Two Views of
Programming Languages

Mechanical vs. Linguistic

Franklyn Turbak
Computer Science Department

Science Center Faculty Seminar
Wellesley College
Thursday, April 8, 2010

Overview

o What is a programming language?
Mechanical vs. linguistic views.

o Along the way: what do programming language
designers & implementers think about?
syntax, semantics, pragmatics.

o Several shameless plugs

Two Views of Programming Languages

Plug #1: Grand Challenges Summit

The Educational Imperatives
of the Grand Challenges

3 = ':‘ .l\

Part of a national summit series based on the National Academy of Engineering’s Wellesley College
14 “Grand Challenges,” critical problems we must solve to ensure a sustainable future, Wellesley, MA
General series info: http /fwwaw.grandchallengesummit.org/

http://grandchallengesummit.olin.edu/

Two Views of Programming Languages

Programming Languages: Mechanical View

A computer is a machine. Our aim is To make the
machine perform some specified actions. With some
machines we might express our intentions by
depressing keys, pushing buttons, rotating knobs,
etc. For a computer, we construct a sequence of
instructions (this isa " " program'’) and present this
sequence to the machine.

- Laurence Atkinson, Pascal Programming

Two Views of Programming Languages

PicoBlocks

Kinetic Scul ture

www.picocricket.com

s

Create the sculpture

Start by connecling the b:g red gear lo the motor — there are lots
of ways 1o altach things lo it. For example, you can aftach some
LEGO® pegs lo the gear and then slip colored siraws over the pegs.

Or try attaching something else —

floppy material will work best.
Try things like pipe cleaners,
feathers, finsel, streamers,

or colored ribbons.

Shake your stuff? What moves can you

Two Views of Programming Languages

Make it dance

Change the fiming and the
direction to make different dances.

Make your sculpture
dance when you clap.

5.-1-

Make your sculplure spin
faster when you speak louder.

Make some noise
Add sounds fo your sculpture by choosing materials
that rustle, jangle; or click as they move aboul.

make?

Syntax (Form) vs. Semantics (Meaning)

Furiously sleep ideas green colorless.

Colorless green ideas sleep furiously.

Little white rabbits sleep soundly.

Two Views of Programming Languages 2

Syntax Examples: Absolute Value Function

Logo: to abs :nifelse :n < O [output (O - :n)] [output :n] end
Javascript: function abs (n) {if (n < O) return -n; else return n;}
Java: public static int abs (int n) {if (n < O) return -n; else return n;}

Python:
def abs(n):
ifn<O:
return -n
else:
return n

Scheme: (define abs (lambda (n) (if (< n O) (- n) n)))
PostScript: /abs {dup O I+ {O swap sub} if} def

Two Views of Programming Languages

Plug #2: Design Concepts in Programming Languages

Design Concepts
in Programming
Languages

FRANKLYN TURBAK AND
DAVID GIFFORD

WITH MARK A. SHELDON

Two Views of Programming Languages

App Inventor For Android: Designer Window

"' App Inventor
for Android afpfia —— e e

Package for Phone ~ § Blocks Editoris open

Button
A simple button

Canvas
Surface for drawing
graphics and
maniputating sprites

CheckBox

Image
A picture

Label
A piece of text

ListPicker
Choose from & popup list
of options. Note: The
ltems designer property
s now deprecaled.
Please use
ElementzFromString.

Two Views of Programming Languages

App Inventor For Android: Blocks Window

My Definitions)) |
KittySound

Kittyl‘abel
KittyButton

Accelerometersensori

" number 123

Two Views of Programming Languages

Programming Language Layers

user libraries

Two Views of Programming Languages

Plug #3: Scratch

< ke (o] Cowen) [sove) Comes an) Cotarwt] [omcin | [soponge | [extrae | [oramt e |

sl Bbabirs Be B
wrl havs® ta B2
il B La @Y

s | b b rmark W im0 [7)

ek Bekoerbol cmpn W 1= QY

st Bwwel 0w [§

:-l_--ll-"'u-q o e |
lrvmbvant Hoci e |
ot Al tstitrd 3

wnmbant (hitnd | e st
e I S — -

N Resehiavel H D
[mlcaat fai ﬁ

[t) wmn
Ih.— I.-l'-dhu. P

http://scratch.mit.edu/

Two Views of Programming Languages

Example: Line Follower

Two Views of Programming Languages

Line Following Code: Abstract Version

to follow-line
go-forward
loop [if sees-black? left-sensor [pivot-left]
if sees-black? right-sensor [pivot-right]]
end

to go-forward
left-wheel on thisway
right-wheel on thisway
end

to pivot-left
left-wheel of f
right-wheel on thisway
end

to pivot-right
right-wheel of f
left-wheel on thisway
end

to left-wheel
a,
end

to right-wheel
bl
end

to sees-black? :sensor-value
output :sensor-value > 100
end

o left-sensor
output sensor O
end

to right-sensor
output sensor 1
end

Two Views of Programming Languages

Line Following Code w/o0 Abstractions

to follow-line
a, on thisway b, on thisway
loop [if (sensor O) > 100
[a, of f b, on thisway]
if (sensor 1) > 100
[b, of f a, on thisway]]

end

Two Views of Programming Languages

Programming Language Essentials

Two Views of Programming Languages

Plug #4: SICP

Two Views of Programming Languages

PictureWorld

KnitWarld

(ARARA]

" knit3(blue, red, yellow)

’.,w-\.,b.\._t,\.,brA

‘o ..\, X 08,
) €C) €C) ¢ Y
1) .A. L .. .

..\, ..)

\

Two Views of Programming Languages

PictureWorld: Some Primitive Pictures

bp
(blue patch)

rp
(red patch)

gw
(green
wedge)

P

Two Views of Programming Languages

mark

leaves

empty

Rotating Pictures

public Picture clockwise90(Picture p); // Returns protated 90° clockwise
public Picture clockwisel80(Picture p); // Returns p rotated 180° clockwise
public Picture clockwise270(Picture p); // Returns p rotated 270° clockwise

clockwise90(gw)

clockwise180(gw) clockwise270(gw)

Flipping Pictures

public Picture flipHorizontally(Picture p); // Returns p flipped across vert axis
public Picture flipVertically(Picture p); // Returns p flipped across horiz axis
public Picture flipDiagonally(Picture p). // Returns p flipped acros diag axis

gw flipHorizontally(gw)

/

flipVertically(gw) flipDiagonally(gw)

Putting one picture beside another

// Returns picture resulting from putting pl beside p2
public Picture beside(Picture p1, Picture p2);

// Returns picture resulting from putting pl beside p2,
// where pl uses the specified fraction of the rectangle.
public Picture beside(Picture pl, Picture p2, double fraction);

beside(gw,rp) beside(gw,rp,0.25) beside(gw,rp,0.75)

Two Views of Programming Languages

Putting one picture above another

// Returns picture resulting from putting pl above p2
public Picture above(Picture p1, Picture p2);

// Returns picture resulting from putting pl above p2,
// where pl uses the specified fraction of rectangle.
public Picture above(Picture pl, Picture p2, double fraction);

above(gw,rp) above(gw,rp,0.25) above(gw,rp,0.75)

Two Views of Programming Languages

Putting one picture over another

// Returns picture resulting from overlaying pl on top of p2
public Picture overlay(Picture pl, Picture p2);

overlay(mark,leaves) overlay(leaves,mark)

Two Views of Programming Languages

Combining Four Pictures

public Picture fourPics (Picture pl1, Picture p2, Picture p3, Picture p4) {
return above(beside(pl,p2), beside(p3, p4)); }

public Picture fourSame (Picture p) { return fourPics(p, p. p, p): }
l L L l

fourPics(bp,gw,mark,rp) fourSame(leaves)

Two Views of Programming Languages

Repeated Tiling

public Picture tiling (Picture p) {

return fourSame(fourSame(fourSame(fourSame(p)))): }

NN,
NIV NN NN
NAVINNNINININNININNNIN)
NININNINININININ SIS,
NI NNNNNNINNINNNN
NININININININININ SISO
NNNNNNINNNINNINNNN
NN
NN NINININININ N NI
AN
NIV NN
NAVINNNINININNINNINNNIN)
NININININININININ N SIS
VNN NN,
NV NNNNNNNNNNN

tiling(mark)

Two Views of Programming Languages

P |
P |
- B |
- |
il ol ol ol] ol ol] ol ol ol -
P |
- S - R |
- |
P |
- B |
- |
P |
- B |
- - - R |
- |
ol ol ool ool ddd.d.d

tiling(gw)

Rotation Combinators

public Picture rotations (Picture p) {
return fourPics(clockwise270(p), p, clockwisel80(p), clockwise90(p)): }

public Picture rotations2 (Picture p) {
return fourPics(p, clockwise90(p), clockwisel80(p), clockwise270(p)): }

A
g\

rotations(gw) rotations2(gw)

Two Views of Programming Languages

Two

A Simple Recipe for Complexity

public Picture wallpaper (Picture p) {

return rotations(rotations(rotations(rotations(p))); }

public Picture design (Picture p) {

return rotations2(rotations2(rotations2(rotations2(p))); }

wallpaper(gw)

Views of Programming Languages

design(gw)

A Quilt Problem

How do we build this
complex quilt ...

... from simple primitive parts?

triangles(Color.green, patch(Color.red)
Color.blue)

Two Views of Programming Languages 2

Divide, conquer & glue

problem P into subproblems.

each of the subproblems, &
(combine)

the solutions to the
subproblems into a solution
S for P.

Two Views of Programming Languages

Divide the Quilt in Subproblems

[
-

Two Views of Programming Languages

Conquer the Subproblems
using wishful thinking

clockwise270(quadrant()) quadrant()

clockwise180(quadrant()) clockwise90(quadrant())

Two Views of Programming Languages 2

Glue the Solutions to Solve the Problem

Picture quilt () {
fourPics(clockwise270(quadrant()),
quadrant(),
clockwise180(quadrant()),
clockwise90(quadrant())):;

Two Views of Programming Languages

Abstracting Over the Glue

Picture quilt() {
rotations (quadrant());

}
Picture rotations (Picture p) {
fourPics(clockwise270(p), p.
clockwisel180(p), clockwise90(p));
}

Two Views of Programming Languages

Now Figure out quadrant()

quadrant()

Two Views of Programming Languages

Continue the Descent ...

star(Color.red, Color.green, Color.blue)

Two Views of Programming Languages

And Descend Some More ...

starQuadrant(Color.red, Color.green, Color.blue)

Two Views of Programming Languages

Until we Reach Primitives

patch(Color.red) triangles(Color.green, Color.blue)

Two Views of Programming Languages

Knitting Primitives

A(Color.red, B(Color.red,
Color.blue, Color.blue,
Color.green, Color.green,
Color.yellow, Color.yellow,
Color.magenta); Color.magenta);

Two Views of Programming Languages

A Kn i.r-l- i ng PGTTer'n = I::iIJI:blue, red, yellow) —

public Picture tileKnit
(Picture p1, Picture p2,
Picture p3, Picture p4) {
return
fourSame(
fourSame(
fourPics(pl, p2, p3, p4)));
}

public Picture knit3(Color c1, Color c2, Color c3) {
return tileKnit(B(cl, c2, cl, c3, cl),
clockwise90(B(cl, c3, c2, c2, cl)),
flipHorizontally(B(cl, c3, cl1, c2, cl)),

¥

E h
b

Vo A

e
3

@\
Y

N lg

-y
>,
-

»
J

\,

e '..4
3 {

\
A
. ‘1I
1‘ F’

v

¥ L

flipHorizontally(clockwise90(A(cl, c2, c3, c3, c1)))); }

Two Views of Programming Languages

"Religious” Views

The use of COBOL cripples the mind; its teaching should, therefore, be
regarded as a criminal offense. - Edsger Dijkstra

It is practically impossible to teach good programming to students that
have had a prior exposure to BASIC: as potential programmers they are
mentally mutilated beyond hope of regeneration. - Edsger Dijstra

You're introducing your students to programming in C? You might as well
give them a frontal lobotomy! - A colleague of mine

A LISP programmer knows the value of everything, but the cost of nothing.
Alan Perlis

A language that doesn't affect the way you think about programming, is not
worth knowing. . Alan Perlis

Two Views of Programming Languages

General Purpose PLs

JAVA
FORTRAN

Scheme
C/C++

Python

Perk
IVIL

Ruby
CommonLisp

Haskell

Domain Specific PLs

HTML

Fxcel CSS

OpenGL ponasdoripl

INEIatlial

IDL
PostSeript

laTeX

Two Views of Programming Languages

Plug #5: €S112 Computation for the Sciences

http://cs.wellesley.edu/~cs112/

Two Views of Programming Languages

PL Implementation: Interpretation

Program in
language L

Interpreter Machine M
for language L

on machine M

Two Views of Programming Languages

PL Implementation: Translation

-

Program in

language. A Program in

A to B translator |qn9que B

" 4
=

Interpreter Machine M
for language B

Two Views of Programming Languages on machine M

PL Implementation: Embedding

Program in Interpreter Machine M
language A for language B

embedded in on machine M
language B

Two Views of Programming Languages

Future Work

Languages for making artifacts on
laser cutter & 3D printer

Generalizing tools for creating blocks languages.

Do you need a domain specific language?
Maybe I can help!

Two Views of Programming Languages

