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Abstract

Programming languages that treat procedures as “object-like” entities (for ex-
ample, allowing procedures to be passed as arguments to other procedures) offer
major advantages in semantic power and syntactic elegance. In this paper, we exam-
ine how novice programmers appropriate the idea of procedures as objects. Based
on a series of structured interviews with students in the introductory computer-
science course at MIT, we develop a model of the students’ ontology of procedures.
We conclude that many students view procedures as inherently active entities, with
few “object-like” properties. We speculate on the implications of these results for
the design and teaching of languages that treat procedures as objects.

1. Introduction

Most programming languages (as well as the courses that teach them) encour-
age a sharp distinction between procedures and data. In this paradigm, procedures
and data are typically viewed, respectively, as actions and objects: just as actions
manipulate and transform objects in the physical world, procedures manipulate and
transform data in computer programs.

This procedure-data distinction, however, is both artificial and limiting. In fact,
procedures are not active entities at all: they are merely descriptions of processes.
As such, procedures are data. Moreover, languages that treat procedures as data
objects can realize tremendous benefits in semantic power and syntactic elegance.

Scheme, a dialect of Lisp, is a prime example of this approach. In Scheme,
procedures are “first-class objects.” That is, they have all of the same “object
traits” as traditional data objects like numbers, lists, and vectors. For example,
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Scheme procedures can be passed as arguments to other procedures, and they can be
returned as the results of procedure calls. These first-class properties of procedures
make possible simple and elegant implementations of object-oriented programming
and delayed evaluation (1), and continuation-passing models of programming (2).
Indeed, there is a growing recognition within the computer-science community of
the importance of first-class procedures, and the concept is likely to influence the
design of future programming languages (3).

In this study, we interviewed a group of students learning Scheme in order to
examine how novice programmers think about procedures. Most empirical studies of
programmers have focused on syntactic issues and higher-level planning skills. Our
aim here is somewhat different: we focus on programmers’ semantic models, on their
ontology of procedures. In particular: what characteristics do novice programmers
attribute to procedures, and how does that ontology affect their ability to think of
procedures as objects?

We believe that research in this area might provide a theoretical foundation
for changes in language design and pedagogy. Only by more fully understanding
“naive ontologies” of procedures can we hope to develop improved methods for
helping students learn about the use of procedures as first-class objects.

Section 2 of the paper provides a brief background on first-class objects and
Scheme procedures. Section 3 describes the methodology of the empirical study.
Section 4 uses results from the study to develop a model of the subjects’ ontology
of procedures. The section also explores this ontology more deeply by focusing on
several extended examples from the interviews. Section 5 suggests language-design
and pedagogic changes that might help students to learn to think about procedures
as objects. Section 6 suggests directions for future work.

2. Background

This section provides a brief discussion of first-class objects and Scheme pro-
cedures.!

2.1 First-Class Objects

In the semantics of programming languages, certain types of objects are clas-
sified as first-class [cf. Stoy (6)]. A first-class object has the following properties:

1. Variable names may be bound to it;

2. It may be passed as an argument to procedures;

3. It may be returned as the value of a procedure call;

1 Readers interested in a more thorough treatment of these subjects should refer
to Structure and Interpretation of Computer Programs by Abelson and Sussman
with Sussman (1). This text is used in the MIT introductory computer-science
course that our subjects were taking. Eisenberg (4) provides a more elementary
introduction to this material, while Rees and Clinger (5) gives a formal definition
of the Scheme language.
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4. It may be stored as an element of compound data structures (such as
lists or arrays).

Numbers are first-class objects in virtually every programming language. For
instance, the following line of Pascal code illustrates the first three properties of
first-class objects as they apply to Pascal integers:

x := double(3)

Here, the double function (which we have presumably written earlier) takes an
integer as an argument and returns an integer as its result; the value of the call
to double is now associated with the variable name x. We could illustrate the
fourth “first-class” property by assigning the result to an array location — e.g.,
x(1] instead of x.

2.2 Scheme Procedures

In Scheme, numbers and procedures are both first-class objects.? The define
construct binds a variable name to an object, as in the following examples:®

(define a 1)
(define b (+ 2 3))
(define stuff (lambda (x) (/ x 3)))

In each of these examples, the Scheme interpreter evaluates (i.e., finds the
object designated by) the rightmost subexpression and binds the specified name to
the resulting object. In the first case, the Scheme interpreter evaluates 1 and binds
the name a to the result (the number 1). In the second example, the interpreter
evaluates the subexpression (+ 2 3) and binds the variable name b to the result
(the number B).

The third example uses the lambda construct, Scheme’s method for creating a
procedure object. In this case, the lambda expression creates a procedure that takes
one argument and returns the value of that argument divided by 3. The interpreter
first evaluates the lambda expression, then binds the name stuff to the resulting
procedure object.

Scheme includes an alternative syntax for defining procedures. The stuff
definition could also be written as:

(define (stuff x) (/ x 3))
The association of names with objects is shown in Figure 1. Note that both

primitive and compound (i.e., user-defined) procedures are named in exactly the
same way as other Scheme objects.

2 Scheme supports other first-class objects, including lists, symbols, booleans,
and strings. The examples in our study use only numbers and procedures.

3 Most of the examples in this section were used in the student interviews. See
the Appendix for a listing of all expressions used in the interviews.




NAMES OBJECTS

+ ] Procedure (primitive)
Primitive Addition
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Procedure (compound)
Parameters: x
Body: (/ x 3
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Figure 1: Bindings between names and objects in Scheme.

When the Scheme interpreter evaluates a name, it returns the object bound to
that name. For example:* )

a = 1
b = 5
stuff —> [COMPO UND-PROCEDURE STUFF)

Procedure calls in Scheme are illustrated by the following example:

(stuff b) — 1.66666

The Scheme interpreter first evaluates each of the subexpressions. Stuff evaluates
to a procedure object — namely, the divide-by-3 procedure created earlier. The
other subexpression, b, evaluates to the number 5. The interpreter then applies the
procedure object to 5, and returns the result.

The above examples demonstrate the first property of first-class procedures
— that variable names can be bound to procedures. The second property - that
procedures may be passed as arguments to other procedures — is illustrated in the
following example:

(define (apply-to-6 f)
(£ 6))

Evaluating this expression binds the name apply-to-5 to a procedure that takes one
argument. When the procedure named by apply-to-5 is called with a procedure as
an argument, the interpreter will apply the argument to the number 5 and return
the result:

4 We use the arrow character “=" to mean “evaluates to.”
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(apply-to-6 stuff) =—> 1.66666
(apply-to-B (lambda (x) (* x x))) => 25

In the first expression, the argument to apply-to-5 is the procedure bound to
stuff. In the second expression, the argument to apply-to-5 is the “squaring”
procedure returned by evaluating the lambda expression.

The third property of first-class procedures — that they may be returned as the
result of procedure calls - is illustrated by the following example:

(define (create-subtracter n)
(lambda (x) (- x n)))

Evaluating this expression binds the name create-subtracter to a procedure
which, when applied to an object, returns another procedure. This new proce-
dure takes one argument and subtracts from it the value of n, where n refers to the
original argument to create-subtracter. Thus, calling create-subtracter with
an argument of 1 will return a “decrement” procedure — a procedure that takes one
argument and subtracts 1 from it. Similarly, calling create-subtracter with an
argument of 10 will return a “subtract-10” procedure. Here are some examples:

(create-subtracter 1) => [COMPOUND-PROCEDURE 23407230|
((create-subtracter 1) 5) —> 4

(define increment (create-subtracter -1)) =—> INCREMENT
(increment 7) =—> 8

(apply-to-6 (create-subtracter 3)) —> 2

((apply-to-6 create-subtracter) 3) —> -2

The final property of first-class procedures — namely, that they may be used as
elements of compound data structures — was not within the scope of our investigation
and will not be discussed further.

As a concluding example, we present a procedure more elaborate than any used
in our interview; we include it here to provide a brief illustration of the power of
the first-class procedure concept. Our example, derivative, takes one argument (a
procedure), and returns as its result the procedure corresponding to the derivative
of the argument:

(define (derivative f)

(lambda (x)
(/ (- (£ (+ x 0.0001))
(f x))
0.0001))
)
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Programmers with experience in other languages will recognize how difficult
it would be to implement derivative without first-class procedures. Using the
derivative procedure is straightforward:

! (define double (derivative (lambda (x) (* x x)))) = DOUBLE

(double 5) =—> 10.

((derivative double) 5) —> 2.

3. Methodology

8.1 Subjects

The subjects in the study were 16 MIT undergraduates enrolled in MIT’s intro-
ductory computer-science course (6.001). A sign-up sheet was placed in the course
laboratory, and students were selected randomly from among those who signed up.
All the subjects had some programming experience prior to the course.® We con-
ducted the interviews during the fifth and sixth weeks of the semester; first-class
procedures had been introduced during the second week of the course. By the time
of the interview, all students had completed a laboratory problem set that made
heavy use of first-class procedures.

8.2 Task

In each interview, we provided the subject with a written sequence of Scheme
expressions. We instructed the subject to evaluate each expression in order and to
write his® response (as well as any scratch notes) below the expression. The subject
was informed that some expressions might result in an error message. We encour-
aged the subject to talk about the rationale behind his answers. On occasion, we
asked additional questions or requested that the subject elaborate on an answer.
During the interview, the subject had the opportunity to review and rethink pre-
vious answers. We told the subject that answers would not be provided during the
interview itself, but offered to provide an informal tutorial at the completion of the
interview. The Appendix includes the complete sequence of Scheme expressions
used in the interviews.

Two of the authors were present at each interview. Our data for each interview
inclwded: a tape recording of the interview, the subject’s written responses, and our
own written notes. (One tape recording was lost due to equipment failure.)

8 All had programmed in BASIC, and several had programmed in Pascal (6),
Fortran (5), C (5), and Logo (3). A few listed other programming languages as
well, '

8 We use the masculine pronoun for both male and female subjects.
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4. Analysis of Results

In this section, we first present a framework for understanding the subjects’ re-
sponses. We then present a series of extended examples to support that framework.
Finally, we discuss some of the issues raised by our results.

4.1 A Nasve Ontology of Procedures

Although student responses varied over a wide range, most subjects seemed
to share a common mental map of procedures. This mental map, while consistent
among the subjects, is seriously at odds with the semantics of Scheme.

As described in Section 2, Scheme procedures are properly categorized as first-
class objects. Of course, each type of object has its own special properties: number
objects can be added together, procedure objects can be applied to arguments, and
so on. But all first-class objects share the four “first-class properties.” Figure 2
illustrates this “correct” ontology of Scheme objects.

OBJECTS

Properties:
Can be named by variables.
Can be passed to procedures as arguments.
Can be returned from procedures as results.
Can be stored in compound data structures.

VARIABLE
NAMES

NUMBERS
Properties: Can be added, multiplied, ete.

Properties: Used as names
for objects.

PROCEDURES
Properties: Can be applied to objects.

Figure 2: The "correct” ontology for Scheme objects.

Although a few of the subjects viewed procedures in this way, the majority
seemed to categorize procedures very differently. Most important, students ascribed
to procedures two essential traits:

Activity. The subjects tended to view procedures as the active manipulators
of passive data (such as numbers). They associated activity with several aspects of
a procedure call: finding and evaluating arguments, working to compute a result,
and actually returning the result. Even when procedures were not in the operator
position of a procedure call, subjects commonly viewed them not as static data
structures, but as bundled up “computational energy” waiting to be unleashed.

Incompleteness. Subjects commonly saw procedures as incomplete entities that
needed “additional parts” before they could be successfully used. The missing parts
were usually the formal parameters of the procedure or other variables used within
the body of the procedure. On occasion, subjects also regarded the parentheses that
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specify a Scheme procedure call as parts required to “complete” a procedure. As
the examples in Section 4.2 illustrate, subjects often had problems with procedures
that they viewed as having too few or too many parts.

We distinguish between these two properties mainly for the sake of exposition.
In practice these properties blur together. Indeed, the act of finding and using
missing parts is a main component of a procedure’s activity. Again and again,
subjects referred to a procedure “needing,” “wanting,” “expecting,” “demanding,”
and “requiring” its arguments. A classic example is Subject 14’s statement that
he thought of “lambda as like a hungry monster that wants food.” There are clear
traces here of both activity and incompleteness.

The focus on activity and incompleteness seemed to lead students to associate
procedures more with the processes they describe rather than with the objects they
are. Indeed, many students placed procedures in a category separate from other
objects, viewing procedures as a different sort of thing - or, perhaps, not as a
“thing” at all.

We can gain some insight into what the students thought procedures are by
looking at what they said procedures are not: they are not objects, not values, not
variables. Consider the following quotes, each made by a different subject:

Junk is a bound variable, it’s not a procedure. [Subject 3]

B has a value rather than being 2 procedure. [Subject 9]

A is not a procedure, it is just a thing. [Subject 10]

What-not is really not a procedure — it’s just a name, a variable name. [Subject 13]
I often get tripped up whether these are procedures or variables [Subject 15)

Statements like these could be slips of the tongue, or simply loose use of termi-
nology. But such comments were so common in the interviews that we believe they
provide evidence of a faulty model of procedures, a model in which procedures and
their names are fundamentally different from other objects and the variables that
name them.”

Even subjects who had some sense of procedures as objects tended to view
them as less “object-like” than numbers. One subject [Subject 5], for example,
described an “abstraction” hierarchy among objects. In his view, numbers are the
“most primitive objects.” Accordingly, he described sub-1 (bound to a procedure)
as “much more of an abstraction” than b (which he saw as bound to the expression
(+ 2 3)). In turn, b was more abstract than a (bound to 1), since “you’re setting
[a] actually equal to a value.” '

The salient features of the students’ naive ontology are captured in Figure 3.
The figure depicts procedures as active, incomplete entities that comprise a class
distinct from other Scheme objects.

The naive ontology in Figure 3 reflects the subjects’ reliance on functional, as
opposed to structural, models (7). That is, the subjects were much more concerned

7 As mentioned before, procedures are different than other objects in some ways.
For example, procedures, unlike numbers, can be applied to arguments, But most
subjects see the differences as more fundamental.
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PROCEDURE :
NAMES PROCEDURES
Properties: Active -- eager to run.

Incomplete -- needing "parts".

Properties: Used as names
for pr dures.

OBJECTS

Properties: Can be manipulated by procedures.

VARIABLE
NAMES

Properties; Used as names
for objects. NUMBERS

Properties: Can be added, multiplied, ete.

Figure 3: A "naive" ontology for Scheme objects.

with what procedures do or how they are used, rather than with what they are or
the mechanism by which they work. While functional models can be a powerful
approach for reasoning about programs, the examples below show how they can
lead to serious misconceptions in the absence of a robust structural understanding.

4.2 Estended Ezamples

This section probes the naive ontology more deeply by focusing on several
specific expressions from the interviews.

4.2.1 Decrement

Early in the interviews, we defined b and decrement as follows:

(define b (+ 2 3))
(define (decrement x) (- x 1))

Then we asked subjects to evaluate three expressions:

(decrement b)
b
decrement

All 16 students gave the correct response (namely, 4) for (decrement b), and
15 students gave the correct response (6) for b.®8 But subjects had more trouble
evaluating decrement alone. Four subjects — at least as their first response® — said
that decrement would return an érror (when, in fact, it returns a procedure object,
with printed representation [COMPOUND-PROCEDURE DECREMENT]).

8 One student fell into the trap of thinking that evaluation of (decrement b)
would change the value of b. -
9 One subject later changed his answer.
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The responses of these four students exhibit many aspects of the naive ontology.
All four attributed the error to a lack of arguments for decrement; they interpreted
decrement as the name of a procedure that must be applied, rather than the name of
an object that can be returned. The notions of “activity” and “incompleteness” were
evident in their reasoning. Subject 13, for example, explained: “[Decrement| has
no arguments to evaluate, nothing to evaluate.” Subject 1 used similar reasoning:
“You’re just calling decrement and you’re not giving the arguments with it . .
because decrement is a procedure which requires an argument.”

Significantly, several students who gave the correct answer for the evaluation
of decrement revealed in their explanations that they, too, viewed the evaluation
of decrement as fundamentally different from the evaluation of b. In fact, many of
them did not see the question as a matter of evaluating decrement at all.

As Subject 15 explained: “You haven’t asked it to evaluate [decrement]. You've
just asked it about decrement, you haven’t asked it to evaluate it or anything.”
Similarly, Subject 5 explained: “It doesn’t return a value, it just returns that it is
a procedure. So this doesn’t evaluate an expression. It more just confirms the fact
that it is a procedure.”

In their laboratory experience with the Scheme interpreter, these students had
no doubt seen that evaluating a “naked” procedure name like decrement gives a
printed result of the form [COMPOUND-PROCEDURE name]. But since they did not
view procedures as objects, they did not see this phenomenon as the evaluation
of a name. Rather than modifying their mental map of procedures to explain
this behavior, they simply inferred that the interpreter had a special-case rule for
handling naked procedure names — something like, “Inform the user that this is
the name of a procedure.”

Subjects gave similar responses to the three other examples of naked proce-
dures in the interview (see sub-1, thing, and stuff in the Appendix). In each
case, between 3 and 6 students expected the naked procedure to return an error,
explaining that procedures need arguments and/or parentheses to be meaningful.

4.2.2 Apply-to-b and Create-Subtracter

The decrement example highlighted students’ difficulties with the first (i.e.,
naming) property of first-class procedures. Apply-to-5 and create-subtracter
probed students’ understanding of other first-class properties. These procedures
were discussed in Section 2 of this paper; their definitions are repeated below.

(define (apply-to-5 f)
(1 6))

(define (create-subtracter n)
(lambda (x) (- x n)))

Apply-to-b takes a procedure as an argument; create-subtracter returns a pro-
cedure as a result,
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The following expression, using both of these procedures, is particularly useful
for illuminating students’ models of procedures:

(apply-to-B create-subtracter)

The evaluation process for this expression may be summarized as follows: the
apply-to-b procedure takes as its argument a procedure, and applies that pro-
cedure to the number 5. In this instance, the argument to apply-to-6 is the
create-subtracter procedure; thus, the create-subtracter procedure is applied
to 6, and the result is a “subtract-5” procedure — i.e., a procedure which, when
applied to some argument, will subtract 5 from that argument.

Although (apply-to-5 create-subtracter) is a perfectly valid Scheme ex-
pression, nine of the sixteen students stated — at least as their first response!© — that
the expression was in error; one remained unsure of the result. Here is a sampling
of quotes from the interviews:

I don’t think this’ll work... Because create-subtracter when you use, you have to have

two arguments, I mean you have to have an argument to create-subtracter which is

n... and then you have to apply it to some... I mean, you have to give it an argument for

X... So I mean create-subtracter will only have one parameter in it, it needs another
one. [Subject 1}

.. with create-subtracter, you haven’t given that any arguments. (Subject 2]

Create-subtracter doesn’t have an argument which it needs, cause when you defined
it you define create-subtracter of n, so you don’t have an argument. [Subject 4]

I can’t picture where the argument x comes from... it has the expression x minus 5, but
it doesn’t have any value for x, so it can’t evaluate the expression minus x 5. [Subject
9]

Probably an unbound variable... it’s either x or n. [Subject 10]

Possibly error... since n doesn’t have a value. [Subject 12)

I’m confused as to where both variables — the x or the n ~ are coming from... [Subject
13}

... I think that this would... give a wrong number of arguments error. Because create-
subtracter needs one argument and isn’t given one argument. [Subject 15]

These comments reveal a remarkable consistency. Eight of the ten students who
had difficulty with the expression tended to focus on the “missing” argument values
for either n or x. For some students (Subjects 2, 4, 12, and 15), the problem was
that create-subtracter had not explicitly been given an argument. By fixating
on the absence of an argument for create-subtracter, these students were unable
to consider passing that procedure as an argument to apply-to-6. For others
(Subjects 1 and 9) the problem was that, after create-subtracter was applied
to 5, there was no value to be bound to x; these students were uncomfortable
with the idea of a procedure being returned as the result of a procedure call. Still
other students (Subjects 10 and 13) mentioned both “missing” variables in their
discussion.

In all these cases, subjects focussed on finding the arguments for a procedure,
regardless of whether the procedure is actually being invoked. This illustrates yet
again that they saw procedures as active (always eager to run) and incomplete
(requiring arguments in order to run).

10 Two subjects later changed their answers.
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Other examples involving apply-to-5 and create-subtracter provide further
evidence that subjects ascribed these traits to procedures. For example, consider
the following expression:

(apply-to-6 (create-subtracter 3))

Since both create-subtracter and apply-to-5 are actually being invoked and
since all “parts” needed by both procedures are available, this expression was much
less problematic for students than the previous one. In fact, 14 of the 16 subjects
responded correctly that this expression would evaluate to 2.

A more complicated example is the following:

((apply-to-B create-subtracter) 3)

Note how this contains (apply-to-B create-subtracter) as a subexpression. As
we have seen, this subexpression evaluates to a “subtract-5” procedure; the appli-
cation of this procedure to 3 gives the number -2 as the result.

As with (apply-to-5 (create-subtracter 3)), the expression ((apply-to-
b create-subtracter) 3) supplies all “parts® needed to complete both proce-
dures. Even though subjects had more difficulty with this expression, 11 of the
16 converged upon the correct answer. Interestingly, 4 of these 11 subjects had
previously concluded that (apply-to-6 create-subtracter) was an error.

The fact that ((apply-to-B create-subtracter) 3) had all its parts avail-
able presumably simplified reasoning about the expression. For a number of the
subjects, a crucial step was noticing that both a 3 and a 6 were available to be used
as arguments. Subject 13, who never converged on the correct answer, provided a
particularly interesting example of reasoning by parts. His comments clearly show
that he was keying in on the 3 and the 5 as the relevant parts to match to the
arguments n and x, but he wasn’t sure whether the expression resulted in 2 or -2.
It appears that his structural models were not well-developed enough to say which
number corresponded to which variable.

4.2.3 Junk

The junk example proved especially troublesome for the subjects. Only four
of the sixteen subjects were correct in their initial answers; two more eventually
arrived at the correct answer. The example consists of two expressions:

(define junk ((lambda (y) (- 3 y)) B))
(junk b)

where b has previously been bound to 5.}!

11 The use of 5 in the expression for defining junk was unfortunate because b is
also bound to 5. During the interviews, we asked most subjects to consider scenarios
where either the 5 or the value of b had been changed. This allowed us to distinguish
between the two values in analyzing their protocols.
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The first expression applies a “subtract-from-3" procedure to 6 and gives the
name junk to the resulting number (i.e. -2). Thus, the first expression is equivalent
to (define junk -2). The second expression tries to apply the object named by
junk to the object named by b, and is thus equivalent to the expression (-2 5).
Since -2 is a number, not a procedure, this attempted application results in an
“application of a non-procedural object” error. This is a type error; the value of
the first subexpression of a procedure call must be of type procedure.

Most subjects expressed confusion about the definition of junk. Indeed, the
definition does not match the common patterns of definition generally encountered
in the course. Nine students explicitly stated that junk was a procedure or function,
and three more, while making no similar claim, clearly used junk as a procedure.
Most probably, the presence of an explicit 1ambda led students to think that junk
was a procedure.

A major source of students’ confusion with (junk b) was the mismatch be-
tween the number of parts needed and the number of parts supplied. The procedure
specified by the lambda takes only one argument, but there are two numbers avail-
able — the 5 in the definition of junk and the one specified by b. This confusion is
clear in a number of the protocols:

I'm trying to figure out what this 5§ does. [Subjeét 1)
I can’t remember what the texrm 5 is supposed to do. [Subject 2|

Even if you put b in for y, this [the procedure specified by the lambda] is going to give
you a number and just this other number [5] is standing right there, doing nothing. If
junk does put this 5 in the junk definition, then you have this extraneous argument (b
here . . . [Subject 6]

And if you say the junk of 10 [if the value of b were 10|, then my first thought would
be to subtract 10 from 3, but then [ don’t really know what you do with the 5, but you
can’t really get rid of the 5, because it’s there . . . [Subject 13]

I really don’t know what the 5 is doing out there. [Subject 12]
I don’t know what the 5 is for, exactly. [Subject 15|

As is evident from the above quotes, the “extra” B in the definition of junk
was disconcerting for many students. The subjects displayed a great amount of
inventiveness in circumventing the “mismatch in number of parts” impasse, Four
students viewed junk as a procedure whose argument had been already “supplied”,
but which had not been properly activated. For them, junk could be activated
by a pair of parentheses (Scheme’s method of procedure invocation). Thus, these
students claimed that (junk) evaluated to -2, and (junk b) gave an error (usually
a “wrong number of arguments” error). For example, Subject 5 went so far as
to claim (correctly) that the definition was equivalent to (define junk -2), but
reasoned later that junk “is a procedure of no arguments. There’s a 1ambda in there,
yes, but it’s already being evaluated. You’re already assigning it 5. It doesn’t take
any other arguments.”

In another set of interpretations, eight subjects treated junk — at least at one
point — as a procedure of one argument. In these interpretations, calling junk on
b was an appropriate use of the procedure. These subjects handled the problem
of “too many parts” in a variety of ways. One heuristic was to ignore the “extra”
information. Thus, two subjects chose to disregard the b in the definition of junk,
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and treated junk as simply the procedure specified by the lambda expression. An-
other treated 5 as the argument to the procedure specified by the lambda expression
regardless of what the value of b was.

Four subjects did not ignore the “extra” information, and found a way to use
both the value of b and the 6 in the definition of junk. One of these four saw
the lambda expression and the 5 in the junk definition as the two elements of a
sequential expression. The lambda expression was applied to the value of b, but
the result of this application was ignored, and the 5 (the second element of the
sequence) was always returned.!? The remaining three subjects also applied the
procedure specified by the lambda expression to the value of b, but further tried to
apply the returned object (presumably a number) to the 6. Although this approach
ultimately leads to the right kind of error (the object being applied to 6 is 2 number,
not a procedure), it is for altogether the wrong reasons.

4.8 Discussion

The analysis of the above examples admittedly ignores some subtleties in the
subjects’ reasoning. Many subjects displayed uncertainty about their answers. They
often altered answers to particular expressions, and their reasoning about proce-
dures commonly evolved during the course of their interviews.

Nevertheless, when the students used incorrect reasoning, there was a marked
consistency in the nature — and even wording — of their explanations. The com-
monality is particularly striking considering that these explanations were wrong.
The students were not mimicking the reasoning presented by an instructor or text-
book; they were responding to the expression with a rationale of their own creation.
We can only conclude that the difficulty in seeing a procedure as an object is both
widespread and (at least to some degree) consistent in its symptoms.

This difficulty is indicative of the students’ reliance on functional, rather than
structural, reasoning in evaluating Scheme expressions. In the absence of a firm
grasp of Scheme’s objects and interpretation rules, subjects appealed to numerous
special-case evaluation strategies. The decrement example — in which students
expected the interpreter to treat “naked” procedure names using some informative
ad hoc rule — is a clear case of this behavior. (This phenomenon is not unlike
what Pea (8) refers to as the “conversational metaphor” in novices’ interactions
with interpreted languages.)

Finally, it should be noted that the central concerns of many other program-
ming studies, though important, are not at issue in these examples. The students
were not required to assimilate or “chunk” large sections of code; no expression
was longer than two lines, and students never needed to look back at more than
two definitions to evaluate an expression. Thus, the sample expressions placed
no burden on the students’ memorization skills, nor did they require recourse to
higher-order notions of goals or plans [cf. (9), (10), (11)]. Moreover, none of the
procedures had misleading names; many of the names (such as apply-to-5 and

12 The subjects were apparently making use of the fact that the value of 2 sequence
of expressions in Scheme is the value of the last expression in the sequence.
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create-subtracter) are, in fact, suggestive of the procedures’ purposes. Thus, no
expression violated any implicit rules of programming etiquette [cf. (12), (13)].

Rather, our questions were designed to focus on students’ ontologies of pro-
cedures. For the novice, a firm grasp of the nature of the objects in a program-
ming language is arguably a prerequisite to mastering higher-level programming
techniques. Exploring how students view objects can thus provide an important
window into how they learn and understand programming,

5. Pedagogical and Language Design Issues

One of the important benefits of studying the learnability of programming
languages is that such investigation can lead to improvements in the teaching and
design of programming languages. Our results suggest some possible avenues of
exploration in these areas.

At the very least, teachers of Scheme (and presumably other languages with
first-class procedures) should be aware of the special difficulties inherent in the first-
class procedure concept. For example, upon introducing the concept of a procedure
as argument, teachers might lay particular emphasis on the fact that the argument
value, although a procedure, is not “looking for” any arguments. In addition, we
noticed that the interview format (a sequence of expressions covering a broad range
of uses of procedures) forced students to reconsider their models in the interest of
consistency. This format could be profitably used in instruction.

In the interviews, we observed that students’ textual and graphical represen-
tations of procedures were flawed — or non-existent. This is hardly surprising
given that the computer’s printed representation is the rather abstruse [COMPOUND-
PROCEDURE name], and the MIT course does not provide an explicit representation
for procedure objects until later in the course. It is difficult to view something as an
object if you don’t have a way to envision it. Thus, one possible teaching strategy
would be to provide, early in the course, an abstract representation for procedures
that stresses their “object-like” character; this representation could then be made
more concrete and realistic over time.

The procedure-representation problem could also be addressed through changes
in language design (or perhaps more accurately, language interface design). MIT
Scheme’s printed representation is unhelpful for novices striving to understand what
a procedure might be. It would be worthwhile to explore some alternative printed
representations of procedures. For example, a procedure might be displayed as a
picture of a script or recipe; these are images which we ourselves use in explaining
the nature of procedures [cf. (14), (15)].

The existence of two syntaxes for defining procedures is another potential source
of confusion, inasmuch as it perpetuates the mistaken distinction between proce-
dures and other objects. Although removing the procedure-specific form from the
language might be too radical a change, programming courses could stress the more
general form, at least in the beginning of the course.

Further, we believe that define expressions could return more informative
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results.!® In the MIT version of Scheme, define expressions return the name being
bound. It would be more useful if Scheme printed some representation of both the
name and the object to which it is bound. Such a representation would underscore
that names are bound to procedures in the same way that they are bound to all
other first-class objects.

6. Future Research

In conclusion, we suggest a number of directions for future research:

Generality of the results. We believe that the results of this study are mean-
ingful for any language with first-class procedures, but this issue should be resolved
empirically. In other words, how “Scheme-specific” are our results? Do students’
difficulties with first-class procedures transcend the particular language in which
they are working?

Procedures in other domains. Do mathematics students dealing with concepts
such as “groups of operators” or “function spaces” experience the same problems as
students of Scheme? Is there any transfer between domains — that is, after students
have mastered the concept of first-class procedures in Scheme, can they transfer the
concept to work in mathematics?

' Origins. What are the origins of the naive ontology of procedures? Is the
ontology related to linguistic structures (e.g. noun/verb distinctions) in English?
Is it related to experience with other programming languages?

Finer-grained models. How do students view the first position of a procedure-
call expression? In what ways do students see “naked” procedure names as different
from names bound to other objects? How do variations in Scheme syntax affect
students’ ontological models?

Other first-class objects. What difficulties do students have in understanding
languages in which other objects, such as environments and continuations, are first-
class?
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Appendix

This appendix presents the expressions used in the interviews. The expressions
are to be treated as if they were evaluated one after the other in a single session
with the Scheme interpreter. Subjects were asked to describe the value returned
by each expression; they were informed that some expressions might lead to errors.
Whenever a subject said that an expression would lead to an error, we asked him
to describe the type of error; in certain cases, we also asked the subject to generate
a similar expression that would not give an error.

The results of evaluating the expressions are also provided below (these, of
course, were not presented to subjects).

(define a 1) => A

a—> 1

(define b (+ 2 3)) = B

= 5

(-b1) = 4

(define ¢ b) = C

c= §

(define d (- b 1)) == D

d—= 4

(b + 3) => Error! Object being applied is not a procedure: 5

(define (square x)

(* x %)) = SQUARE
(square b) =—> 25
b= §
(define (mul-by-self) square) => MUL-BY-SELF
(mul-by-selt 4) => Error! Wrong number of arguments: 1

(define (decrement x)

(- x 1)) => DECREMENT
(decrement b) —> 4
b= §

decrement —> [COMPOUND-PROCEDURE DECREMENT]
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(define sub-1 decrement) —> SUB-I

(sub-1 b) —> 4

sub-1 => [COMPOUND-PROCEDURE DECREMENT]
(detine (what-not x) 1) = WHAT-NOT

(what-not) —> Error! Wrong number of arguments: 0
(define (thing) (+ 4 b)) —=> THING

thing => [COMPOUND-PROCEDURE THING]

(thing) = 9

(define stuff (lambda (x) (/ x 3))) == STUFF

stutf =—> [COMPOUND-PROCEDURE STUFF]

(stuft b) =—> 1.66666

(define junk ((lambda (y) (- 3 y)) 6)) =—> JUNK

(junk b) = Error! Object being applied is not a procedure: -2.
(define something (lambda () (- 9 b))) = SOMETHING
(something 8) ==> Error! Wrong number of arguments: 1

(detine (apply-to-5 £)
(£ B)) => APPLY-TO-5

; Give an example of how you would use APPLY-TO-6

(define (create-subtracter n)

(lambda (x) (- x n))) = CREATE-SUBTRACTER
; Give an example of how you would use CREATE-SUBTRACTER
(apply-to-6 create-subtracter) =—> [COMPOUND-PROCEDURE 12430420]
(create-subtracter apply-to;s) = [COMPOUND-PROCEDURE 12437452]
(apply-to-6 (create-subtracter 3)) —> 2
((apply-to-b create-subtracter) 3) —> -2

(((apply-to-B create-subtracter) 3) 9) = Error! Object being applied
is not a procedure: -2
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