism and the spatial properties of boxes can enhance a
text-based programming language for programmers of all levels. Direct
mappings, on the other hand, tend to limit the complexity of the examples which
can be represented in a system. They provide a useful pedagogical environment
for the novice, but tend to be not well-suited to the experienced user. A
box-and-pointer editor is a great idea for students learning about list structures,
but is of limited utility to the experienced Lisp programmer.

In Grasp, the problems inherent with direct mappings are most clearly
exhibited by the conditional machine. The visual representation designed for the
conditional machine emphasizes how control flows through the machine. The
splitting and joining of control paths are represented explicitly, as is the
relationship between the result of a predicate and the direction of its associated
control switch. I believe that this kind of detailed representation clarifies the
evaluation rules for Scheme's conditional statement. However, after those rules
have become clear to a novice, the utility of such a detailed representation is
suspect. Although first helping the novice to reason about the structure of the
program, such space-consuming representation may later impede the novice's
interactions by making it more difficult to access other information. As with
box-and-pointer diagrams, the representation of a Grasp conditional may be
useful for simple examples in the programmer's early experiences with the
language, but soon after it becomes very cumbersome to deal with.

The consequence of direct mappings in Grasp is that they limit the system
to handle only simple programming examples. (The limitation is purely a
practical one; in theory, Grasp can handle any programs manipulating numbers,
booleans, and blueprints.) This does not mean that the system will not not helpful
to novices. Even simple examples are nontrivial to understand at a deep level in

194

Scheme. Grasp provides a method of viewing the important structural concepts
underlying the simple examples. This information is valuable when linguistic
intuitions begin to fail the programmer. What it does mean is that, at this stage
in its development, Grasp can hardly be considered a true general programming
environment. Asit stands, Graspis a tool for illustrating the ideas of the Grasp
model, but it cannot be used for serious programming.

Some other novice-oriented systems have fallen prey to the same problems
as Grasp in this regard. In Sutherland's system, complexity quickly takes over -
his example of the square root program (Figure 7.1) is all but undiscernible.
Pict/D also suffers limitations in this regard - it is suitable only for simple
numerical problems. Other systems, however, have dealt with the complexity
problem much more gracefully. By espousing concise textual representations,
Boxer makes it possible to construct fairly complicated programs. Eisenberg's
BOCHSER is able to handle nontrivial Scheme programs - his report shows how
the system could be used with object-oriente and produaction-based examples
[Eisenberg 85]. Gould and Finzer's Programming By Rehearsal system has
proved quite successful in one test study. Two curriculum deﬁelopers with weak
programming backgrounds were able to design and implement an exciting game
for teaching fractions within the span of a few days [Gould & Finzer 84].

The reason the above systems are successful at allowing complex programs
is that their representations stress function rather than structure. By not
focusing on the structural details of a program, the systems admit to much more
concise representations of computational elements. The representations stress
what the elements are for rather than how they do what they do.

Simple detail suppression schemes such as scrolling and shrinking only
partially mitigate the problem of too much structure. Even the shrunken
representations take up much more space than the information they convey
merits. Further, expansion generally totally overwhelms the surrounding
information. The expanded form of a shrunken conditional machine takes up the

better part of the display screen.

What can be done to improve Grasp in this respect? The problem is rooted
in the goals of the system. The goal of representing structure is in basic conflict
with the goal of allowing nontrivial examples. The first goal must be relaxed if
the second is to gain any ground. Functional representations which concentrate
less on structural details are necessary to support more complex programs.

195

Perhaps Grasp could provide a more layered approach to structure in which
structural details are normally hidden but programmers could explicitly request
more detailed views. Incorporating irto Grasp the notion of fisheye views -
interfaces which allow the user to examine the details only of the object in focus
[Furnas 86] - would also provide the user with a better way of navigating through

the large space of structural information.

7.2.2 Usability Problems

Some of the usability problems with the Grasp system were described
above. Other problems result from the device programming style embraced by
Grasp. Even simple programs require a fair amount of work to construct.
Consider making a squaring machine. We must first create a compound machine,
and then put a multiplication machiae inside of it. But this is not enough - we
must also explicitly connect three reference pipes and two control paths. It would
be desirable to be able to specify such a simple operation with less work.

One approach would be to have the system make some connections by
default. For example, when we put a machine in the internal structure of the
compound machine, we most likely want a control path to pass through it. The
system could automatically make such connections for us by default. If the
connections were not the ones we wanted, we could always change them. Another
such usability change could be made for determining the value of output
variables. In most cases, the output variable of a compound machine is wired to
the output variable of the last internal machine. Again, the system could make
such connections for us by default.

The kinds of suggestions above certainly help the situation, but do not
greatly improve the usability. A more significant gain in usability could be
gained by allowing structures to be specified through some kind of textual
language. We can imagine typing in the following Scheme-like expression to

some interpreter

(MAKE-COMPOUNC-MACHINE SUM-OF-SQUARES (A B) (C)
(C « (+ (SQUARE A) (SQUARE B)))

and having it create for us the machine shown in Figure 7.2.

196

ot

VAl o

Figure 7.2: Machine resulting from the above expression

Such an interaction would greatly increase the usability of the Grasp system. It
would also help novices to make the tie between the world of expressions and the

structures they denote.

I should be careful to point cut that there would be many subtleties in
designing such a langauge. First of all, naming would pose a problem. Since
reference in Grasp is based on structure rather than name, using Simple names in
expressi'ons could not in general unambiguously describe 2 machine. If there are
two variables with the name A in the Grasp window, how could Grasp decide what

the following piece of code means?

(MAKE -COMPCUND-MACHINE (X) (ANS)
(ANS « (+ X A)))

In such cases of ambiguity, seme method would have to be provided for the
programmer to indicate the intended meaning. In the above example, the system
might request that the user point to the variable being referred to.

Anocther point is that the explicitness of structure in Grasp means that
elements can be specified to a fine degree. For example, unlike Scheme, Grasp
allows users to deal with activation-like elements without defining an associated
procedure. This distinction must somehow be embedded in the textual language.
In the sum-oF-squares example above, for instance, is + a special keyword denoting
the primitive addition machine, or is it referring to a blueprint stored in variable

197

named +? In the former case, how would a programmer specify that the value of
the variable + was intended? In the latter case, how would the programmer
specify the use of the primitive procedure? When issues such as the explicitness of
control and allowance for multiple returned values are also considered, it is clear
that there are indeed many thorny issues to be resolved in the development of

such a language.

7.2.3 Semantic Questions

Because programmers are able to manipulate the abstract machine
elements directly in the Grasp environment, many common errors which occur in
textual programming environments are not possible in Grasp. For example, in
Grasp it is impossible to refer to a non-existent variable. Since names have no
bearing on the meaning of a program, typing errors or misremembered names
cannot possibly lead to any semantic error. Reference pipes in Grasp are made by
pointing to a variable, so a prerequisite of dbtaining a reference pipe is that the
variable actually exits. Further, when a variable is destroyed all reference pipes
created from the variable must also be autcmatically destroyed to avoid the

problem of "dangling" reference pipes.

Although Grasp avoids many of the errors common in conventional
text-based programming languages, it unfortunately introduces new types of
errors and ill-defined configurations. For example, in constructing a compound
machine for squaring we could accidentally leave out an internal control path
(Figure 7.3) or forget to connect a reference pipe from the output variable of the
multiplication to the output of the compound machine (Figure 7.4). Since control
flow and return of variables are implicitly handled in most programming
languages, it would not be possible to make these kinds of errors in those
languages. For example, in Scheme it is impossible for a procedure not to return a

value.

198

SUTTARE

Figure 7.3: Compound machine with missing control path.

SOULRE "

Figure 7.4: Compound machine with missing reference pipe.

Certain Grasp configurations that do not contain errors still seem rather
ill-defined when compared to programs in Scheme. Consider the configuration
pictured in Figure 7.5. Here the input of the squaring configuration is taken from
the output variable of the same configuration. The output variable value changes
when the controller exits the compound machine.

g SOUARE g

Before

SOUARE >

(outl (%
(Sutl (=

After

Figure 7.5: A strange way to get inputs.

The use of reference pipes in this way is somewhat disconcerting - we would
normally like to think that we can't refer to the ouput of an activation before its
value has been computed. However, due to the Grasp's notion of a computational
time line, it is possible to manipulate some of the run-time structures used by a
computation before that computation ever begins. An even stranger use of
reference pipes is exhibited in Figure 7.6, where the squaring machine gets its

input from the output variable of the multiplication.

199

200

s SLTALE

Figure 7.6: A stranger way to get inputs.

Not only does using a reference to the output variable of the multiplication for the
input of the squaring machine appear to contradict causal time constraintsin a
program, butit also seems to violate an intuitive spatial scoping rule which says
that reference pipes shouldn't be allowed outside of the internal structure in

which their source variable lies.

It would be possible to incorporate into the Grasp system features to detect
or prevent the kinds of configurations defined above. For example, to prevent
discontinuous control paths, the system could include a control terminus and
maintain an invariant that a continuous path of control must lead from the
control house to the control terminus. This basic approach is followed in Pict/D.
Similarly, the system could maintain a constraint on output variables, dictating
that they must either contain a value or be the target of a reference pipe. To
prevent the use of reference pipes in undesirable places, the system could prevent
their attachment to variables that occur earlier on the computational time line
than or lie outside the spatial scope of the source variable.

It is not clear that the features suggested above, though, are worth the
complications that they would introduce into the system. Some of the
- "undesirable" configurations might actually be useful in some situations. For
example, we could include a control "break" in any machine by simply
disconnecting a control path; when the controller reaches the break in the path,
the interface could focus in on that part of the computation. The intuitive rules of

201

spatial reference are actually broken by the system when using the copying
algorithm on blueprints maintaining local state. This style of reference is
inherent in systems supporting lexical scoping and procedures with state. Since
the system builds such structure during the construction process, there is no good
reason to prevent the user from building similar kinds of structure by hand.
Furthermore, it is important to realize that it is possible to write obscure code in
any language, but that every language is accompanied by an acceptable style of
programming. Programs written in good Grasp style would not make use of the
kinds of configurations illustrated in Figures 7.5 and 7.6.

Despite the above discussion, there are several situations in the Grasp
model where the system must be careful to preserve an appropriate semantics.
The two most important situations involve blueprints and the copying algorithm:

1. A reference pipe whose source variable is inside a procedure cannot
be attached to a target variable outside the procedure. The copying
algorithm implies that each application would add an extra
reference pipe to the external target variable, which does not make

any sense.

2. A smasher may not be inserted into a blueprint from a smashing
machine outside of the blueprint. In such a situation, the copying
algorithm would indicate that a single smashing machine would
mutate several variables, which does not fit into the Grasp

semantics.

7.2.4 Space

The Grasp model of commputation requires saving all of the intermediate
state of a program. Saving the history of a process in this manner allows the
novice to inspect the computational time line of a completed computation and to
run the computation backwards to an intermediate state, if so desired. Of course,
Grasp can only be so inefficient in its use of space because it is intended for small
programs. More complex programs could easily produce a bewildering amount of
information which might even exceed the storage capacity of a machine. Itis for
this reason that in most models of computation, the state associated with an
activation is discarded when the activation is done. Asmemory becomes cheaper
and larger storage capacities are realized, however, it may not be too farfetched to

202

use the Grasp style of debugging even for more complex programs. Also, as will be
mentioned in Chapter 8, the illusion of saving state can be maintained to some

degree without actually saving state.

~

7.2.5 Grasp is not Scheme

The discussion of section 5.1 should make it clear that Grasp is not Scheme.
This fact raises some important questions. How is Grasp supposed to help
alleviate the very problems from the Scheme course which motivated its
development? If taught to Scheme students, won't the differences of the Grasp
model confuse them rather than help them?

The goal of Grasp is to help students understand fundamental structural
ideas inherent in the procedural paradigm. Although the project is certainly
motivated by problems which occur in Scheme, I believe the problems are basic to
procedural programming languages in general. Notions such as first-class
procedures, references to variables, and control flow are difficult to grasp in
almost every procedural language. Futhermore, the expression-oriented approach
taken by most precedural models, Scheme in particular, are simply not suitable
for the approach of conveying the structure of programs through a visible and
manipulable interface. It is for these reasons that Grasp is not Scheme.

However, I believe that the ideas embodied in Grasp will be useful to all
programming novices, including those taking the Scheme course. The unique way
in which Grasp represents first-class procedure objects, for example, should help
novices gain a new perspective on what they are. Showing explicit structural
connections between variables and references can give the programmer a better
insight into the effect lexical scoping tries to achieve. Certainly there isa
possibility of confusion between Grasp and Scheme. For this reason, I think that
the two should be clearly distinguished in any teaching situation. The way I
envision using Grasp is to introduce people to the basic ideas of procedural
programs before they learn a language such as Scheme. Then the models for the
more advanced procedural language can be viewed in terms of the way they

deviate from the Grasp model.

203

7.3 Summary

Incorporating a device programming style of procedural programming into
a transparent interface gives Grasp several advantages. Most importatant among
these is that the programmer gets "hands-on" experience with the elements of the
Grasp model. Inspecting and manipulating such elements as machines,
blueprints, variables, reference pipes, control paths, and controllers, the novice
should be able to get a good "feel" for the elements of procedural programming. In
particular, Grasp should help clear up the kinds of the difficulties which novices
encounter in learning the Scheme programming language. The Grasp approach
does suffer several drawbacks, however, most important of which are
space-consuming representations and the lack of usability features. These
disadvantages constrain Grasp to be a pedagogical tool for illustrating simple
programs. In order for Grasp to become a more versatile, general-purpose
programming environment, it must concentrate less on structure and provide

more functional view of programs.

CHAPTER 8

CURRENT STATUS AND FUTURE
DIRECTIONS

8.1 CURRENT STATUS

A prototype implementation of the Grasp system has been partially
impleniented. The system is written in LOOPS, an object-oriented version of Lisp
which runs on top of Interlisp-D. The Grasp system runs on the Xerox set of "D"
machines, including the Dorado (1132), DandeTiger (1102) and DandeLion (1 108).
These machines support a 32 megabyte virtual address space, a high-resolution
bitmapped display screen, and a "mouse" as a pointing device.

Most of the Grasp model as described in this document has actually been
incorporated into the working system. Many of the figures in this document were
taken directly from the current Grasp system. At the present writing, side effects
and certain aspects of blueprint application are the only major features which
remain to be implemented. Of course, there are a host of minor features which
would increase the usability of the system if they were included as well.

The Grasp system is integrated into the normal LOOPS environment. All
interaction with Grasp takes place through a Grasp window, whose shape and
location are determined by the user. All other functionalities of the LOOPS
system are accessible to the user through normal interactions with Interlisp-D's

window-based environment.

The performance of the system tends to be slow, which is not surprising
considering théit itisimplemented in a straightforward and inefficient style. On
the Dorado, the fastest of the "D" machines, the response for the manipulability
features is actually quite fast. In particular, objects can be picked up without
much delay, and the continuous representation of motion is very smooth. The
other machines (DandeTiger and Dandelion) do not provide as fast a response
time. On these machines, picking up an object can take longer than expected, and

204

205

the representation of motion is not very smooth. Slowness of response makes the
manipulations tedious to carry out and reduces the resemblance of the

representations to physical objects.

8.2 FUTURE DIRECTIONS

The Grasp prcject can progress in several different directions. This section

describes some avenues for exploration.

8.2.1 Evaluation with Novices

The most important future direction for this project is to test out the Grasp
system with novices. Now that the system is finally reaching the stage where
nontrivial programs may be written, it will soon be possible to evaluate Grasp
system with students. It isimportant to assess to what degree the Grasp system
actually meets its goal of helping novices build better structural models of the
procedural paradigm.

I plan to evaluate the system in sessions with MIT students. I am
interested in testing students in the Scheme course as well as those who have not
had any experience with Scheme. My main interest is in the extent to which
Grasp helps them understand procedures, especially their properties as first-class
objects. Towards this end, would like to explore how well novices can read,
modify, and debug the Grasp equivalents of the kinds of examples suggested in
Section 5.2.

Novices will also be able to provide much-needed feedback about the
interface to the system. There are many important questions which can only be
answered by evaluating the system with subjects. How easy is Grasp to use? Do
the chosen representations seem natural or are they confusing? What are some
other choices of representation? What additional features would make Grasp
more usable? Does the system make the notion of first-class procedures more
understandable? Answers to these questions will be the basis for future

improvements to the Grasp system.

206

8.2.2 Extensions to the System

An obvious direction for this project is to improve and augment the
implementation. The first priority is to complete the implementation of blueprint
application and to incorporate side effects into the system. After these are done,
many other extensions are possible. One direction is to improve the performance
of the system. In terms of time, special attention needs to be paid to the code for
manipulation in order to improve the response time of the system to users'
interactions. Blueprint application is another area where a faster

implementation is desirable.

Space has not yet proved to be a limitation for Grasp, but this is due to the
fact that it has only been used for simple examples. If Grasp is to allow more
complicated programs, it will not be possible to keep a history of all the
intermediate state of every computation. However, I still believe it will be
possible to maintain the illusion that this state is in fact being kept. The key idea
is that the state only has to exist if the user wants to inspect it. Since users will
not want to view the saved state of a process in most situations, tliere is a clear
advantage to discarding the major portion of the intermediate state. In the
instances where they do want to inspect it, reconstruction of the intermediate
state should be possible for many common cases. In a purely functional program,
for example, all intermediate states could easily be regenerated from scratch
simply by running the computation from the beginning. When side effects (both
from the program and the user) are allowed, the situation becomes much trickier.
I expect that maintaining the illusion to a great degree would still require a fair
ai..ount of space and would introduce other complications to boot. However, I
believe that Grasp could handle many of the common situations using only a
small amount of extra space beyond that used by conventional systems. Exploring
tradeoffs between the quality of the illusion and the space requirementsis a

fruitful area for future research.

Another direction is to add more features to Grasp. For example, it would
be nice if default data and control path connections were made by the system
when adding machines to the internal structure of other machines. Allowing
blueprints to be constructed automatically based on the pattern of an existing
compound machine is a feature that would greatly facilitate the creation of
blueprints. These are only two of the many extensions to Grasp which would

improve its usability.

207

8.2.3 More Functional Emphasis

As noted in the previous chapter, Grasp's emphasis on structure limits the
size of the examples which can be effectively constructed in the Grasp system. An
interesting avenue for exploration is to see if a greater functional emphasis can be
incorporated into Grasp. Since this shift in emphasis would allow more complex
programs to be constructed in Grasp, it is an important possibility to consider.

I can see three approaches for achieving more of a balance between function
and structure in Grasp. The first method is to choose visual representations which
show less structure than the current ones. The Grasp conditional structure, for
example, is unwieldy because it tries to explcitly represent the process by which
conditional branching is determined. Although this representaion might help a
novice initially, it is likely that it will become cumbersome very shortly
thereafter. It would be desirable to provide an alternate representation for
conditionals which showed less of their structure. We can even imagine a
sequence of alternate representations, each of which shows less structure than the
previous one. The programmer could then choose the level of detail that he or she
wanted to see. Thisidea is applicable not only to conditionals, but to all Grasp

representations.

A second way to allow for more complex programs is to have a better
scheme for information suppression. Scrolling and explicit shrinking are not
sufficient for managing a large amount of visual information. Although the
context provided by the current expansion mechanism is nice, it also results in the
screen being cluttered with many unimportant objects. Perhaps a mechanism
along the lines of a fisheye view would be a more effective means of detail
suppression. Fisheye views show objects at the center of attention in detail, but
peripheral objects at a level of detail which decreases as a function of their
distance (by some metric) from the center of attention. (See [Furnas 86] for a

discussion of fisheye views).

A third method of striking a balance between structure and function is to
allow textual representations of programs in the system. For example, blueprints
need not be Specified graphically in a device programming manner - we can easily
imagine that they be described in some form of textual language instead.
However, their meaning in an all-purpose machine would still be the same - i.e.

208

the controller would still build structure inside the all-purpose machine based on
the code in the blueprint. There are many subtleties involved in introducing
textual program representations into Grasp, however. As discussed in the
previous chapter, there need to be ways to refer to objects by name and to

distinguish particular machines from blueprints.

8.2.4 Variants on the Procedural Paradgim

Grasp was designed to handle the procedural paradigm in a way similar to
Scheme. However, the Grasp elements can support many variations on the
procedural paradigm with relatively few changes to the system. It would be
interesting to allow the user to choose among these variations and experiment
with them.

Some of the different models the Grasp system could represent without a

great amount of effort are described below:

Data Flow: The Grasp system was designed with explicit control flow
in mind, but there is no reason why the pieces could not be used in a
variation without explicit control flow. Consider making the foloowing

three changes to the system:

1. Machines are not connected by explicit control lines. Instead,
they fire when all of their inputs become available.

2. Reference pipes are no longer controlled by the controller.
Instead, they allow data objects to flow at all times. When the
value of a variable changes, all of the variables to which it is
connected by reference pipes are immediately updated.

3. Removal of side effects.

If these three changes were made, Grasp would become a data flow

system.

Note that the Grasp version of data flow would differ from
Sutherland's data flow system in a crucial respect. Sutherland's
system has the property that the functional elements and data lines
are reused over time. On the other hand, as in the case with explicit
control flow, Grasp would still have one-shot machines. Thatis, Grasp
would not allow machines to be reused in the data flow scenario;

209

activations differing in time would still be represented by spatially

distinet machines.

Clairvoyance: Clairvoyance is a term I use to describe a variant of the
procedural paradigm in which structural properties of the "future" of a
computation can be inspected. In computations from standard
programming languages, much of the structure of a program
determinable before the computation ever starts. Consider the
following piece of Scheme code:

(DEFINE (SQUARE X) (* X X))

In evaluating an expression such as (square a) where a is bound to 3, it
is apparent that an activation of the * procedure will be created for an
input of 3. Yet, in most computational systems, the structure
associated with this activation is not actually created until controel
reaches the point of the call to the multiplication procedure. In Grasp,
the same is true; activations are not created and data does not flow
until the controller reaches an appropriate point of the computation.
For example, in igure 8.1, we can clearly see that a construction of the
SQUARE blueprint will occur with the argument 3, but because the
controller has not reached the all-purpose machine, none of this

structure is actually visible.

Figure 8.1: No structure is yet built.

In keeping with Grasp's notion of a computational time line, it
would be nice to allow the pogrammer to manipulate the future
structure of a program even oefore it would be created in more
traditional models. In the above example, we could "predict” that an

210

activation of the square blueprint would exist in the future and that its
argument would be 3. Figure 8.2 shows how thismight appearina
clairvoyant version of Grasp.

T L30T & (e
-,_.._\r

"..-'-""‘{,15

Figure 8.2: Clairvoyant version of squaring.

Note that certain points about the future cannot be easily
predicted. In particular, the results of primitive machines and

conditionals are not in general known in advance.

Clairvoyance has the advantage that it helps the programmer
envision the future of a computation. As pointed out in Chapter 5,
prediction is hampered by having to imagine the creation of structure.
By showing the programmer what the "future" looks like, clairvoyance
aids the programmer in prediction tasks.

The disadvantage of clairvoyance is that it conflicts with the
principle of naive realism. The structures presented clairvoyantly
aren't "really" there; they will not be created until control actually
reaches the point in question. Because of the presence of side effects,
the predictions are not always guaranteed to be correct. It will be
interesting to implement a clairvoyant version of Grasp and to test

whether it heips novices reason about the programs or actually

confuses them.

Multiple Controllers: The pieces of the Grasp system could be used to
allow novices to experiment with explicit parallelism via multiple
controllers. It is easy to imagine allowing more than one controller to
run at a time. Multiple controller systems could provide an interesting
representation of race conditions in a program. We can also imagine
new controllers being spawned at control forks (as in a conditional,
sajf), as ameans of illustrating parallelism.

Scheme: The pieces of the Grasp model could also be modified to
present a model much closer to that embraced by Scheme. The
following changes would result in system much closer to the Scheme

model of computation:

* Removal of output variables - Scheme has no equivalent of an
output variable. Instead, the controller "carries" the single
value returned by an activation to the next activation.

* Combination structures - the main type of Scheme expression is
a combination, in which a procedure is applied to arguments. A
structure corresponding to a combination could be added to
Grasp. This special structure is needed to collect the values
which result from the subexpressions in the argument positions

of a combination.

* Machines that are automatically destroyed after they are fired.
Although this makes for a model closer to Scheme, it also gets
rid of one of Grasp's key features - the maintainance of state

along a computational time line.

* Tail recursion - Upon entering the last machine in an internal
structure, the structure surrounding that machine should be

destroyed.

Note that incorporating these features means that significant
advantages of the Grasp system will be lost. In particular, the whole
notion of a computational time line will no longer hold. Although it
would still be possible to return to some previous state of the
computation, one could not return to an arbitrary previous state.

211

212

Furthermore, only the result of the computation and not the entire
process would be inspectable after the computation is done. Despite
these problems, having a Scheme-oriented version of Grasp would be
useful for helping novices understand the differences between Grasp
and Scheme. Such a system could serve as a stepping stone between

Grasp and Scheme.

8.2.5 Exploring Other Programming Paradgims

A final area for exploration would be to consider applying the principles of
visibility and manipulability to very different paradigms of programming.
Because it supports an object metaphor, object-oriented programming is ripe for
visible and manipulable interfaces. What about logic programming? Could
visibility and manipulability be used to help programmers understand the
structure of logic programming? Perhaps the physical object metaphor might be
useful for explaining certain aspects of the unification, a pattern matching process

at the heart of most logic programming systems.

CHAPTERY9

) SUMMARY

Programming languages bear little resemblance to natural language.
Interpreters for a programming language treat programs with a precision and
determinism unparalleled in a human context. Unlike communication with
people, communication with computers is marked by well-defined structure. This
structure, however, may not be immediately apparsnt to the programmer because
evidence of its existence is hidden by opaque interfaces that fail to convey
information about the state and behavior of programs. Such a situation poses a
barrier to students trying to understand the model of computation embodied in a
programming langauge; based on their intuitions and the paucity of evidence with
which they are presented, they will often construct poor mental models of the
abstract machine-that interprets their programs. Experience with studentsin
MIT's Scheme course has shown that these factors prevent many students from
acquiring a robust enough understanding of the programming model to read,

write, and debug programs effectively.

This report describes the principled design of Grasp, an explicit model and
programming system to help novices form more robust models of procedural
programming languages. The key principles that Grasp adheres to are visibility
and manipulability. Visibility decrees that the high bandwidth of a bitmapped
display screen should be used to convey structural information about the
interconnected elements of the abst: ~ 't "machine. Providing novices with more
information about these elements should give them a more fundamental
appreciation of the structure implied by a program. Manipulability exploits
people's familiarity with interconnected physical devices to help novices interact
more directly with the elements of the model of computation. The intention of
manipulability is to allow novices get a better "feel" for the interpretation
structures of a program through "hands on" experience with them.

214

These principles alone do not guarantee the transparency of a model of
computation. If important structures of the abstract machine remain implicit in
the model presented by the interface, programmers will have a hard time
reasoning about situations where these implicit structures come into play.
Subscribing to a principle of reification, Grasp represents many of the implicit
structures of the procedural paradigm as concrete objects or devices. Thus, the
Grasp programmer can directly manipulate structures resembling procedure
activations (machines), environment bindings (variables), data paths (reference
pipes), and control (the controller). These elements have the interesting property
of mapping aspects of time into space; incorporating them into a device
- programming system allows a process to be viewed as a computational time line
along which control can move forward and backward. The programmer can
explore the shape of a computation before it begins, and can inspect the history of

the computation once it completes.

Adhering too closely to physical object metaphor restricts the abstraction
mechanisms which are available to the programmer. Grasp embodies enough of
the linguistic view of programming to support procedural abstraction and
indirection by naming. Procedures in Grasp appear in the form of blueprints
which can be "applied" to arguments at the site of an all-purpose machine.
Naming in Grasp is accomplished in a spatial manner by variables; references are
specified by pointing rather than textual names. With these elements, Grasp is
able to reap the full-power of first-class procedures without resorting to the use of

text.

Emphasis on structure limits the Grasp system to small programs.
Although Grasp's visual representations provide a wealth of structural
information useful to novices, these representations become unwieldy for
anything larger than simple examples. Representations that are more functional
in nature are required to extend Grasp from a pedagogical tool to a full-fledged
programming environment. With its current design, however, Grasp is still a
valuable tool for helping novices gain a deeper understanding of the structural
aspects of procedural programs, especially the use of procedures as first-class

objects.

APPENDIX

Chapter 5 introduced the elements of the Grasp model and presented
examples of some simple programs. This appendix presents more examples of
Grasp programs (along the lines of those suggested in Section 5.2), including some
which exploit the power of procedures as first-class objects.

A1 FACTORIAL
No description of a procedural language would be complete without a

definition of a factorial procedure. In Scheme, this procedure is defined as below:

(DEFINE (FACTORIAL N)
(COND ((= N D) 1)
§ELSE (* N (FACT (- N 1))))))

“In Grasp, we first create a blueprint which contains a conditional machine, as

shown in Figure A.1.

Figure A.1: The top-level blueprint for factorial.

RV
—
U

216

Since it is difficult to show all of the structure of a Grasp program in a single
picture, we will explore them in a top-down manner, exposing details as we
progress. Although Grasp currently has no facility for printing out programs, it
might be done in a similar manner.

The expanded conditional appears in Figure A.2. It tests whether the input
number (NUM) is equal to zero. Ifitis, it returns the number one; otherwise it

performs a recursive call to the factorial blueprint.

g

BaseCase i[

S
i 2

;

- i

1

H

|

)

P
e

Figure A.2: The conditional for the factorial blueprint.

The EQUAL-0? predicate machine, shown in Figure A.3 is straighforward.
The RECURSE consequent machine, appearing in Figure A.4, is more interesting.
Here we recursively call the blueprint from which the activation is constructed by
applying it to the number one less than NUM. In Chapter 5, the motivation for
using an all-purpose machine rather than a simple compound machine for the
template within a blueprint was not made clear. The only extra feature the
all-purpose machine provides over a compound machine is the blueprint variable.
We see in this example that having access to that variable simplifies the creation
of recursive blueprints. Rather than creating a blueprint, storing it in a variable,
and then using a reference pipe to that variable within the blueprint, we simply
refer to the blueprint variable of the all-purpose template. Since that variable

217

must contain the factorial blueprint when factorial is being constructed, itis a
logical place to look for the recursive blueprint. In this example, we have a
reference pipe to SELF, which is the blueprint variable in Figure A.1.

ECUAL-GT

(1T UL (g

Figure A.3: Details of the EQUAL-0? predicate machine.

PEJURSE

Figure A.4: Details of the RECURSE consequent machine.

A2 APPLY-TO-FIVE

No examples of higher-order procedures were given in Chapter 5.
APPLY-TO-FIVE is an example of a procedure which takes another procedure as an
argument. In Scheme it is defined as:

(DEFINE (APPLY-TO-FIVE PROC)
(PROC 35)

218

The Grasp version of this procedure appears in Figure A.5.

Figure A.5: A blueprint for applying a blueprint to 5.

Figure A.6: Using APPLY5 on a squaring blueprint.

This blueprint shows how an all-purpose machine takes the input blueprint (from
the variable Proc) and applies it to five. Note that the visual representation makes
the details of the application explicit and also emphasizes how blueprints are data
objects. A sample use of this blueprint is shown in Figure A.6, where the

219

blueprint has been stored in the variable APPLY5. Here the blueprint is being
applied to a squaring blueprint.

A.3 MAKE-ADDER

MAKE-ADDER is an example of a procedure which returns a procedure as a
result. In Scheme, we would express this procedure as:

(DEFINE (MAKE-ADDER NUM
(LAMBDA (X) (+ NUM X)}.

In Grasp, the corresponding blueprint is shown in Figure A.7. To specify thatitis
supposed to return a blueprint, we insert the form of the blueprint we want
returned into the output variable. Grasp's copying mechanism dicatates that
blueprints occuring inside of blueprints are copied to the construction site in the
all-purpose machine. The copied blueprint has a different template than the
original, so that a totally new blueprint is created for every construction. Rather
than putting the blueprint in the output variable, we could store it in an internal
variable and connect a reference pipe to the output, as shown in Figure A.8.

Figure A.7: A blueprint for the Grasp version of MAKE-ADDER.

220

Figure A.8: Alternate version of the Grasp equivalent of MAKE-ADDER.

The structure of the procedure being returned is shown in Figure A.9. We
see that it takes its first argument from the input of the MAKE-ADDER template.
In structural terms, this means that when copied into a construction site, the
internal procedure will refer to the input of the all-purpose machine into into
whose internal structure it is put. Thus, the Num reference pipe refers to a
different variable for every application of the MAKE-ADDER blueprint. Figure
A.10 shows a sample use of the MAKE-ADDER blueprint, which is stored in the
variable +Maker in the figure. The blueprint returned by the application of
+Maker to 7 is an "add-7" blueprint - a blueprint of one argument which adds 7 to
its input. By using the resulting blueprint as the blueprint for another
all-purpose machine, we can see that it indeed has this effect.

221

Figure A.9: The internal procedure in the MAKE-ADDER blueprint.

(Froc (-9

k.,
L

Figure A.10: A sample use of the MAKE-ADDER blueprint.

222

A.4 MAKE-COUNTER

As afinal example, consider the Grasp analog of the Scheme
MAKE-COUNTER procedure given below.

(DEFINE (MAKE-COUNTER)
(LET ((COUNT 0))
(LAMBDA ()
(SET! COUNT (+ COUNT 1))
COUNT)))

This is a procedure which creates procedures with state - each procedure it creates
refers to its own local count variable. In Grasp, we essentially want a blueprint
which creates blueprints similar to the COUNT blueprint in section 5.4.6. The top
level of such a blueprint appears in Figure A.11.

Figure A.11: The MAKE-COUNTER blueprint.

The appearance of the COUNT variable inside the template means that each
construction of this blueprint will give rise to a new COUNT variable at the site of
the all-purpose machine. Each construction will also create a new blueprint of the
form shown in Figure A.12. Since each new blueprint mutates the variable at the
site where it was created, we have the effect of blueprints with local state.

Ao

USRI

Figure A.12: The style of blueprint returned by MAKE-COUNTER

9

23

NOTES

Chapter 1

! Like almost all MIT courses, this one is known more widely by its number - 6.001 (six double oh
one) - than its name.

2 A first-class object is one which shares all the normal properties usually associated with a data
object. For a further explanation, see the discussion of Scheme in Chapter 2.

3 Several papers from [Gentner and Stevens 83] are relevant here, especially [diSessa 83],
[McCloskey 83], [Clement 83] (motion); [Williams et al. 83] (heat flow); [Gentner 83] {electricity).
[diSessa 82] is also relavent on the topic of motion.

4 The design of Boxer, however, includes a stepper for showing the execution of a program one step
at a time.

Chapter 2

- ?%An argument for microworlds and an introduction to turtles are given in [Papert 80]. A more
‘in-depth study of turtle geometry is provided by [Abelson and diSessa 82].

2 All versions of Scheme treat procedures as first-class objects, but not all give the same rights to
environmn.2nts and continuations. In MIT Scheme, however, both of these are first-class.

3 evaL is a procedure which takes an expression and an environment, and evaluates the expression
in the environment.

4 A metacircular interpreter is an interpreter for a programming language which is written in the
same programming language. For an example of a metacircular interpreter for Scheme, see

Chpater 4 of [Abelson and Sussman 85a].
Chapter 3
1 Actually, when I took Abelson and Sussman's course, Scheme was not yet available. We

pregrammed in ULisp, another dialect of Lisp. Although the example associated with this note
uses DEFINE for clarity, the actual ULisp construct was SETQ.

ZA counterexample for which the model does not work involves the procedure TEST defined below:

(DEFINE (TEST) '(1 2 3))

Evaluating (TEST) gives the list (1 2 3) as we expect. However, if we evaluate (SET-CAR! (TEST)
5), then subsequent calls to (TEST) will in fact return (5 2 3). In my model, subsequent calls to
(TEST) would still return (1 2 3). I am endebted to Jeff Shrager for enlightening me with this

example. '

[
[
-

225

3 MAPCAR is a procedure which takes as arguments a procedure and a list and returns a list of the
results of applying the procedure to each element of the list.

Chapter 4

1 Many other Lisps use a the form (DEFUN <NAME > <ARGLIST> <BODY>) for procedure
definition, a syntax which does not exhibit the form of a procedure call.

2 Thisis clearly true for user-defined procedures, but is far less clear for the primitive operations
supported in hardware. These in some sense are hardwired into the interpreter and are much

closer to activity.
3 There is a version of LAMBDA called NAMED-LAMBDA which associates a name with a

procedure and is useful for handling recursion in a proper fashion. Procedures made with
NAMED-LAMBDA print out with the name; those created with plain LAMBDA print out with a

number.

4 See [Sussman 85] for a description of this method.

Chapter 6

I The name LAMBDA is taken from Alonzo Church's lambda calculus, upon which Lisp is loosely
based.

2 The Xerox Dorado (1132) has a three-button mouse. The Xerox Dandelion (1108) and

DandeTiger (1109) are provided with two-button mice. The middle button is simulated on the two
button mouse by "chording” - the process of depressing both buttons as the same time.

3 The system, however, can effectively destroy objects by uncreating them when the controller
walks backward along the computational time line.

Chapter 7

1 PASCAL allows procedures to be passed as arguments, but not assigned to variables or returned
as results.

2 Viewing program execution as "movies" made out of a sequence of time-dependent frames is the
basis of David Canfield Smith's PYGMALION system [Smith 75].

BIBLIOGRAPHY

[Abelson 86] Abelson, Harold. Personal communication, 1986.

[Abelson & Sussman 85a] Abelson, Harold, and Sussman, Gerald J., with
Sussman, Julie. Structure and Interpreiationr. of Computer Programs. MIT
Press and McGraw Hill, 1985.

[Abelson & Sussman 85b] Abelson, Harold, and Sussman, Gerald J. Computation:
An Introduction to Engineering Design. Unpublished MIT paper, 1985.

[Abelson & diSessa 82] Abelson, Harold, and diSessa, Andrea. Turtle Geometry:
The Computer as a Medium For Exploring Mathematics. MIT Press, 1982.

[Anderson et al. 84] Anderson, John, Farrell, Robert, and Sauers, Ron. "Learning
to Program in LISP." Cognitive Science. 8(1) 1984. Pp. 87-129.

[Arvind & Iannucci 85] Arvind and Iannucci, Robert A. Two Fundamental [ssues
in Multiprocessing: The Dataflow Solution. MIT Computation Structures
Group, Memo 226-3. August 1985.

[Bocker et al. 86] Bocker, Heinz-Dieter, Fischer, Gerhard, and Nieper, Helga.
"The Enhancement of Understanding Through Visual Representation."”
Proceedings of the CHI 86 Conference on Human Factors in Computing
Systems. Boston, Massachusetts, April 13-17, 1986. Pp. 44-50.

[Bolt 84] Bolt, Richard A. The Human Interface: Where People and Computers
Meet. Belmont, California: Lifetime Learning Publications, 1984.

[Brown & VanLehn 80] Brown, John Seely, and VanLehn, Kurt. Repair Theory:
A Generative Theory of Bugs in Procedural Skills. Xerox Palo Alto
Research Center, Technical Report CIS-4. August 1980.

[Brown & Reiss 82] Brown, Marc H. and Reiss, Steven P. Toward a Computer
Science Environment for Poerful Personal Machines. Brown University
Department of Computer Science, Technical Report CS-83-04. December

1982.

[Burton 81] Burton, Richard R. Diagnosing Bugs in a Simple Procedural Skill.
Xerox Palo Alto Research Center, Technical Report CIS-8. March 1981.

4342

227

[Burton & Brown 79] Burton, Richard R. and Brown, John Seely. "An
Investigation of Computer Coaching for Informal Learning Activities."
International Journal of Man-Machine Studies. 11(1) January 1979, Pp.

5-24.

[Ciccarelli 84] Cicearelli, Eugene Charles, IV. Presentation Based User
Interfaces. MIT Artificial Intelligence Laboratory, Technical Report
AI-TR-794. August 1984.

[Clinger 85] Clinger, William, editor. The Revised Revised Report on Scheme, or,
an UnCommon Lisp. MIT Artificial Intelligence Laboratory, AI Memo 848.

August 1985.

[Clement 83] Clement, John. "A Conceptual Model Discussed by Galileo and Used
Intuitively by Physics Students." In Gentner, Dedre and Stevens, Albert,
editors, Mental Models. Hillsdale, N.J.: Lawrence Erlbaum Associates,
1983. Pp. 325-340.

[Curry 78] Curry, Gael Alan. Programming by Abstract Demonstration.
University of Washington PhD. thesis, 1978.

[deKleer & Brown 83] deKleer, Johan, and Brown, John Seely. "Assumptions and
Ambiguities in Mechanistic Mental Models." In Gentner, Dedre and
Stevens, Albert, editors, Mental Models. Hillsdale, N.J.: Lawrence Erlbaum

Associates, 1983. Pp. 155-190.

[Dennis 75] Dennis, Jack B. First Version of a Data Flow Procedure Language.
MIT Laboratory for Computer Science, Technical Memo TM-61. May 1975.

[Dewdney 85] Dewdney, A.K. "Computer Recreations." Scientific American.
253(1) July 1985. Pp 14-19.

[diSessa 82] diSessa, Andrea. "Unlearning Aristotelian Physics: A Study of
Knowledge-Based Learning." Cognitive Science. 6(1) 1982. Pp 37-75.

[diSessa 83] diSessa, Andrea. "Phenomenology and the Evolution of Intuition." In
Gentner, Dedre and Stevens, Albert, editors, Mental Models. Hillsdale,
N.J.: Lawrence Erlbaum Associates, 1983. Pp. 15-33.

[diSessa 85a] diSessa, Andrea. "A Principled Design for an Integrated
Computational Environment." Human-Computer Interaction. 1(1) 1986.

Pp 1-87.
[diSessa 85b] diSessa, Andrea. Knowledge in Pieces. Unpublished paper, 1985.

[diSessa 86a] diSessa, Andrea. "Models of Computation." In Norman, D. A. and
Draper, S. W., editors, User-Centered System Design: New Perspectives on
Human Computer Interaction. Hillsdale, N.J.: Lawrence Earlbaum
Associates, 1986.

228

~ [diSessa 86b] diSessa, Andrea. "Notes on the Future of Programming;Breaking
the Utility Barrier." In Norman, D. A. and Draper, S. W., editors,
User-Centered System Design: New Perspectives on Human Computer
Interaction. Hillsdale, N.J.: Lawrence Earlbaum Associates, 1986.

[du Boulay et al. 81] du Boulay, Benedict, O'Shea, Tim, and Monk, John. "The
Black Box Inside the Glass Box: Presenting Computing Concepts to
Novices." International Journal of Man-Machine Studies. 14(3) August

1981. Pp. 237-249.

[du Boulay & O'Shea 81] du Boulay, Benedict, and O'Shea, Tim. "Teaching
Novices Programming." In Coombs, M. J. and Alty, J. L., editors,
Computing Skills and the User Interface. Academic Press, 1981. Pp.
147-200.

[Eisenberg 85] Eisenberg, Michael Allen. BOCHSER: An Integrated Scheme
Programming System. MIT Laboratory for Computer Science, Technical
Report TR-349. October, 1985.

[Furnas 86] Furnas, George W. "Generalized Fisheye Views." Proceedings of the
CHI 86 Conference on Human Factors in Computing Systems. Boston,
Massachusetts, April 13-17, 1986. Pp. 16-23.

[Gentner & Stevens 83] Gentner, Dedre and Stevens, Albert, editors. Mental
Models. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1983.

[Gould & Finzer 84] Gould, Laura, and Finzer, William. Programming by
Rehearsal. Xerox Palo Alto Research Center, Technical Report SCL-84-1.

May 1984.

[Glinert & Tanimoto 84] Glinért, Ephraim P., and Tanimoto, Steven L. "'PICT: An
Interactive Graphical Programming Environment." [EEE Computer.
17(11) November 1984, Pp 7-25.

[Grafton & Ichikawa 85] Grafton, Robert B., and Ichikawa, Tadao, editors. IEEE
Computer, Special Issue on Visual Programming. 18(8) August 1985.

[(Halasz 84] Halasz, Frank. Mental Models and Problem Solving in Using a
Calculator. Stanford PhD. thesis, 1984.

[Halbert 84] Halbert, Daniel C. Programming by Example. Xerox Office Systems
Division, Technical Report OSD-T8402. December, 1984.

[Henderson 84] Henderson, D. Austin, Jr. Personal Communication, 1984.

[Interlisp 83]. The Interlisp Reference Manual. Xerox Palo Alto Research Center.
October, 1983.

229

[Kahney 82] Kahney, Hank. An In-Depth Study of the Cognitive Behaviour of
Novice Programmers. The Open University Human Cognition Research
Laboratory, Technical Report No. 5. 1982.

[Lieberman 82] Lieberman, Henry. Seeing What Your Programs Are Doing. MIT
Artificial Intelligence Laboratory, Memo No. 656. Februrary 1982.

[Liskov et al. 79] Liskov, Barbara, et al. CLU Reference Manual. MIT Laboratory
for Computer Science, Technical Report TR-225. October 1979.

[Malone 85] Malone, Thomas W. Unpublished notes for teaching Lisp to
management students in MIT Sloan School of Management course 15.560,

* 1985

[Malone et al. 86] Malone, Thomas W., Grant, Kenneth R., and Turbak, Franklyn
A."The Information Lens: An Intelligent System for Information Sharing
in Organizations." Proceedings of the CHI 86 Conference on Human Factors
in Computing Systems. Boston, Massachusetts, April 13-17, 1286. Pp. 1-8.

[Mayer 81] Mayer, Richard E. "The Psychology of How Novices Learn Computer
Programming." Computing Surveys. 13(1) March 1981. Pp. 121-141.

[McCloskey 83] McCloskey, Michael. "Naive Theories of Motion." In Gentner,
Dedre and Stevens, Albert, editors, Mental Models. Hillsdale, N.J.:
Lawrence Erlbaum Associates, 1983. Pp. 299-324.

[Myers 86] Myers, Brad A. "Visual Programming, Programming by Example, and
Program Visualization: A Taxonomy." Proceedings of the CHI 86
Conference on Human Factors in Computing Systems. Boston,
Massachusetts, April 13-17, 1986. Pp. 59-66.

{Norman 83] Norman, Donald. ”"Some Observations on Mental Models." In
Gentner, Dedre and Stevens, Albert, editors, Mental Models. Hillsdale,
N.J.: Lawrence Erlbaum Associates, 1983. Pp. 7-14.

[Papert 80] Papert, Seymour. Mindstorms: Childrens, Computers, and Powerful
Ideas. New York: Basic Books, Inc., 1980

[Reiss 84] Reiss, Steven P. Graphical Program Development with PECAN
Program Development Systems. Brown University Department of
Computer Science, Technical Report CS-84-04. January 1984.

[Rovner & Henderson 69] Rovner, P. D. and Henderson, D. A., Jr. "On the
Implementation of AMBIT/G: A Graphical Programming Language,"
Proceedings ot the International Joint Conference on Artificial Intelligence.
Washington, D.C. May 7-9, 1969. Pp. 9-20.

[Sheil 81] Sheil, B. A. Coping with Complexity. Palo Alto, CA: Xerox Palo Alto
Research Center, Technical Report CIS-15. April 1981.

230

[Shneiderman 83] Shneiderman, Ben. "Direct Manipulation: A Step Beyond
Programming Languages." IEEE Computer. 16(8) August 1983. Pp.

57-69.

[Smith 84] Smith, Brian Cantwell, and des Rivieres, Jim. Interim 3-LISP
Reference Manual. Xerox Palo Alto Research Center Technical Report

ISL-1. June, 1984

[Smith 75] Smith, David C. PYGMALION: A Creative Programming
Environment. Stanford PhD. thesis (also Stanford Artificial Intelligence
Laboratory, Memo AIM-260). June 1975.

[Smith et al. 82] Smith, David C., Irby, Charles, Kimball, Ralph, Verplank, Bill,
Harslem, Eric. "Designing the Star User Interface." In Degano, Pierpalo
and Sandewall, Erik, editors, Integrated Interactive Computing Systems:
Proceedings of the European Conference on Integrated Interactive
Computing Systems (ECICS 82). North Holland, 1983. Pp. 297-313.

[Soloway et al. 83] Soloway, Elliot, Bonar, Jeffrey, and Ehrlich, Kate. "Cognitive
Strategies and Looping Constructs: An Empirical Study." Commaunications
ofthe ACM. 26(11) November 1983. Pp 853-860.

[Strassman 84] Strassman, Steven Henry. Learning Lisp: The Barriers to Novice
Programmers at MIT. MIT Bachelor's Thesis. May 1984.

[Sussman 85] Sussman, Julie, with Abelson, Harold, and Sussman, Gerald Jay.
Instructor's Manual to Accompany "Structure and Interpretation of
Computer Programs. "MIT Press and McGraw Hill, 1985.

[Sutherland 66] Sutherland, William R. The On-Line Graphical Specification of
Computer Procedures. MIT PhD. thesis, 1966.

[Swann & Johnson 77] Swann, Howard, and Johnson, John. Prof. E. McSqaured's
Fantastic, Original & Highly Edifying Calculus Primer. Los Altoc, CA:
William Kaufmann, Inc. 1977.

[Turbak 86] Turbak, Franklyn. Results from a questionnaire presented to two
recitation sections in the MIT Scheme course. February, 1986.

[Williams et al. 83] Williams, Michael, Hollan, James, and Stevens, Albert.
"Human Reasoning About a Simple Physical System." In Gentner, Dedre
and Stevens, Albert, editors, Mental Models. Hillsdale, N.J.: Lawrence
Erlbaum Associates, 1983. Pp. 131-153.

[Young 81] Young, Richard M. "The Machine inside the Machine: User's Model's
of Pocket Calculators." International Journal of Man-Machine Studies.
15(1) July 1981. Pp. 51-85.

231

[Young 83] Young, Richard M. "Surrogates and Mappings: Two Kinds of
Conceptual Models for Interactive Devices." In Gentner, Dedre and
Stevens, Albert, editors, Mental Models. Hillsdale, N.J.: Lawrence Erlbaum
Associates, 1983. Pp. 35-52. h

