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Overview

o What is a programming language?
Mechanical vs. linguistic views.

o Along the way: what do programming language
designers & implementers think about?
syntax, semantics, pragmatics.

o Several shameless plugs
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Plug #1: Grand Challenges Summit

The Educational Imperatives
of the Grand Challenges

3 = ':‘ .l\

Part of a national summit series based on the National Academy of Engineering’s Wellesley College
14 “Grand Challenges,” critical problems we must solve to ensure a sustainable future, Wellesley, MA
General series info: http /fwwaw.grandchallengesummit.org/

http://grandchallengesummit.olin.edu/
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Programming Languages: Mechanical View

A computer is a machine. Our aim is To make the
machine perform some specified actions. With some
machines we might express our intentions by
depressing keys, pushing buttons, rotating knobs,
etc. For a computer, we construct a sequence of
instructions (this isa " " program'’) and present this
sequence to the machine.

- Laurence Atkinson, Pascal Programming
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PicoBlocks

Kinetic Scul ture

www.picocricket.com

s

Create the sculpture

Start by connecling the b:g red gear lo the motor — there are lots
of ways 1o altach things lo it. For example, you can aftach some
LEGO® pegs lo the gear and then slip colored siraws over the pegs.

Or try attaching something else —

floppy material will work best.
Try things like pipe cleaners,
feathers, finsel, streamers,

or colored ribbons.

Shake your stuff? What moves can you
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Make it dance

Change the fiming and the
direction to make different dances.

Make your sculpture
dance when you clap.

5.-1-

Make your sculplure spin
faster when you speak louder.

Make some noise
Add sounds fo your sculpture by choosing materials
that rustle, jangle; or click as they move aboul.

make?




Syntax (Form) vs. Semantics (Meaning)

Furiously sleep ideas green colorless.

Colorless green ideas sleep furiously.

Little white rabbits sleep soundly.
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Syntax Examples: Absolute Value Function

Logo: to abs :nifelse :n < O [output (O - :n)] [output :n] end
Javascript: function abs (n) {if (n < O) return -n; else return n;}
Java: public static int abs (int n) {if (n < O) return -n; else return n;}

Python:
def abs(n):
ifn<O:
return -n
else:
return n

Scheme: (define abs (lambda (n) (if (< n O) (- n) n)))
PostScript: /abs {dup O I+ {O swap sub} if} def
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Plug #2: Design Concepts in Programming Languages

Design Concepts
in Programming
Languages

FRANKLYN TURBAK AND
DAVID GIFFORD

WITH MARK A. SHELDON
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App Inventor For Android: Designer Window

"' App Inventor
for Android afpfia —— e e

Package for Phone ~ § Blocks Editoris open

Button
A simple button

Canvas
Surface for drawing
graphics and
maniputating sprites

CheckBox

Image
A picture

Label
A piece of text

ListPicker
Choose from & popup list
of options. Note: The
ltems designer property
s now deprecaled.
Please use
ElementzFromString.
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App Inventor For Android: Blocks Window

My Definitions ) ) |
KittySound

Kittyl‘abel
KittyButton

Accelerometersensori

" number 123
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Programming Language Layers

user libraries
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Plug #3: Scratch
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http://scratch.mit.edu/
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Example: Line Follower
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Line Following Code: Abstract Version

to follow-line
go-forward
loop [if sees-black? left-sensor [pivot-left]
if sees-black? right-sensor [pivot-right]]
end

to go-forward
left-wheel on thisway
right-wheel on thisway
end

to pivot-left
left-wheel of f
right-wheel on thisway
end

to pivot-right
right-wheel of f
left-wheel on thisway
end

to left-wheel
a,
end

to right-wheel
bl
end

to sees-black? :sensor-value
output :sensor-value > 100
end

o left-sensor
output sensor O
end

to right-sensor
output sensor 1
end
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Line Following Code w/o0 Abstractions

to follow-line
a, on thisway b, on thisway
loop [if (sensor O) > 100
[a, of f b, on thisway]
if (sensor 1) > 100
[b, of f a, on thisway]]

end
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Programming Language Essentials
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Plug #4: SICP
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PictureWorld

KnitWarld

(ARARA]

" knit3(blue, red, yellow)
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PictureWorld: Some Primitive Pictures

bp
(blue patch)

rp
(red patch)

gw
(green
wedge)

P
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mark

leaves

empty



Rotating Pictures

public Picture clockwise90(Picture p); // Returns protated 90° clockwise
public Picture clockwisel80(Picture p); // Returns p rotated 180° clockwise
public Picture clockwise270(Picture p); // Returns p rotated 270° clockwise

clockwise90(gw)

clockwise180(gw) clockwise270(gw)



Flipping Pictures

public Picture flipHorizontally(Picture p); // Returns p flipped across vert axis
public Picture flipVertically(Picture p); // Returns p flipped across horiz axis
public Picture flipDiagonally(Picture p). // Returns p flipped acros diag axis

gw flipHorizontally(gw)

/

flipVertically(gw) flipDiagonally(gw)




Putting one picture beside another

// Returns picture resulting from putting pl beside p2
public Picture beside(Picture p1, Picture p2);

// Returns picture resulting from putting pl beside p2,
// where pl uses the specified fraction of the rectangle.
public Picture beside(Picture pl, Picture p2, double fraction);

beside(gw,rp) beside(gw,rp,0.25) beside(gw,rp,0.75)
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Putting one picture above another

// Returns picture resulting from putting pl above p2
public Picture above(Picture p1, Picture p2);

// Returns picture resulting from putting pl above p2,
// where pl uses the specified fraction of rectangle.
public Picture above(Picture pl, Picture p2, double fraction);

above(gw,rp) above(gw,rp,0.25) above(gw,rp,0.75)
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Putting one picture over another

// Returns picture resulting from overlaying pl on top of p2
public Picture overlay(Picture pl, Picture p2);

overlay(mark,leaves) overlay(leaves,mark)
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Combining Four Pictures

public Picture fourPics (Picture pl1, Picture p2, Picture p3, Picture p4) {
return above(beside(pl,p2), beside(p3, p4)); }

public Picture fourSame (Picture p) { return fourPics(p, p. p, p): }
l L L l

fourPics(bp,gw,mark,rp) fourSame(leaves)
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Repeated Tiling

public Picture tiling (Picture p) {

return fourSame(fourSame(fourSame(fourSame(p)))): }

NN,
NIV NN NN
NAVINNNINININNININNNIN)
NININNINININININ SIS,
NI NNNNNNINNINNNN
NININININININININ SISO
NNNNNNINNNINNINNNN
NN
NN NINININININ N NI
AN
NIV NN
NAVINNNINININNINNINNNIN)
NININININININININ N SIS
VNN NN,
NV NNNNNNNNNNN

tiling(mark)
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Rotation Combinators

public Picture rotations (Picture p) {
return fourPics(clockwise270(p), p, clockwisel80(p), clockwise90(p)): }

public Picture rotations2 (Picture p) {
return fourPics(p, clockwise90(p), clockwisel80(p), clockwise270(p)): }

A
g\

rotations(gw) rotations2(gw)

Two Views of Programming Languages



Two

A Simple Recipe for Complexity

public Picture wallpaper (Picture p) {

return rotations(rotations(rotations(rotations(p))); }

public Picture design (Picture p) {

return rotations2(rotations2(rotations2(rotations2(p))); }

wallpaper(gw)
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A Quilt Problem

How do we build this
complex quilt ...

... from simple primitive parts?

triangles(Color.green, patch(Color.red)
Color.blue)
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Divide, conquer & glue

problem P into subproblems.

each of the subproblems, &
(combine)

the solutions to the
subproblems into a solution
S for P.
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Divide the Quilt in Subproblems

[
-
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Conquer the Subproblems
using wishful thinking

clockwise270(quadrant()) quadrant()

clockwise180(quadrant()) clockwise90(quadrant())
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Glue the Solutions to Solve the Problem

Picture quilt () {
fourPics(clockwise270(quadrant()),
quadrant(),
clockwise180(quadrant()),
clockwise90(quadrant())):;
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Abstracting Over the Glue

Picture quilt() {
rotations (quadrant());

}
Picture rotations (Picture p) {
fourPics(clockwise270(p), p.
clockwisel180(p), clockwise90(p));
}
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Now Figure out quadrant()

quadrant()
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Continue the Descent ...

star(Color.red, Color.green, Color.blue)
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And Descend Some More ...

starQuadrant(Color.red, Color.green, Color.blue)
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Until we Reach Primitives

patch(Color.red) triangles(Color.green, Color.blue)
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Knitting Primitives

A( Color.red, B( Color.red,
Color.blue, Color.blue,
Color.green, Color.green,
Color.yellow, Color.yellow,
Color.magenta); Color.magenta);
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A Kn i.r-l- i ng PGTTer'n = I::iIJI:blue, red, yellow) —

public Picture tileKnit
(Picture p1, Picture p2,
Picture p3, Picture p4) {
return
fourSame(
fourSame(
fourPics(pl, p2, p3, p4)));
}

public Picture knit3(Color c1, Color c2, Color c3) {
return tileKnit(B(cl, c2, cl, c3, cl),
clockwise90(B(cl, c3, c2, c2, cl)),
flipHorizontally(B(cl, c3, cl1, c2, cl)),
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flipHorizontally(clockwise90(A(cl, c2, c3, c3, c1)))); }
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"Religious” Views

The use of COBOL cripples the mind; its teaching should, therefore, be
regarded as a criminal offense. - Edsger Dijkstra

It is practically impossible to teach good programming to students that
have had a prior exposure to BASIC: as potential programmers they are
mentally mutilated beyond hope of regeneration. - Edsger Dijstra

You're introducing your students to programming in C? You might as well
give them a frontal lobotomy! - A colleague of mine

A LISP programmer knows the value of everything, but the cost of nothing.
Alan Perlis

A language that doesn't affect the way you think about programming, is not
worth knowing. . Alan Perlis
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General Purpose PLs

JAVA
FORTRAN

Scheme
C/C++

Python

Perk
IVIL

Ruby
CommonLisp

Haskell




Domain Specific PLs

HTML

Fxcel CSS

OpenGL ponasdoripl

INEIatlial

IDL
PostSeript

laTeX
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Plug #5: €S112 Computation for the Sciences

http://cs.wellesley.edu/~cs112/
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PL Implementation: Interpretation

Program in
language L

Interpreter Machine M
for language L

on machine M
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PL Implementation: Translation

-

Program in

language. A Program in

A to B translator |qn9que B

" 4
=

Interpreter Machine M
for language B
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PL Implementation: Embedding

Program in Interpreter Machine M
language A for language B

embedded in on machine M
language B
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Future Work

Languages for making artifacts on
laser cutter & 3D printer

Generalizing tools for creating blocks languages.

Do you need a domain specific language?
Maybe I can help!
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