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Abstract Reality-based interfaces (RBIs) such as table-
top and tangible user interfaces draw upon ideas from

embodied cognition to offer a more natural, intuitive, and

accessible form of interaction that reduces the mental effort
required to learn and operate computational systems.

However, to date, little research has been devoted to

investigating the strengths and limitations of applying
reality-based interaction for promoting learning of complex

scientific concepts at the college level. We propose that

RBIs offer unique opportunities for enhancing college-
level science education. This paper presents three main

contributions: (1) design considerations and participatory

design process for enhancing college-level science educa-
tion through reality-based interaction, (2) reflections on the

design, implementation, and validation of two case stud-

ies—RBIs for learning synthetic biology, and (3) discus-
sion of opportunities and challenges for advancing learning

of college-level sciences through next-generation

interfaces.
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1 Introduction

Over the past two decades, human–computer interaction

(HCI) research has generated a broad range of interaction

styles that move beyond the desktop into new physical and
social contexts. Key areas of innovation have been table-

top, tangible, and embodied user interfaces. These inter-

action styles share an important commonality: leveraging
users’ existing knowledge and skills of interaction with the

real non-digital world. Thus, they are often unified under
the umbrella of reality-based interfaces (RBIs) [42].

Building upon ideas from embodied cognition, RBIs offer a

more natural, intuitive, and accessible form of interaction
that reduces the mental effort required to learn and operate

a computational system [42].

Given the potential of RBIs, numerous research proto-
types have explored how these emerging interaction styles

will impact education. Several studies have examined the

effects of RBIs on learning, investigating the benefits and
deficits of reality-based interaction in the contexts of for-

mal and informal learning (e.g., [16, 20, 52, 60, 68]).

However, most of these studies have focused on children.
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To date, little research has been devoted to investigating

the strengths and limitations of utilizing RBIs for com-
municating complex concepts to older learners at the high

school or college levels. Our focus is on investigating the

application of reality-based interaction for supporting col-
lege-level science education. In our work, we have

explored the application of reality-based interaction for

enhancing inquiry-based learning in data-intensive areas
such as genomics [71, 74, 75], phylogeny [69] and phe-

nology [79]. Our recent work, which we present in this
paper, examines how reality-based interaction techniques

can be applied to facilitate problem-driven learning and

understanding in synthetic biology. We chose to focus on
synthetic biology since it is a new area of research where

interactive tools currently remain immature. Also, design-

ing for problem-driven learning at the intersection of sci-
ence and engineering can help move forward the theory

and practice of educational interfaces, software, and

technology.
Synthetic biology is an emerging research area that

couples engineering and biology with the goal of building

sophisticated biological circuits for novel applications [15].
For example, synthetic biology is used in the development

of low-cost drugs for Malaria [52], in the creation of toxin

and explosive compound sensing bacteria [45], and in the
production of energy from bacteria [44]. The bottlenecks

and challenges along the path to realizing the full potential

of this field are formidable and numerous. For one, syn-
thetic biology designs are currently implemented using a

complex ad-hoc process that limits their scale and com-

plexity [84]. As a result, undergraduate students in syn-
thetic biology typically have limited opportunity to develop

design competencies [53]. Providing students with oppor-

tunities to develop synthetic biology projects poses a
challenge due to the cost and skills required for using

biological technologies. Synthetic biology solutions have

the potential to impact public policy decisions as well as
environmental and personal choices. Thereby, in addition

to training future scientists, it is important to make core

concepts of synthetic biology accessible and understand-
able to non-scientists. This goal is often challenged by the

limited access to biological technologies.

In this paper, we present two case studies of applying
reality-based interaction for learning in synthetic biology.

Using these case studies as a starting point, we discuss how

ideas from reality-based interaction can be applied to
facilitate problem-driven learning and understanding of

college-level science.

Our contribution in this work is threefold. First, we
describe a set of design considerations and a participatory

design process for facilitating problem-driven learning in

synthetic biology through reality-based interaction. Sec-
ond, we reflect on the design, implementation, and

validation of two case studies of RBIs for synthetic biol-

ogy: (1) MoClo Planner—a multi-touch interface for col-
laborative bio-design; (2) SynFlo—a tangible and

embodied interface for communicating core synthetic

biology concepts to non-scientists. Finally, drawing on our
described experiences, we discuss opportunities and chal-

lenges for advancing learning in college-level sciences

through reality-based interaction.
We begin by revisiting reality-based interaction and core

ideas of embodied cognition, followed by a brief survey of
RBIs for scientific discovery and education, and design

frameworks for RBI. We also survey related work on

bioinformatics tools for bio-design.

2 Background

2.1 Reality-based interaction

RBI is a descriptive framework [42] that highlights salient

commonalities of emerging interaction styles that diverge

from the traditional window, icon, menu, pointing device
(WIMP) interaction style.

RBIs draw strength by building on users’ preexisting

knowledge of the real, non-digital world to a much greater
extent than before. In particular, they leverage four aspects

of interaction with the non-digital world:

• Naı̈ve physics The informal human perception of basic

physical principles such as gravity, friction, velocity,

the persistence of objects, and relative scale.
• Body awareness and skills The familiarity and under-

standing that people have of their own bodies. This

includes proprioception, range of motion, and the
ability to coordinate movement of multiple limbs.

• Social awareness and skills The general awareness that

people have of the presence of others and of their skills
of social interaction, including verbal and nonverbal

communication, the ability to exchange physical

objects and work with others to collaborate on a task.
• Finally, environment awareness and skills—the phys-

ical presence that people have in their spatial environ-

ment and their ability to navigate in and alter their
environment.

The RBI framework suggests that basing interaction on
preexisting real-world knowledge and skills may reduce

the mental effort required to operate a system [42]. This

reduction might speed up learning and encourage explo-
ration because users do not need to learn interface-specific

skills.

While RBI has been developed for a broad range of
application domains, relatively little research has been

devoted to investigating RBI in the context of scientific
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discovery and higher-education. Following, we describe

some RBI systems that illustrate the potential of supporting
scientific discovery and education.

2.2 Embodied cognition and scientific thinking

RBI is based on ideas from embodied cognition, which

holds that the body, physical activity, and the environment
play significant roles in cognitive processes [14, 83].

Here, we describe three ideas from embodied cognition
that are of particular importance when designing for sci-

entific discovery and learning:

• Coupling space and meaning One strategy for reducing
cognitive workload is to make use of the environment

in strategic ways [83]—leaving information in the

physical environment; for example, using spatial con-
figurations, rather than taking time to fully encode it.

Actions such as arranging objects, annotating them, and
counting them all recruit external elements to decrease

mental load. RBIs often allow users to easily construct

meaningful spatial configurations as well as to store
information artifacts, so they can be readily accessed

when needed—reducing load from short-term memory.

• Thinking through action Various studies have demon-
strated how physical artifacts support cognition by

serving as ‘‘thinking props’’. Probably, most well-

known are Kirsh’s [46, 47] investigations of epistemic
actions, which are not functional but help explore

options and support memory. Thus, epistemic actions

can reduce the complexity of activities. Interfaces that
make epistemic actions such as pointing, turning, and

arranging easily support cognition.

• Bridging across representations External representa-
tions (e.g., models, diagrams, notations) support the

mind in constructing new knowledge and solving

problems [65]. Scientists often use external artifacts
to support their reasoning process [54, 55]. One famous

example is the physical model of DNA built by Watson

and Crick, which played an important role in discov-
ering its structure [66]. There are many different ways

in which RBIs can employ external representations:

some application domains have inherent geometrical or
topological representations; other domains have repre-

sentational conventions.

2.3 Reality-based interfaces for scientific discovery

and education

Brooks et al. [25] developed the first haptic display for

scientific visualization to investigate docking positions for
drugs. Gillet et al. [36] presented a tangible user interface

for molecular biology that used augmented reality

technology to view 3D molecular models. Schkolne et al.

[67] developed an immersive tangible interface for the
design of DNA molecules. While these systems highlight

potential benefits of RBIs for scientists, they focus on the

representation of objects with inherent physical structure.
We are interested in a broader use case, where abstract

information is represented and manipulated.

A few systems were developed to facilitate collaboration
among scientists across large multi-touch displays. We-

Space [82] integrates a large data wall with a multi-touch
table and personal laptops. TeamTag [63] allows biodi-

versity researchers to browse digital photographs. How-

ever, these systems target expert scientists rather than
novices and are not aimed for learning new concepts.

The eLabBench [77, 78] is a tabletop system supporting

experimental research in synthetic biology laboratories,
which provides users with situated access to heterogeneous

information in the lab. While eLabBench was designed to

enhance the work of a single expert user, we are interested
in supporting collaborative learning while promoting the

development of scientific thinking.

Finally, several RBI systems have illustrated the
potential to support science education. Most relevant to our

work are augmented chemistry [34]—a tangible user

interface for chemistry education and PhyloGenie [69]—a
tabletop interface for collaborative learning of phylogeny

through a guided activity. While these interfaces allow

users to interact with a well-defined data set, we are
interested in the development of interfaces that promote

open-ended hands-on inquiry. Involv [40] and DeepTree

[24] are tabletop interfaces for exploring the Encyclopedia
of Life that share our challenge of creating effective

interaction techniques for large data spaces. However, they

aim at informal science learning settings, which are dif-
ferent from the formal college-level laboratory settings,

which we target.

GreenTouch [79] is a collaborative environment for
engaging undergraduate students in phylogeny research,

which consists of a mobile application for data collection

and a tabletop interface for exploratory analysis. G-nome
Surfer is a tabletop interface for collaborative exploration

of genomic information [71, 74, 75]. These works highlight

how students collaborate around a tabletop to conduct an
open-ended inquiry and illustrate that tabletop interaction

supports high-level reasoning and hypothesis forming. In

this paper, we go beyond hypothesis forming and explor-
atory analysis and delve into the design and specification of

new biological systems.

2.4 Design frameworks for reality-based interfaces

There are several frameworks that inform the design of
RBIs by specifying concepts and their relations and
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providing design considerations (e.g., [34, 41, 42, 72]).

Some frameworks focus on the design of learning envi-
ronments [15, 51, 59, 60]; however, these typically target

young learners. The Tangible Learning Design Framework

[17] is a comprehensive explanatory framework that
highlights design aspects important for learning and pro-

vides guidelines based on cognitive and learning theories.

Our design, which we describe in the Sect. 5, draws on the
concepts and guidelines provided by these frameworks.

3 Related work

Our work on supporting learning in synthetic biology needs

to also be contextualized within the area of bioinformatics

tools for synthetic biology.
Biologists often use a variety of existing bioinformatics

tools in order to retrieve, compare, and study genomic

sequences. Several studies indicate that current bioinfor-
matics tools show severe limitations in supporting users to

gain deep insights [23, 43, 65].

Current software tools in synthetic biology can be
classified into two broad categories: software for wetware

tasks and software for design and planning tasks. Each

category may be further divided by user level: beginner,
intermediate, and advanced. Following, we discuss each of

these categories:

A majority of the current software tools in synthetic
biology support design and planning and are intended for

users with intermediate to advanced skills. Software tools

such as Geneious [1] and Ape [2] are popular desktop tools
for viewing and editing DNA sequences. Other software

tools (e.g., Genome Compiler [3] and Vector Express [4])

work between the sequence and part level of abstraction
allowing manual composition of genetic designs. Various

primer design tools allow sequence-level engineering of

biological parts based on biophysical constraints (e.g., [11,
64]). GenoCAD [26] and Eugene [22] supports the con-

strained combinatorial specification of biological designs.

Cello [35] and the Proto BioCompiler [19] are tools for
programmable functional specification of biological

designs.

A number of tools exist to support the curation of bio-
logical parts and designs. Repositories such as the MIT

Parts Registry [5] and Clotho [84] enable users to save

DNA sequences associated with biological designs. Other
software tools such as TinkerCell [28] and iBioSim [6]

support the modeling and simulation of biological designs.

The goal of the Synthetic Biology Open Language [2]
consortium is to standardize formats for exchange of data

and designs in synthetic biology.

Fewer software tools exist for wetware automation. Par–
Par [50] and Puppeteer [80] are two platforms for wetlab

protocol automation using liquid-handling robots for syn-

thetic biology. OpenWetware is a web-based repository of
biological protocols used by synthetic biology labs around

the world. Many software solutions exist for lab sample

information tracking and digitization of the lab notebook
[62]. In addition, vendor-specific software exists for each

programmable instrument used in synthetic biology labs

such as flow cytometers, photospectrometric DNA quanti-
fiers, electronic microscopes, and imaging systems.

While the majority of these software tools are aimed at
users with advanced knowledge and skills, a few websites

target novice users in synthetic biology. The Biobuilder

website [7] offers animations and activities for teaching
and learning synthetic biology. The iGEM competition [8]

offers resources for undergraduates to learn basic concepts

and participate in synthetic biology projects. The Learning
Trails project is a new framework under construction for

self-learning synthetic biology in an open forum with

community-created content [13]. The DIYBio group [9]
advances local community-driven practice of synthetic

biology aimed at the layperson. While informative, these

resources are rarely interactive. Our goal is to utilize
reality-based interaction to promote experiential, hands-on,

learning of synthetic biology concepts by novice users.

4 Designing for learning in synthetic biology

Our goal was to utilize reality-based interaction to develop

problem-driven learning environments for synthetic biol-

ogy. In this section, we discuss the audience, process, and
design requirements that we considered.

4.1 Audience and learning goals

At least three distinct user groups are involved in the

learning of introductory synthetic biology. Each is marked
by unique needs and learning goals:

First, undergraduate biological engineering students are

future scientists early in their career. A core synthetic
biology curriculum includes the following learning goals

[48]:

L1 designing biological systems in skillful and

responsible ways;

L2 defining, specifying, and (whenever possible)
implementing biological designs;

L3 defining the values, culture, and safety practices of

the field

However, synthetic biology students have limited

opportunity to develop design competencies and even

fewer chances to implement their designed projects [53].
This can be attributed to four factors: (1) the vast amount of
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disparate information required to characterize biological

systems; (2) the limited knowledge of how biological parts
interact; (3) the lack of mature computational tools for the

design and assembly of biological systems; and (4) the cost

and availability of biological technologies.
Second, iGEM teams consisting of students participating

in the International Genetically Engineered Machine

Competition (iGEM). The competition provides a project-
based research experience driven by real-world problems,

in which interdisciplinary teams of undergraduates learn by
engaging in synthetic biology research. Students use a kit

of standard biological parts and new parts of their own

design, to build biological systems. Alternatively, teams
competing in the software track develop tools for synthetic

biologists. Learning goals for iGEM students [53] include

L1, L2, and L3. In addition, students are expected to:

L4 Engage in actual practices of biological engineers

L5 Gain competency and confidence in laboratory techniques

Third, outreach students are enrolled in programs that

span the divide between novices and traditional students.

For synthetic biology programs, this audience typically
consists of high school students. Learning goals for this

audience include:

L6 Grasp foundational ideas in synthetic biology
L7 Recognize the excitement, promise, and risks of

cutting-edge research

An important goal for this audience is to make ideas

accessible through playful and entertaining formats. A
major challenge is the limited access to wet lab environ-

ments and biological technologies. Thus, hands-on learning

experiences in synthetic biology are rare in the context of
outreach programs.

Other audiences such as teachers, policy makers, and

citizen scientists, may also express interest in learning
synthetic biology. Kuznetsov [49] explored the develop-

ment of artifacts for supporting DIYbio citizen scientists.
Our focus is on formal and experiential learning.

4.2 Design strategy

Considering the complexity of synthetic biology, its

evolving nature, and the diverse audiences involved, our
design strategy combines rigorous user-centered and par-

ticipatory design methods. Figure 1 illustrates our design

strategy, which consists of three core aspects:

4.2.1 ‘‘Renaissance team’’

Cox [32] introduced the term ‘‘Renaissance team’’ to

describe a multidisciplinary team focused on solving

visualization problems. Our ‘‘renaissance team’’ consists of
14 faculty and students with expertise in synthetic biology,

biological engineering, computer science, HCI, informa-

tion visualization, and science education. We took several

Fig. 1 Combining rigorous
user-centered and participatory
design methods
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steps (along with continuous coordination and coaching) to
ensure that the team works together effectively: establish-

ing a common knowledge base through a 2-week-long

‘‘boot camp’’ (see Fig. 2) and pursuing a passionate goal
for the team—presenting the project as an entry in the

iGEM contest, a focal event for the synthetic biology

community.

4.2.2 Partnership and immersion

We established design partnerships with educators and

researchers in the synthetic biology community including:

16 college students and five investigators from two
research laboratories (in MIT and Boston University); a

leading educator in synthetic biology (MIT), which chairs

the BioBuilder educational foundation [7]; and an industry
expert in bioinformatics. We met with our partners on a

frequent basis throughout the development process. Our

partners participated in every stage of the project from
interviews and observations, to collaborative sense making

and ideation, to the development and refinement of multi-

ple prototypes, and final evaluations.
We began the project by interviewing our design part-

ners. Interviews were semi-structured and lasted about an
hour. We met with our partners at their work place, con-

ducting one-on-one interviews with investigators and

educators, and meeting with undergraduate student
researchers in small groups. During the interviews, we

asked our partners to educate us about their educational and

research goals, their work practices, and the computational
tools they use. We collected data by recording the inter-

views, taking pictures of the various work environments,

collecting relevant work samples, and saving screen cap-
tures of participants’ computers as they were demonstrat-

ing various tasks. We analyzed this data by identifying

common high-level tasks and themes. We then met with
our partners for a 2-day-long workshop. In the first day, we

refined and validated our user study findings and distilled

design implications and requirements for supporting
learning in synthetic biology. The following day was

dedicated to brainstorming activities—breaking into

smaller teams to collaboratively propose and design inter-
active applications for promoting experiential learning in

synthetic biology. Next steps included weekly meetings

with our design partners in which we discussed and tested
various prototypes in increasing fidelity. We also con-

ducted observations at our design partners’ work place and

interviewed additional users. Finally, we conducted a day-
long workshop with our design partners and other users in

which we presented and discussed the strengths and limi-

tations of our functional prototypes and prospects for future
work.

Beyond this traditional model of participatory design,

we also sought to immerse in educational activities of the
larger synthetic biology community. To accomplish this

goal, we created an iGEM team comprised of our under-

graduate student researchers and advised by the senior
researchers on our team. Our team competed in the Soft-

ware Division track of the contest. Participating in iGEM

allowed us to become a part of this vibrant community and
provided us with a unique perspective on the issues facing

future scientists in this field.

4.2.3 Iterative prototyping

We created a large range of prototypes in increasing

fidelity. In early stages, low-fidelity prototypes promoted

common understanding and fostered dialog and explora-
tion. Later, we used video and semi-functional prototypes

to investigate particular designs. We conducted micro-

studies, testing the usability of particular features through a
series of prototypes and then conducted formal studies that

examined the usability and usefulness of an interface.

Following, we describe the design requirements, which
we identified as a result of the participatory process

described above.

Fig. 2 Working with a ‘‘Renaissance Team’’: collaborative sense making and ideation (left), establishing common knowledge base through
interdisciplinary boot camp (right)
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4.3 Design requirements

4.3.1 R1: Facilitating constructivist learning

The constructivist approach, which views learning as an

active process where learners construct new ideas and are
active constructors of new knowledge [59], is particularly

suitable to learning on the frontiers of science [56]. In

synthetic biology, iGEM team members actively construct
understanding and knowledge as they work to solve real-

world problems. The constructivist approach is also applied

in introductory project-based synthetic biology courses
[48]. Software tools for promoting learning in synthetic

biology are thereby required to support open inquiry and

knowledge building, which are essential for constructivist
learning. Realty-based interfaces can support constructivist

learning by providing means for actively interacting and

sharing content while exploiting sensory and motor pro-
cesses, which are important for scientific thinking [37].

4.3.2 R2: Fostering collaboration

Synthetic biology research is often multidisciplinary and

highly collaborative. The complex nature of the problems and
the current state of the field in which much is still unknown,

promote the distribution of problem solving activities and

knowledge across a community of researchers. Often, even
advanced practitioners in this field (e.g., graduate students

and post-docs) are vacillating between expert and novice

roles on various aspects of a project. Thus, collaboration,
particularly in early stages of a project, is essential for tack-

ling difficult problems and for dividing a project into sub-

problems (e.g., planning the assembly of a medium-size
library of biological parts). Such collaboration is typically

based on face-to-face research meetings, email exchange,

shared databases, and side-by-side work on a computer.
iGEM teams and student project teams operate in a similar

way—collaboration and communication are often the key for

project success. Hence, software tools for learning in syn-
thetic biology are required to support and foster collabora-

tion, allowing users to share knowledge and artifacts, divide

problems into sub-problems, and work together in an effec-
tive manner. This suggests that RBIs, which provide support

for face-to-face collaboration, may be suitable for supporting

learning in synthetic biology.

4.3.3 R3: Supporting community standards

Standardization is essential for the growth and maturity of

the synthetic biology discipline. Sharing data, parts, and
techniques across different laboratories is challenging

without the use of clear standards. Likewise, sharing

designs is difficult without the use of a standard notation.

The push for standardization mainly aims to help facilitate

understanding and data sharing across laboratories. Soft-
ware tools for biological design are thereby required to

support efforts toward standardization. Several data models

and specification languages are emerging as standards for
software tools in the field including Clotho [84], the Syn-

thetic Biology Open Language (SBOL) [76], and Eugene

[22]. From the perspective of learning, supporting stan-
dards is important in order to allow users to share their bio-

designs and to progress from novices to experts.

4.3.4 R4: Enabling an integrated and flexible workflow

To gain insight into and to design complex biological sys-

tems, synthetic biologists often explore several data sets, each

one handled with a special tool. There are two general
approaches to biological design [22]: Bottom–Up Design,

which begins with low-level parts and then creates devices,

and Top–Down Design that begins by specifying devices and
then instantiating parts [20]. Software tools for biological

designs are required to support both approaches through

flexible workflow that integrates data and tools in a nonlinear
manner. From a learning perspective, it is important to allow

students to manage complexity while experiencing the flex-

ible thinking that characterizes authentic problem solving.

5 Case studies

Following, we describe two case studies for RBIs for

learning in synthetic biology that were informed by the
process, goals, and requirements discussed above. We

presented these systems as demos in ITS ‘12 [30, 51], here

we describe them in detail. For each interface, we discuss
the design rationale we followed to meet the learning goals

and requirements we outlined above.

Fig. 3 MoClo Planner: users using separate workspaces to divide the
work for part selection and module assembly
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5.1 MoClo Planner

The MoClo Planner is a collaborative, multi-touch bio-
design tool that simplifies the information gathering,

design, and specification of complex biological constructs

using the Modular Cloning (MoClo) method.
MoClo [81] is a hierarchical DNA construction method

that allows for the assembly of multi-gene constructs from

biological parts in a one–pot reaction. MoClo is a cutting-
edge experimental method that facilitates and expedites the

assembly of novel biological designs. However, it is an

intricate multi-step process, which to date, does not have
adequate computational support. Thus, current MoClo

design practices involve a combination of web-based dat-

abases, tools, and spreadsheets in order to retrieve, store,
and organize the information required for MoClo design.

This process is time consuming, error-prone, and is difficult

for novices to understand (i.e., college students).
Our MoClo Planner application was designed to allow

students to gain experiential knowledge in the design and

specification of biological systems (L1, L2). The applica-
tion provides an interactive visualization of the MoClo

process, allowing users to design and specify novel bio-

logical systems from existing parts (R1). MoClo Planner is
implemented using a multi-touch vertical surface (Micro-

soft PixelSense [12]). Our decision to use a vertical inter-

active surface was informed by current work practices of
our users, which typically collaborate through side-by-side

work on the whiteboard or a shared screen (Fig. 3). We

also considered the limited real estate of research labs. We
chose to use a multi-touch surface to facilitate collabora-

tion through multiple entry points and opportunities for

equitable input.

5.1.1 Design

We designed MoClo Planner to visualize the hierarchical

MoClo design process. We visualize the steps of the process
using three layered workspaces, each layer corresponds to a

level of the MoClo design process and is represented by a

‘‘shutter’’, a vertical sliding panel. We used the metaphor of a
shutter because it implies that a particular workspace can be

open, partially open, or closed at any given time.

In Level 0, the application allows users to browse a
collection of biological parts. Upon demand the application

generates a data sheet characterizing a part’s behavior,

retrieving its DNA and RNA sequences, and displaying
PubMed and iGEM abstracts related to that part. Users can

select parts of interest and save them into the next, Level 1,

shutter. Figure 4 shows the Level 0 workspace.
Parts that were saved by users into Level 1 are auto-

matically organized according to their function. In this

level, users design transcription units from the basic parts
selected in Level 0. The design of transcription units must

satisfy constraints that are expressed to users through a

template. The application enables users to automatically or

Fig. 4 Level 0 workspace enables users to browse the registry of biological parts. Here a data sheet and several publication abstracts for a
particular part are presented over search results
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manually create constraint-based permutations of selected

parts. Users can then select those transcription units of

interest and drag them to the next level. Figure 5 shows
transcription units created in Level 1 saved into the next

level.

Finally, in Level 2 users can create more complex
constructs that consist of a series of transcription units.

Again, users can create constraint-based permutations so

that all possible constructs can be considered. Figure 5
illustrates permutations created in Level 2.

On each of the levels, users can launch a primer

designer, which allows users to convert constructs into
concrete genetic elements by generating primers and pro-

tocols to facilitate assembly in the lab. Figure 6 shows

users interacting with the primer designer feature.
The application allows users to move backward and

forward between levels, keeping one or multiple shutters

open at any given time. Leveraging this fluid interaction,
users can iterate on their design, go back to select addi-

tional parts, or trace previous design decisions (R4).

The design of MoClo Planner draws on RBI principles
[42] and guidelines provided by the Tangible Learning

Design Framework [17]. MoClo Planner uses reality-based

metaphors such as shutters to visualize a complex hierar-
chical process and organize large amounts of information.

It has been shown that using a conceptual metaphor that is

based on image schemas to structure interaction may
bootstrap learning of abstract concepts [17]. The

organization of the interface using separate ‘‘shutters’’
allows users to use the environment to explore and store

information while transitioning back and forward between

different stages of the experimental process (R4). The use
of multi-touch input enables users to manipulate biological

parts across different stages of the MoClo process using

spatial and direct interaction, which could engage the
connection between the hand, the eye, and the brain to

support users’ conceptual understanding and facilitate

‘‘thinking through action’’ (R1). Also, the use of spatial and
physical interaction can reduce cognitive workload [83]

and trigger reflection [17]. Finally, MoClo Planner draws
upon users’ social skills to afford collaborative interaction

Fig. 5 Two or more workspaces can be used simultaneously. Here, Level 1 workspace displays selected parts while Level 2 displays
transcription units and permutations

Fig. 6 Users collaborate while using MoClo Planner for designing
primers
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(R2), which in turn can promote learning [58]. For exam-

ple, the system provides multiple points of entry by pre-
senting multiple graphical elements (i.e., biological parts)

that could be manipulated in parallel across different

shutters.

5.1.2 Implementation

The MoClo planner is implemented on the Microsoft Pix-

elSense device using Microsoft Surface SDK 2.0 written in
C#. Information is drawn from the MIT Registry of Bio-

logical Parts, PubMed, and the iGEM archive. We use the

synthetic biology domain specific description languages
Eugene and SBOL for validating and specifying new

designs (R3).

5.1.3 Evaluation

We evaluated MoClo Planner using a tiered method [75]
with 24 users. Our first study with 12 undergraduate biology

students (all female, age 18–23), focused on the usability of

the system. Our second study with 10 iGEM students (5
female, age 18–26) and 2 instructors (all female, age

27–33), focused on the usefulness of the system.

The usability study focused on four dimensions: func-
tionality, learnability, performance, and errors. It was

conducted in our lab. We randomly assigned users to work

in dyads (overall 6 dyads). Prior to the session, we handed
users brief reading materials about synthetic biology and

the MoClo process (no written or oral tutorial about the

system was given). Then, we asked each dyad to use the
MoClo Planner to create at least two different multi-gene

constructs from a given set of biological parts. This task

was selected since it mirrors a real-world research task
often conducted by iGEM teams. Users documented their

progress, findings, and answered task-related questions on

a task form. We collected data through observations and
videotaped all sessions. Following the session, we

debriefed each dyad.

We found that all users were able to complete the task
successfully (typically with some difficulty that was

resolved through collaborative work). On average, dyads

spent 42:50 min working on the task (SD 13:13). Dyads’
answers on the task form indicate that they understood the

MoClo process as well as concepts such as permutations

and fusion sites. We observed that user understood the
‘‘shutter’’ metaphor and were able to easily transition back

and forth between stages of the MoClo process. These

findings indicate good learnability and performance as well
as show that the interface facilitates a flexible and inte-

grated workflow (R4).

In terms of functionality and errors, the study high-
lighted several problems that led to a design iteration in

which we modified the keyword search, added color coding

per construct and per part category, added information to
the Level 0 data sheet, and redesigned the primer design

feature to provide users with more control.

Following this design iteration, we conducted an addi-
tional study with 12 participants (10 iGEM students, 2

iGEM instructors; 7 female), which focused on usefulness.

In particular, we investigated performance, engagement,
and collaboration. We conducted the study in the users’

work environment. We asked users to work in dyads to
complete the experimental task: design and specify two

different multi-gene constructs from the biological parts

they had been using in their lab. This task was chosen since
it mirrors real-world research task of iGEM teams, which is

typically carried out with the help of an instructor using

various ad-hoc computational tools. Users documented
their progress and answered task-related questions on the

task form. We collected data through observations and

videotaped all sessions. Following the session, users filled
questionnaires.

All 5 student dyads were able to complete the task

successfully within an average time of 45:32 min
(SD = 10:47). In their post-task questionnaire, users indi-

cated that they gained a good understanding of the MoClo

process (5.20 on a scale of 7, SD = 1.03) and were con-
fident in their designs (5 on a scale of 7, SD = 1.5).

Through discourse analysis we found that all 5 student

dyads used MoClo process terminology (e.g., CDS, RBS,
permutation, fusion site, promoter, primer) with a mean of

7.2 MoClo terminology utterances per dyad. The instruc-

tors’ dyad used MoClo terminology in 32 utterances. We
also found evidence for peer teaching within dyads, which

is an indicator of autonomous and effective collaborative

learning. Taken together, these findings provide evidence
that students were able to use the system to successfully

define and specify new biological designs (L2) while

building design competency (L1).
Our design aimed to reduce the mental workload asso-

ciated with operating the interface (i.e., syntactic load)

while also reducing the load associated directly with
designing complex biological constructs (i.e., task load).

We used the NASA TLX [38] post-task questionnaire to

measure subjective task workload. We found that, on
average, students rated their task success (i.e., perfor-

mance) as moderate (3.90 SD = 1.45) as well as their

mental demand and effort (3.8 SD = 1.03, 3.9 SD = 1.45,
4 SD = 1.63). These results are positive considering the

high intrinsic task load. Users rated physical and temporal

demand as moderately low. We also asked users about
frustration levels which they rated as moderate (3.9,

SD = 1.45). We observed that one cause for frustration

was the oversensitivity of the Microsoft PixelSense device.
Users also reported that the complexity of the interface was
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moderately low (2.83, SD = 1.03) and that overall they
enjoyed using the system (4.1 on a scale of 7, SD = 1.10).

Figure 7 shows the results.
Several studies highlight a linkage between engagement

and learning [27, 31, 61]. Thus, we were interested in

gauging user engagement. We used O’Brien’s multi-scale
measure, which considers six attributes: perceived usabil-

ity, esthetics, focused attention, felt involvement, novelty,

and endurability. Figure 8 shows the results, indicating that
involvement, novelty, endurability and esthetics were rated

moderately high. These dimensions are important for

supporting constructivist learning (R1). However, per-
ceived usability and focused attention fell around neutral.

The relatively high score for novelty might indicate some

novelty effect. This needs to be further explored through a
longitudinal study. We attribute the lower score of per-

ceived usability to the frustration caused by the oversen-

sitivity of the PixelSense device.
Considering the importance of collaboration for learning

in the sciences [58], we also studied the nature of

collaboration afforded by the MoClo Planner interface. We
observed that in the beginning of a session often one user

was unsure about trying out the new technology and thus
waited until the partner took physical control of the system.

When the timid user became comfortable with the tech-

nology, or was pushed into action due to their partner’s
inability to complete a task, they began interacting with the

system. In two of the student dyads this resulted in turn-

taking collaboration for the rest of the session, where both
users participated physically and verbally. In the other

three dyads, one user assumed the role of a driver (who

participates both physically and verbally) for the rest of the
session while the other participated as navigator (who

guides the driver through verbal cues and ‘‘offline’’ ges-

tures). Both collaboration styles resulted in effective, task-
focused collaboration, which was mostly based on discus-

sion and mutual agreement (R2).

Finally, in-depth interviews with the instructors’ post-
task completion revealed high satisfaction of the collabo-

rative learning process mediated by the system and of the
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integration with standards such as the Registry of Biolog-

ical Parts, Eugene, and SBOL (R3). The instructors
expressed their will and commitment to support future

design iterations of this system with the goal of deploying

it for longitudinal use by iGEM teams. Two areas of con-
cern expressed by the instructors need to be addressed in

future design iterations: integration with the Clotho data

model, which handles all data generated by the wet lab, and
support for lab automation which will provide fluid tran-

sition from specifications to physical assembly.

5.1.4 Future work

This study has several limitations that point toward future

work. First, we studied one-time use rather than longitu-

dinal use. Additional studies of longitudinal use are nec-
essary in order to determine whether findings are affected

by novelty. Also, we did not measure learning gains

directly. Additional assessment instruments are required
for measuring the system’s effect on learning. We are

planning to deploy MoClo Planner in a project-based

synthetic biology course for a period of 4 weeks and are
currently in the process of developing instruments for

assessing the impact of the system on learning. We are

continuing our design partnerships to further develop
MoClo Planner. We are also working on integrating MoClo

Planner with the Clotho data model and with an application

that controls liquid-handling robots, which could auto-
matically assemble biological designs.

5.2 SynFlo

SynFlo is an interactive installation for illustrating core

concepts of synthetic biology for non-scientists (L6) and
communicating the excitement and constraints of cutting-

edge research (L7). This playful installation enables users

to gain hands-on experiential learning of synthetic biology
concepts when access to biological laboratory technologies

is not possible or perhaps inappropriate.

5.2.1 Design

Our design goal for SynFlo is to help illustrate core con-
cepts of synthetic biology for non-scientists. We focus on

three core concepts: (1) abstraction—the representation of

genetic materials as standard biological parts called
BioBricks; (2) modularity—the construction of biological

systems composed of reusable mix-and-match BioBricks;

and (3) protocols—the use of predefined standardized
laboratory procedures to ensure safety and successful rep-

lication of results. We also aim to provoke further inquiry

about the everyday implications of synthetic biology while
experiencing some of its excitement and constraints.

To accomplish these goals, SynFlo draws upon a well-

known synthetic biology experiment called E. chromi [33],
in which genetically engineered Escherichia coli bacteria act

as biosensors, indicating the presence of certain environ-

mental toxins. This experiment has four basic procedural
tasks: (1) combining biological parts to create a genetic

element capable of producing a particular color in response

to the presence of a particular toxin; (2) inserting the selected
BioBrick into a plasmid, a circular DNA strand that repli-

cates independently from chromosomal DNA; (3) infusing
E. coli bacteria with the engineered plasmids; and (4)

deploying the modified bacteria into a testing environment.

SynFlo utilizes tangible and embodied interactions to
allow users to experience a playful simulation of the E.

chromi experimental process (R1). The system consists of

triplets of Sifteo cubes, a tabletop computer (Microsoft
PixelSense), and tangible objects that represent environ-

mental toxins (see Fig. 9). Each triplet of Sifteo cubes

consists of a BioBrick cube, a plasmid cube, and an E. coli
bacterial cell.

We chose to use Sifteo cubes to implement the inter-

action with BioBricks because they support a variety of
gestures including moving, shaking, flipping, rotating, and

neighboring. We leverage these abilities to mimic physical

aspects of laboratory work. In addition, the form factor of
the cubes communicates modularity. We represent the

testing environment using a tabletop computer. Multiple

users can deploy modified E. coli into the surface and
interact with the deployed bacteria through touch. Users

can also add tangibles that represent different environ-

mental toxins to the surface and observe their effects on the
existing bacteria.

Following SynFlo experimental protocol users choose a

BioBrick from a library of biological parts that encode for a

Fig. 9 The components of the SynFlo system
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particular color (see Fig. 10-1). Similar to the biologists

performing the E. chromi experiment, users add the Bio-
Brick to a plasmid and mix by vortexing (see Fig. 10-2).

Then, just as a biologist would pipette, mix, and eject the

newly-infused plasmid onto the waiting biological vessel,
SynFlo allows the user to place the now colored plasmid

cube next to the awaiting E. coli cube and then flip the

plasmid cube as if pouring or pipetting into the E. coli (see
Fig. 10-3). Finally, users can deploy their E. coli to the

testing environment by placing the E. coli cube on the

Microsoft PixelSense and flipping the cube. Users can then
interact with the E. coli by adding tangibles to the surface

that represent different environmental toxins (see Fig. 12);

the modified E. coli sensitive to particular toxins will
respond by changing their color. Touching the E. coli

results in a color change (see Fig. 10-4). When two E. coli

cubes are placed next to each other, there will be an inci-
dent of contamination (see Fig. 11).

The design of SynFlo draws on RBI [42] and the design

guidelines provided by the Tangible Learning Design
Framework [17]. SynFlo uses naive physics metaphors such

as inertia, velocity, and gravity in the design of the interaction

gestures. The use of simple visual and tangible representations
for complex notions (e.g., biological parts, plasmids, and

environmental toxins), and the choice of manipulation ges-

tures that mimic physical aspects of laboratory work enables
users to construct mental models that transforms abstract ideas

into concrete (R1). Finally, like tangible interfaces in general,

SynFlo draws upon users’ social skills to afford collaborative
interaction (R2): the system provides multiple points of entry

through multiple cubes and facilitates visibility of users’
actions. The tabletop interface allows for multiple users to

interact in parallel by presenting multiple graphical elements

(E. coli) and tangibles (toxins).

5.2.2 Implementation

SynFlo uses Sifteo [10] 1.0 cubes. The current prototype of

SynFlo supports up to 6 cubes. The interaction is pro-

grammed using the Sifteo SDK written in C#. The tabletop
application is implemented on the Microsoft PixelSense

using the Microsoft Surface 2.0 SDK. The communication

between the Sifteo cubes and the PixelSense is imple-
mented using client–server communication.

5.2.3 Evaluation

We evaluated SynFlo with high school students partici-

pating in a week-long, on-campus science outreach pro-
gram. Our evaluation consisted of four sessions (total 18

students, 10 female, age 15–17) that were conducted in our

lab. We collected data through observations and video
recording of each session.

Students were first given a 10-min presentation

explaining basic synthetic biology concepts, and then
interacted with SynFlo for an average of 10:57 min (SD

06:27). Students were asked to complete a task: use a

triplet of the Sifteo cubes to modify an E. coli so that it
becomes a biosensor for a particular environmental toxin,

and test it to verify that it indeed sensed that toxin. We

chose this task because it represents the famous E. chromi
experiment, thus requires users to complete a sequence of

actions that mirrors a real-world synthetic biology lab

protocol.
On average, users interacted with the Sifteo cubes for

01:35 (SD 00:30) and then moved on to interact with the

tabletop interface where they touched the E. coli to intro-
duce a mutation and tested its response to environmental

toxins by adding tangibles to the environment. Users typ-

ically spent the rest of the session around the tabletop.

Fig. 10 The SynFlo experiment workflow: (1) Clicking through the
BioBrick library; (2) shaking the DNA material into the plasmid cube;
(3) flipping the E. coli to insert the plasmid into the E. coli and again

to introduce to the surface environment; (4) interacting with the
E. coli in its testing environment

Fig. 11 Escherichia coli interact with each other by contaminating
visiting E. coli cubes (left). Selecting a part from the BioBrick library
(right)
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Some users went back to create more modified E. coli.

Since the system consists of only two triplets of Sifteo
Cubes, users had to wait for their turn. During this time

some users observed their peers, while others explored the

tabletop environment. Overall, we found that the system
facilitated a flexible and fluid workflow (R4).

In the first few minutes, users were fascinated by the

technology and asked many questions. For example:
‘‘What kind of sensors do the cubes have? How does it

know to do things…’’ Later in the session, users reflected

on the connection between SynFlo and the synthetic biol-
ogy concepts discussed: ‘‘[we’re] designing and con-

structing new biology things. But it’s hard to put into words

‘cause we’re seeing this new…’’ We used discourse ana-
lysis to quantify content-related utterances. We found that

content-related utterances could be divided into three main

categories: abstract concepts (e.g., modularity, synthetic
biology, assembly process), synthetic biology vocabulary

(e.g., plasmid, DNA, gene, E. coli), and technology-related

utterances. Figure 13 shows the distribution of content-
related utterances per category with an average of 4.5 users

per session. The relatively high number of technology-

related utterances might indicate a novelty effect. We
intend to further address this issue in future studies.

We found that while we designed SynFlo to utilize

gestures, which mimic physical actions performed in the

lab (e.g., vortexing, pouring, and flipping), users did not

always understand these metaphors. One possible way to
help users to make the connection between the wet lab

environment and the SynFlo elements is to embed the

Sifteo cubes within more evocative tangibles that resemble
lab instruments and afford such actions.

Overall, participants demonstrated high-engagement

with the system: all users have successfully completed the
task of creating a modified E. coli and deploying it. Users

also had prolonged interactions with the tabletop interface.

Overall, users exhibited effective collaboration (R2):
sharing the tabletop surface while respecting territoriality

as well as sharing the cubes—often passing them to those

who had not tried them yet. Several students collaborated
by dividing the task and sharing the cubes. For example,

while one user was choosing a color, the other one was

inserting the plasmid into the E. coli (see Figs. 12, 14).

5.2.4 Future work

This system and study have several limitations that point

toward future work. First, we did not measure learning

gains directly; additional assessment instruments are

Fig. 12 Introducing red toxin into the testing environment (left), high school students collaborate as they select a biological part and insert the
part into a plasmid (right)
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Fig. 14 High school students interacting with SynFlo. Users collab-
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required for measuring the impact on learning. Second,

additional investigation is required for clarifying the pre-
sence and extent of a novelty effect. Third, the current form

factor of the cubes does not afford the rich gestures rep-

resenting wet lab protocols. We are currently redesigning
the SynFlo tangibles to resemble scientific instruments. We

plan to further evaluate the system by deploying it in a

summer outreach program.

6 Discussion

While both case studies have limitations, findings indicate
that in general, they were able to meet our learning goals

and requirements. In particular, we identified four

requirements: (1) facilitating constructivist learning, (2)
fostering collaboration, (3) supporting community stan-

dards, and (4) enabling an integrated and flexible workflow.

Our user studies showed that MoClo Planner facilitated
experiential and collaborative learning of complex syn-

thetic biology concepts through a flexible workflow that

complies with emerging standards in Synthetic Biology.
SynFlo allowed users to experience the excitement and

constraints of cutting-edge research in synthetic biology

through hands-on, collaborative, and playful interaction.
More broadly, our case studies demonstrate the potential

of using RBI to facilitate problem-driven learning of

complex scientific concepts. Taken together with current
literature, these case studies illustrate four ways in which

next-generation user interfaces can impact learning and

understanding of advanced scientific concepts. Our case
studies also highlight challenges for interaction designers.

In the following, we describe these challenges and

opportunities:

6.1 Providing rich representations of abstract

and complex concepts

RBI enables users to manipulate rich physical and digital

representations with their hands. For example, in MoClo
Planner users explore the relationships among parts by

arranging them upon the interaction surface and combining

parts into complex biological constructs. The interactive
surface of MoClo Planner allows for the comparison and

analysis of data through parallel multi-touch interactions.

In SynFlo, users manipulate representations of scientific
data using various gestures and actions, which in turn

represents the physical nature of biological laboratory

techniques. Manipulating information through touch and
gestures could potentially engage the connection between

the hand, the eye, and the brain to support users’ concep-

tual understanding [29].

A major challenge for interaction designers is to identify

effective representations for abstract and complex con-
cepts. This includes deciding which concepts should be

represented in a digital form and which in a physical form

as well as combining physical and digital representations
so that they support powerful and expressive inquiry [73].

Reality-based metaphors could serve as a starting point.

Additional design considerations include representing
multiple scales of data while maintaining seamless transi-

tion across different levels of abstraction, representing
domain concepts as well as process concepts, and facili-

tating the navigation of large data sets while maintaining

context. It is also important to select representations that
are consistent with standards and notations of a field.

6.2 Fostering engagement through affordance
and autonomy

Several studies investigated the connection between
engagement and learning [21, 27, 31, 61]. Other investi-

gations indicate that the esthetic and affordance of tangible

objects contribute to user engagement [18, 55, 68]. It has
also been shown that engagement acts as a positive medi-

ator for efficient collaborative learning [69]. Beyond af-

fordance, another aspect of RBIs that could contribute to
engagement is autonomy [61]. RBIs often provide learners

with a collaborative environment where they could work

with their peers to construct mental models through col-
laborative exploration with minimal instructor intervention.

In both of our case studies, users worked autonomously

and exhibited relatively high levels of engagement. In the
evaluation of MoClo Planner, we used O’Brien’s multi-

scale measure [57] to gauge levels of engagement. Our

findings indicate that the dimensions of esthetic—the
extent to which the system is attractive and sensory

appealing, and endurability—the extent to which the

experience is perceived as successful, were rated moder-
ately high. We also found that the dimension of novelty

was rated moderately high. While this can be attributed to

the natural curiosity invoked by new technology, such
ratings could also point toward a novelty effect—a tem-

porary increase in engagement that would fade when users

lose interest in the technology. A major challenge for
interaction designers is to identify when increased student

engagement points toward a novelty effect. This issue

could be investigated through longitudinal studies and in-
depth interviews.

Another challenge for deploying new technologies in the

classroom was highlighted by the relatively low rating of
the perceived usability dimension of the MoClo Planner,

which we attribute to the frustration caused by the over-

sensitivity of the PixelSense device. A major challenge for

Pers Ubiquit Comput

123



deploying new technologies in the classroom is to ensure

that the technology functions as expected.

6.3 Supporting effective collaboration

One of the known strengths of tangible and tabletop reality-

based interaction styles is their support of co-located col-

laboration. Collaboration in crucial for scientific under-
standing as demonstrated by empirical studies [58] and by

perspectives from embodied cognition view cognitive
processes as socially distributed across members of a group

[39].

Several factors support face-to-face collaboration in
RBIs. First, affordances known from interaction with the

real world lower the threshold for engaging with a system

and thus increase the likelihood of users to actively con-
tribute [41]. Second, multiple access points allow for

simultaneous interaction [70]. Third, manual interaction

with digital or physical objects is observable and has
enhanced legibility, which in turn supports group aware-

ness [41]. Finally, several studies indicate that territoriality

is important for collaboration [43].
Both case studies support collaboration. MoClo Planner

provides multiple access points through parallel work-

spaces. It allows users to reinforce their territory or share a
particular workspace. SynFlo provides multiple access

points through cubes and tangibles as well as through the

tabletop interface. The interface enables users to divide the
problem spatially and temporally so that users can assume

different roles. For example, some users collaborated so

that while one user selected a biological part, another
added the plasmid to the bacterial cell.

One challenge for interaction designers is to support

spatial and temporal multiplexing [70], allowing users to
approach a problem by breaking it into smaller problems

that could be distributed across different users, interaction

objects, and addressed at different times. Designers should
also provide multiple access points and ways to reinforce

users’ ownership of both physical objects and areas on top

of an interactive surface.

6.4 Reducing mental workload by coupling space

and meaning

RBIs often apply various strategies for reducing cognitive

workload. For example, MoClo Planner allows users to
easily structure and restructure spatial configurations of

biological parts through direct touch in order to explore a

solution space. Users can save spatial configurations for
immediate access in one of the various workspaces. The

interface enables users to open and close ‘‘shutters’’ as

needed, facilitating incremental addition of complexity and
seamless transition between layers of abstraction. Finally,

the interface hides information by encapsulating it in var-

ious digital objects, presenting required information upon
request.

The challenge for designers is twofold: reducing the

mental workload associated with operating an interface
while providing support for complex tasks (i.e., syntactic

load), as well as applying various strategies to reduce the

load associated directly with solving problems (i.e., task
load).

7 Conclusion

This paper presents three main contributions: (1) design

considerations and participatory design process for

enhancing college-level science education through reality-
based interaction, (2) reflections on the design, imple-

mentation, and validation of two case studies of RBIs for

learning synthetic biology, and (3) a set of opportunities
and challenges for advancing learning in college-level

sciences through reality-based interaction.

While the domain of synthetic biology provides the
context for this work, the contributions of this paper are

relevant to applying reality-based interaction to college-

level science education in general. We also believe that
designing for problem-driven learning of complex concepts

at the frontier of science helps to move forward the theory

and practice of educational interfaces, software, and
technology.
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