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Abstract. We examine the information-theoretic foundations of the in-
creasingly popular notion of differential privacy. We establish a con-
nection between differential private mechanisms and the rate-distortion
framework. Additionally, we also show how differentially private distri-
butions arise out of the application of the Mazimum Entropy Principle.
This helps us locate differential privacy within the wider framework of
information-theory and helps formalize some intuitive aspects of our un-
derstanding of differential privacy.

1 Introduction

The problem of releasing aggregate information about a statistical database
while simultaneously providing privacy to the individual participants of the
database has been extensively studied in the computer science and statistical
communities. Differential privacy (DP) has been one of the main lines of re-
search that has emerged out of attempts to formalize and solve this problem,
over the last few years. See [5] for a survey. It formalizes the idea that pri-
vacy is provided if the “identification risk” an individual faces does not change
appreciably if he or she participates in a statistical database.

Often, in the context of data privacy, and more specifically, differential pri-
vacy, the claim is made that privacy and wtility are conflicting goals. The applica-
tion of differential privacy to several problems of private data analysis has made
it clear that the utility of the data for a specific measurement degrades with the
level of privacy. The greater the level of privacy, the less “useful” the data is, and
vice versa. This paper attempts to understand the precise information-theoretic
conditions that necessitate such a trade-off. We observe that differentially-private
mechanisms arise out of minimizing the information leakage (measured using
information-theoretic notions such as mutual information) while trying to max-
imize ”utility”. The notion of utility is captured by the use of an abstract dis-
tortion function dist that measures the distortion between the input and the
output of the mechanism. This is a general mechanism, and can be instantiated
appropriately depending on the problem domain. The main observation of this
paper is that the probability distribution that achieves this constrained mini-
mization corresponds to the so-called exponential mechanism [11]. We also show
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how differentially-private mechanisms arise out of the application of the princi-
ple of mazimum entropy, first formulated by Jaynes [7]. We see that among all
probability distributions that constrain the expected distortion to stay within a
given value, the differentially private mechanism, corresponds to the distribution
that maximizes the conditional entropy of output given the input. This, to our
knowledge, is the first attempt at providing an information theoretic founda-
tion for differential privacy. In Section 2 we review the appropriate definitions
and notions from differential privacy. In Section 2.1 we discuss related work. In
Sections 3 and 4 we present our main results.

2 Definitions and Background

In this section we present the background and the related work in differential
privacy. Assume a probability distribution px(x) on an alphabet X'. X may ei-
ther be a scalar or vector space. Let X; € X be a random variable representing
the i-th row of a database. Then the random variable representing a database
of size n, (whose elements are drawn from X) is X = (X, X5...,X,). x repre-
sents the value that the random variable X takes, that is the observed database
x. Note that the X’s themselves may multi-dimensional representing the k at-
tributes of the database. Dwork et al. [6] define the notion of differential privacy
that provides a guarantee that the probability distribution on the outputs of a
mechanism is “almost the same,” irrespective of whether or not an individual
is present in the data set. Such a guarantee incentivizes participation of indi-
viduals in a database by assuring them of incurring very little risk by such a
participation. To capture the notion of a user opting in or out, the “sameness”
condition is defined to hold with respect to a neighbor relation; intuitively, two
inputs are neighbors if they differ only in the participation of a single individual.
For example, Dwork et al. [6] define datasets to be neighbors if they differ in a
single row. McGregor et. al [10] define differential privacy, equivalently, in terms
of probability distributions. This formulation is more useful for us.

Definition 1. [10] Let x be a database of length n, drawing each of its elements
from an alphabet X, then an e-differentially private mechanism on X is a family
of probability distributions {m(o|x) : x € X"} on a range O, such that for
every neighboring x and X', and for every measurable subset o C O, w(o|x) <
7(o|x’) exp(e).

Notice that the distribution (or equivalently) mechanism is parametrized by
the input database x or x’, whichever is relevant.

One mechanism that Dwork et al. [6] use to provide differential privacy is the
Laplacian noise method which depends on the global sensitivity of a function:

Definition 2. [6] For f : X® — RY, the global sensitivity of f is Af =
maxyx || f(x) = f(x)]];-

Another, more general (though, not always computationally efficient) method
of providing differential privacy is the so called exponential mechanism proposed
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by McSherry and Talwar [11]. This mechanism can be said to be parametrized
by a “distortion function” dist(x,0) that maps a pair of an input data set
x (a vector over some arbitrary real-valued domain) and candidate output o
(again over an arbitrary range O) to a real valued “distortion score.” Lower
valued distortions imply good input-output correspondences. It assumes a base
measure 7 on the range O. For a given input x, the mechanism selects an output
o with exponential bias in favor of low distorting outputs by sampling from the
following exponential distribution [11]:

7m°(0) x exp(—e dist(x,0)) - 7(0). (1)

Theorem 1. [11] The exponential mechanism, when used to select an output
o € O, gives 2e Adist-differential privacy, where Adist is the global sensitivity
of the distortion function dist.

The exponential mechanism is a useful abstraction when trying to understand
differential privacy because it generalizes all specific mechanisms, such as the
Laplacian mechanism introduced above. The exponential mechanism because
of the generality of the input space X, the output range O and the distortion
function dist, captures all differentially private mechanisms. The 7¢ denotes the
dependence of the posterior on 7(o|x), on the parameter ¢.

2.1 Related work

Some information-theoretic notions and metrics of data privacy exist in the liter-
ature. See [17], [3], for example. Sankar et. al [14] consider the problem of quan-
tifying the privacy risk and utility of a data transformation in an information-
theoretic framework. Rebello-Monedero [13] consider the problem in a similar
framework and define an information-theoretic privacy measure similar to an ear-
lier defined measure of ¢-closeness [8]. A connection between information theory
and differential privacy through Quantitative flow has been made by Alvim et
al. [1]. Alvim et al. [1] use the information-theoretic notion of Min-entropy for
the information leakage of the private channel, and show that differential pri-
vacy implies a bound on the min-entropy of such a channel. They also show how
differential privacy imposes a bound on the utility of a randomized mechanism
and under certain conditions propose an optimal randomization mechanism that
achieves a certain level of differential privacy. Barthe and Kopf [2] also develop
upper bounds for the leakage of every e-differentially private mechanism. Our
work is different from (but related to) theirs in the sense that we do not aim at
finding bounds for the information leakage (or risk) of the differentially-private
mechanisms. Our aim is to understand the information-theoretic foundations
of the framework of differential privacy. Our work is in the spirit of Sankar et
al. [14] and Rebello-Monedero et al. [13] but examining how a risk-distortion
tradeoff gives rise to differentially-private mechanisms. In previous work [12] we
examine the information theoretic connections of differentially-private learning.
This was done in a specific context of learning, and the general implications were
not clear.
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3 Differentially-private mechanisms in a risk-distortion
framework

Assume an input space X", and a range O. For any x € X", and any output
o € O, a distortion function dist is specified. Consider a probability measure
px(x) on X and a prior probability = on O .

Given a database x, which is a set of n random independent samples X =
{X1,...X,} € X", where each X; is drawn i.i.d from px (x), and an output o, the
“utility” of o for x, is given by (the negative of ) a function dist : ™ x O — R.

The expected distortion of a mechanism 7o x (0|x) is:

]Exrvpx(x)“'EONTr(o\x) diSt(X, O).

Rebollo-Monedero et. al [13] define a privacy risk function to be the mutual
information between the revealed and the hidden random variables. Similarly, we
define a privacy risk function R to be the mutual information between the input
(the underlying database) and the output of the differentially private mechanism,
that is, R = I(X;O). We know that the mutual information

I(X;0) = H(O) — H(O[X) = H(X) — H(X]|O), (2)

where H(X) represents the entropy of the random variable of X and H (O|X)
the conditional entropy of O given X. So, the mutual information is the reduction
in the uncertainty about X by knowledge of output O or vice versa (See [4] for
example). Also we have that
O — (O X)p(X) _ 7(0[X)

R =1(X;0) =Elog T (0)p(X) = Elog (0] (3)

This is equal to the conditional Kullback-Leibler divergence between the pos-
terior and prior distributions denoted by Dy, (7(O|X)||7(0O)). If the prior and
posterior distributions are the same, then the privacy risk is zero, but that also
means that the distortion may be arbitrarily high. However, we are interested
in minimizing the distortion function associated with the posterior distribution,
while minimizing the privacy risk R. As a result, we are interested in quantify-
ing this risk-distortion trade-off. Notice that untill this point, our risk-distortion
framework is formulated only in information-theoretic terms. We will see how
the differentially-private mechanism arises out of this framework.

As in Rebollo-Mondero et. al [13], we are interested in a randomized output,
minimizing the privacy risk given a distortion constraint (or viceversa). Unlike
their treatment, however, the potential outputs are more general than perturba-
tions of the input database elements to capture differentially-private mechanims
(both interactive and noninteractive). The privacy risk-distortion function is de-
fined analogously (as in Rebollo-Mondero [13]), as

R(D) = inf I1(X;0) (4)
To|x : Ex,o dist(x,0) <D



3.1 Connection to the rate-distortion framework

Rebollo-Mondero et. al relate the risk-distortion function formulated in Equa-
tion 4 [13] to the well-known rate-distortion problem in information theory first
formulated by Shannon. (See [4], for example). Shannon’s rate-distortion the-
ory is applied in the context of lossy compression of data. The objective is to
construct a compact representation ( a code) of the underlying signal (or data),
such that the average distortion of the signal reconstructed from this compact
representation is low. Rate-distortion theory determines the level of expected
distortion D, given the desired information rate R of the code or vice-versa us-
ing the rate-distortion function R(D) similar to that in Equation 4 where R is
the information rate of the code, when applied to the compression problem. So,
the rate-distortion function is defined as the infimum of the rates of codes whose
distortion is bounded by D.
Using this connection, one can prove the following:

Theorem 2. [13] The privacy risk-distortion function is a conver and non-
increasing function of D.

The problem is to minimize the privacy risk, defined thus, under the expected
distortion constraint. As a function of the probability density, T7ox (0[x), the
problem is also convex. We can also use Lagrangian multipliers to write Equa-
tion 4 in an equivalent unconstrained form. We have the functional

Flr(ofx)] = éI(X; 0) + Edist(X, 0). (5)

for a positive €. Functional F needs to be minmized among all normalized
7(0|x). So we can find the distribution that minimizes this funtion, by using stan-
dard optimization techniques. Standard arithmetic manipulation, leads Tishby
et al. [16] to prove the following theorem:

Theorem 3. [16] The solution of the variational problem, % = 0, for
normalized distributions m(o|x), is given by the exponential form

exp(—e dist(x,0))
Z(x)

7 (o|x) = 7(0). (6)
where Z(x,¢€) is a normalization (partition) function. Moreover, the Lagrange
multiplier € is determined by the value of the expected distortion, D, is positive
and satisfies, g% = —¢.

We have that among all the conditional distributions, the one that optimizes
this functional in Equation 5 is ¢ in Equation 6 above. This is our main result,
that the distribution that minimizes the privacy risk, given a distortion con-
straint is a differentially-private distribution. From examining equation 1 and
Theorem 1 we have

Theorem 4. The distribution that minimizes Equation 4 defines a 2¢Adist-
differentially private mechanism.
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Figure 1 illustrates the tradeoff. It plots the unconstrained Lagrangian func-
tion L(D,R) = D + %R, which because of the convexity of the risk-distortion
function is also convex. For a given privacy parameter £, we consider lines of
slope —e. We see that these lines intersect the curve at various points, these
points represent the risk-distortion tradeoffs for those values. As we should ex-
pect, a high privacy-risk implies a low distortion and vice-versa. We see that for
a given value of —¢, the line that is tangent to the curve at represents the opti-
mal tradeoff point between the risk and the distortion. The value of the function
L(D,R) on these lines is a constant, which implies that in some way the level of
privacy imposes a value on the function L, since such a line can only intersect
the curve in at most two places.
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Fig. 1: Risk-distortion curve

4 Differential privacy arising out of the Maximum
Entropy principle or Minimum Discrimination
Information principle

The principle of mazimum entropy was proposed by Jaynes [7]. Suppose, a ran-
dom variable X takes a discrete set of values x; with probabilities specified by
px(x;), and we know of constraints on the distribution px, in the form of ex-
pectations of some functions of these random variables. Then the principle of
maximum entropy states that of all distributions px that satisfy the constraints,
one should choose the one with the largest entropy H(X) = — Y. p(x;) log(p(x;).
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In the case of a continuous random variable, the Shannon entropy is not
useful and for such cases we apply the principle of minimum discrimination
information [7]. It states that given a prior p on X, a new distribution ¢ should be
chosen so that it as hard as possible to distinguish it from the prior distribution
p, that is the new data should produce as small a gain in information as possible
given by Dk, (q/lp)-

We show that the application of the principle of Maximum Entropy to the
distribution 7(o|x) gives rise to a differentially-private mechanism.

When trying to find a distribution 7o x (o[x), we utilize the Maximum En-
tropy Principle. Among all distributions p(o|x), we choose the one that maxi-
mizes the entropy H(O|X) subject to satisfying the constraint that the expected
distortion function dist(o,x) is bounded by a quantity D. So we have,

maximize H(O|X)
subject to Zdist(x,o)p(o\x)p(x) <D.

From equation 2 we observe that minimizing the mutual information as in
Equation 4 is equivalent to maximizing the entropy H(O|X).

Shannon introduced the concept of equivocation as the conditional entropy of
a private message given the observable [15]. Sankar et. al [14] use equivocation as
a measure of privacy of their data transformation. Their aim is also to maximize
the average equivocation of the underlying secret sample given the observables
Since I(X;0) = H(X|O) — H(X), minimizing I(X;O) is also equivalent to
maximizing the conditional entropy H(X]|O), subject to constraints on the ex-
pected distortion. Therefore, the exponential distribution 7¢(0|x) as defined in
Equation 6 maximizes the conditional uncertainty about the underlying sample
given a constraint on the distortion function.

Now consider the worst case which differential privacy protects against, that
is given knowledge of the entire database except for one row i, represented as
X _;, if we look at the problem of maximizing the uncertainty of the random
variable X;, we have

maximize H(X;]0,X_;)

subject to Zdist(xi,x,i, o)p(z;|x_;,0)p(x_;,0) <D

Again this is equivalent to minimizing the mutual information I(X, O) when
X _; and O are given.

A note on incorporating auxilliary information: Usually, differential privacy
provides guarantees on the inference, irrespective of any side or auxilliary infor-
mation. This can be easily incorporated in our framework like Sankar et. al [14]
by making all the distributions above conditional on the side information.

5 Conclusion and future work

We presented an information-theoretic foundation for differential privacy, which
to our knowledge is the first such attempt. We formulated differential privacy
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within the broader frameworks of various problems in information theory such
as the rate-distortion problem and the maximum entropy principle. There are
several directions for future work.

One, we can try to apply the risk-distortion framework to examine the gener-
ation of private synthetic data when the underlying data generating distribution
px (x) is known. Additionally, one could try derive bounds on the mutual infor-
mation in such cases. Second, we can examine the deployment of this framework
to problems where the distortion function dist is specified. Another direction is
to examine the notion of compressive privacy [9] in this rate-distortion frame-
work and derive bounds for the rate.
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