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ABSTRACT
In this paper, we present results from a study of users’ visual be-
havior while engaging with tangible and virtual representations
of archaeological artifacts. We replicated and extended a recent
study that introduced an augmented reality system implemented
using HoloLens, for engaging with the artifacts. Our study goes
beyond the original study to estimate the distribution of users’ vi-
sual attention for both tangible and virtual representations of the
artifacts. Our study confirmed the results of the original study in
various aspects. Specifically, participants in both studies confirmed
the immersive nature of the HoloLens condition and showed similar
learning outcomes in terms of post-task open questions. Addition-
ally, our findings indicate that users allocate their visual attention
in similar ways when interacting with virtual and tangible learning
material, in terms of total gaze duration, gaze on object duration,
and object fixation duration.

CCS CONCEPTS
•Human-centered computing→Mixed / augmented reality;
Gestural input; • Computing methodologies →Object recogni-
tion.
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Figure 1: Inventory of 3D artifacts and the participant ex-
ploring their chosen artifact (left). A participantwearing eye
tracker working with the Sketchfab platform (right)

1 INTRODUCTION
Object-based learning emphasizes the student’s interaction with
physical artifacts in the learning process. This pedagogical approach
has been found to be more effective than relying exclusively on
lectures[7]. This approach is well established in various fields in-
cluding archaeology, art history, and anthropology[33]. The advent
of technologies such as virtual reality (VR), augmented reality (AR),
and 3D fabrication, has created opportunities for implementing
object-based learning without the need to access the original physi-
cal artifacts[8]. These technologies allow educators to create tactile
and virtual models of the artifacts so that students can learn by
exploring and analyzing these models [30]. However, relatively
little is known about how tactile and virtual models can be used
in object-based learning. Recently, Pollalis et al.[30] conducted an
experiment to evaluate learning with three different representa-
tions of ancient artifacts. Users interacted with artifacts represented
as 3D models on a computer screen, as 3D virtual models in aug-
mented reality, and as 3D fabricated tangible objects. Pollalis et
al. found that there were differences in learning outcomes for the
three types of presentations. The study we present here replicates
core aspects of this study but extend it by asking the following two
questions. First, how does visual attention vary among the three
conditions? Second, how are differences in visual attention related
to the differences in learning outcomes?

Replicating studies in HCI is important because practitioners
and researchers could better trust and build upon results from the
studies of novel technologies that can be, and have been, replicated.

https://doi.org/10.1145/3321335.3324930
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Figure 2: Participant wearing HoloLens with the add-on eye
tracker(right). Screenshot of the hologram indicating the
three areas of interest (AOI) in the Hololens condition(left).

"Replicate and extend" studies in particular, test the limits and perti-
nence of previous results[6, 11]. In this study, we replicate the tasks
and experimental designs utilized by Pollalis et al. while extend-
ing it by collecting eye tracking data to study the visual behavior
of participants. By observing visual behaviors, we can provide a
quantitative measure of users’ interaction with the artifacts, which
can in turn help us understand the reasons for the observed learn-
ing outcomes. This understanding can then assist us in improving
existing and future interactive learning tools. Here we report the
findings form a study comparing how users interact with three
representations of objects: 3D printed replicas of museum artifacts,
holographic replicas, and 3D digital models displayed on a screen.
We used an eye tracker to follow users’ gaze movements to study
their visual behavior. Our contributions beyond replicating the re-
sults of the original study include: 1) a new study using eye tracking
to analyze users’ visual behavior while learning about 3D objects;
2) computational methods for analyzing visual behavior around
3D objects and digital 3D digital models; and 3) understanding of
users’ visual behavior and how it is related to learning outcomes in
an object-based learning activity.

2 BACKGROUND AND RELATEDWORK
2.1 Object-Based Learning
Object based learning pedagogy views the learner’s interaction
with objects as critical for the learning process. Direct interaction
with objects allows learners to take charge of their learning process
and construct meanings to enhance their critical thinking skills[15].
Much research indicates the benefits of AR for learning and problem
solving [3, 18, 27]. AR has been shown to be useful in motivating
students in the learning process. Taking advantage of the features of
this technology allows educators to improve students’ educational
experience, their engagement, and their academic achievement
[2, 3]. On the other end, evidence shows that concrete visual models,
such as 3D printed replicas, could capture students’ attention and
provide physical context in which to think about concepts. This
makes students feel more comfortable visualizing and describing
the material [4, 13].

2.1.1 The original study. Pollalis et al. conducted experiments to
understand the learning outcomes when users are engaged with
three kinds of replicas of museum artifacts: tangible 3D printed
artifacts, 3D virtual models presented on a screen, and holographic
artifacts [31]. These specific types of objects on the tangible-virtual

spectrum were chosen due to their increasing availability in higher
education[14]. The authors assessed users’ enjoyment, perceived
task workload, spatial presence, and learning outcomes. They ob-
served that object-based learning goals were accomplished com-
parably with holographic artifacts and with the digital 3D models,
while 3D replicas lacked visual information impeding learners’ con-
textualization and critical thinking.

However, further studies are needed to understand how these
technologies impact object-based learning processes. Moreover, the
roles the physicals and digital elements of the learning experience
remain to bemapped out [1]. In this study, we replicated the original
experiment by Pollalis et al. [31], while adding eye tracking to each
condition. Our goal is to build an understanding of users’ visual
behavior and how it is related to the learning outcomes reported in
the original study.

2.2 Learning and Visual Behavior
Several studies use eye movements to describe users’ visual at-
tention, as they are considered the behavioral interface between
attention and gaining information from the surrounding environ-
ment [17, 32, 40] When considering the learning process and its
outcomes, many studies use eye tracking to track how learners
interact with the learning material [28], predict their level of com-
prehension [20], and their learning efficiency [7]. Daraghmi et al.
developed an on-screen learning system using eye tracking to give
learners feedback about their learning [5]. However, the major-
ity of literature that addresses users’ visual behavior in learning
focuses on learning material that is presented on a 2D surface
[7, 21, 23, 28, 40, 42].

Van der Meulen et al. developed a method to combine eye track-
ing data with head-tracking data provided by HoloLens in order to
improve our ability to assess the gaze location of HoloLens users.
We are using this method in our study. However, the AR targets in
their study were 2D[39]. In this study, we evaluate visual behavior
of learners while learning about artifacts replicated in three dif-
ferent and increasingly available methods of creation: 3D printed
physical objects, on-screen digital 3D models, and AR visualization
of 3D holograms. To our knowledge, this is the first study using
eye tracking to analyze users’ visual behavior while learning about
3D objects with these modalities.

3 STUDY
3.1 Experimental Design and Tasks
We conducted a between-subjects experiment in which three groups
of participants completed the same learning task. The learning
task was developed by Pollalis et al. [31]. It is a task that students
might encounter in an archaeology class, and its aim is to enhance
students’ observational skills and their critical analysis skills. The
task consists of selecting two artifacts from an available inventory
of six artifacts, exploring them, and answering the corresponding
artifact questionnaire. For each object, participants were asked to
indicate the first detail they noticed, all the details they observed,
and what characteristic about the object made it unique or similar
to the other artifacts in the set. We did not impose a time limit
on the task. Participants completed the learning task either using
tangible 3D replicas, virtual 3D replicas, or holographic objects [29].
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Across the 3 conditions we used different replicas of the same 6
archaeological artifacts.

3.1.1 Tangible 3D replicas (3D prints). In the tangible 3D printed
condition, subjects could choose an artifact from a 3D printed
gallery of six objects. These objects are the same 3D printed arti-
facts used in the original study [31]. The Printed descriptions next
to the artifacts are identical to the ones in the original study (Figure
1). Participants were free to choose and explore the replicas while
wearing an eye tracker.

3.1.2 Sketchfab Condition. Participants in the second condition
used Sketchfab, an online 3D modeling platform on a desktop[29].
They could choose any of the 3D models in an inventory of six
objects, manipulate the chosen artifact using a mouse, and read
more about it in a section below it. The platform was configured
in a similar fashion to Pollalis et al. [31]. In the original study, the
description section was right next to the artifact section, so the
participant did not have to scroll down to view the descriptions.
However, in the new version of the Sketchfab which we used the
user has to scroll down the page to read the description.

3.1.3 Holographic objects (HoloMuse). The third condition con-
sisted of participants using HoloMuse [30], an AR application on
Microsoft HoloLens, which was developed and used by Pollalis et.
al[31]. It introduces subjects to an inventory of six holographic
objects. They could use air gestures to pick and handle the artifacts
by moving, scaling and rotating them (see Figure 2). Users were
also able to remove the artifact’s material to view its surface and
reveal supplementary information about the artifact.

3.1.4 Eye Tracking. Weused Pupil Labs head-mounted eye trackers
[16] to track users’ gaze during the experiment. This eye tracker
has a world camera capturing the users’ environment, and two slide
cameras for users’ pupils. It then calculates users’ gaze based on
their pupil movements and maps it onto the video from the world
camera to display the target the user is looking at. Participants who
interacted with 3D artifact and Sketchfab wore the eye tracker. In
the HoloLens condition we used an eye tracker add-on[39]. The
inventory of artifacts, their order in the inventory, their descriptions,
and the eye tracking method were consistent throughout all three
conditions.

3.2 Participants
We collected data from 35 participants (10 female, average age =
23.5, SD=3.2); 12 participants in 3D prints condition (3 female), 10
participants for Sketchfab condition (3 female), and 13 participants
for HoloLens condition (4 female). All the participants were given a
$10 gift card at the end of the experiment. We dismissed data from
2 participants in the 3D prints condition and 3 participants in the
HoloLens condition due to a low eye tracker confidence (<70%). The
low confidence resulted from a suboptimal angle of the eye tracker
with respect to the subject’s pupils. Thus, we report on data from
30 participants (10 female).

3.3 Procedure
After signing the consent forms, the participants filled out a pre-task
questionnaire stating prior practice with visual analysis (e.g. art

history class), and specifying former experience with 3D modeling
software, AR, or VR. Depending on the condition they were ran-
domly assigned to, participants were asked to wear the eye tracker
or the HoloLens, were shown an inventory of six artifacts, and
were given a brief training on how to choose an object and handle
it. Before starting the task, the worn eye tracker was calibrated
using screen marker calibration [34]. The HoloLens condition in-
cluded an additional step in which we connected the HoloLens
and its eye tracker to a server computer to synchronize time on
both devices, so that we get real time data about the user: their
position, head rotation, name of the hologram they are viewing,
and their gaze information. In order to minimize the movement of
the headset, we ensured that the HoloLens’s headband was secured
on the user’s head. HoloLens condition participants were trained
on how to use the device as well. Following the initial stage of the
study, participants were given the task of choosing and studying
two artifacts. They were asked to fill out an object questionnaire
for each chosen object using a laptop we provided. After finishing
the task, they were given a post-task questionnaire to fill. This form
consisted of 15 questions, each being a 5-point Likert-type ratings
ranging from "Strongly Disagree" to "Strongly Agree". A NASA
TLX questionnaire [10] and four open-ended questions were also
part of the post-task form. HoloLens users were also asked if they
experienced any discomfort while performing the task. Collected
data includes: questionnaire responses and eye tracking; for the
HoloLens condition we logged data from the server and recorded
videos from the HoloLens camera using its online portal.

4 DATA ANALYSIS
We used JMP Pro 14 for the statistical analysis of the results. The
collected data was initially tested for normality using Shapiro-Wilk
test. For the normally distributed data we used ANOVA for mean
comparison, t-test and Tukey test for post hoc analysis. For the
non-normally distributed data we used non-parametric Kruskal-
Wallis test and the Wilcoxon test for post-hoc analysis. To analyze
the open-ended questions, we used the same coding-scheme and
process as the original study. Our participants were free to interact
with the artifacts and manipulate them with no time limit or any
restrictions on how to study the artifact. To better understand the
distribution of users’ visual attention, we defined three areas of
interest(AOI): the artifact, the description (where they could read
more about the artifact), the manipulation (which they could use to
manipulate the artifact). Any visual target other than these three
were categorized as "other surfaces" and will focus on the main
three AOIs for statistical analysis. We developed algorithms using
MATLAB (discussed below) to identify participants’ visual targets
over the time.

4.1 3D Prints Condition
Initially the image from the world camera (see Figure 3) is con-
verted into grayscale image. The resulting image then goes through
binary conversion using thresholding, and noise removal. Every
frame goes through this two-stage processing to detect objects and
descriptions separately. Subsequently, we developed an algorithm
to mark a perimeter around each item using its centroid, as shown
by blue stars in Figure 3. In this figure, the green star represents



PerDis ’19, June 12–14, 2019, Palermo, Italy Ramkumar, et al.

Figure 3: A frame from the eye tracker’s world camera with
the artifact (white) and the description (red)(right). (b) The
same image after being processed to identify the artifact and
description AOI(left)

the gaze location of the participant at the artifact. If the gaze by
a participant was inside the box around an item, we concluded
that they were looking at that item. Otherwise, we marked that
gaze as "other surfaces" as it was not aimed at a place of interest
(artifact or description). Unlike the other two conditions, there is
no manipulation AOI for the 3D prints; participants use their hands
to directly manipulate the tactile objects. We validated the above
algorithm by visually inspecting 1000 randomly selected frames,
we found that the accuracy of the detection algorithm was greater
than 95%.

4.2 Virtual 3D replicas (Sketchfab)
Similar to the 3D condition, the video of the world camera was
analyzed frame by frame to identify the three AOI. Markers were
used to mark the boundaries of the laptop screen (see figure 4). Our
algorithm first filtered out the regions on the screen that were not
of interest (using the markers) and separated the scroll bar which
is the manipulation AOI. Then the remaining section of the screen
undergoes binary conversion and noise removal to identify the
artifact/description AOI based on their color; artifacts’ background
is black, and the description background is white (see figure 4).

4.3 HoloLens Condition
The eye tracker add-on camera could not see the holograms dis-
played by the HoloLens. Similar to Van der Meulen et al. work,
we developed an algorithm to map users’ gaze position into the
holographic environment [39]. We collected the users’ gaze infor-
mation from the eye tracker, and holographic environment details
from HoloLens. We logged information from a server that synchro-
nizes the eye tracker and the HoloLens. Then we combined this
information to find the gaze target of the participant in the aug-
mented space; the holographic artifact (with its name), description,
manipulations (move, rotate, etc.), or other surfaces.

4.4 Measures and Indicators
4.4.1 Time on Task. Using the timestamp of each data point recorded
by the eye tracker, we calculated the time spent exploring each ar-
tifact and other AOI for all participants. We used this measure to
assess meaningful engagement and determine how it is affected by
the interaction styles.

4.4.2 Fixations. We used fixations to evaluate the visual behavior
of the participants as they attended to different AOI (e.g. artifacts
and descriptions). Fixations are the state of maintaining the gaze at

Figure 4: A frame from the eye tracker’sworld camera (right)
and the same image after being processed to identify the arti-
fact and descriptions (left) The red box identifies the artifact
region and the green dot shows the user’s gaze

a target for a specific amount of time. We extracted fixations with
a minimum duration 100 ms[12, 19, 29] and 1°of dispersion angle
[25]. We modified the above-mentioned gaze algorithms to find
the fixation target. Similar to the gaze AOI, the fixation targets fell
into the categories of artifact, manipulation, description, and other
surfaces. We explored fixation in terms of fixation rate (fixation
count per minute) and duration on the above-mentioned AOI and
its overall values.

4.4.3 Learning Outcomes. Study participants were expected to
write down detailed explanations of the viewed artifacts. Content
codes were used to demonstrate progress from observation to anal-
ysis, and to develop a preliminary review of learning outcomes. We
used the codes developed by Pollalis et al.[31] since the question-
naire used in our study was the same as the one they composed.
The content code are : texture, color, detail, facial feature, damage,
material, weight, size, analysis and context. The first two authors
acted as coders identifying the content codes in the questionnaire
responses. Their inter-code reliability >95%. Disagreements were
resolved by consensus.

4.4.4 Perceived Task Workload and Spatial Presence. We used the
NASA TLX questionnaire [10][10] used in the original study to
measure participants’ perceived workload. Another series of ques-
tions used in the original study was utilized to measure participants
perceived spatial presence. These questions were roughly based on
the MEC- SPQ standardized questionnaire [41].

Figure 5: Time participants spent on the task for each condi-
tion. The white bar indicates the average time.
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5 RESULTS
5.1 Time on Task
The total time participants spent to complete the task can be found
in Figure 5. Kruskal-Wallis test indicated that there was a signifi-
cant effect of condition on total time spent on task [X 2(2)=18.7357,
p<0.0001]. The Post hoc comparison showed that the time spent
to complete the HoloLens condition task was significantly higher
than the other two conditions. This matches the results from the
original study for the time on task. Percentage of time distribution
among the AOI can be found in Figure 6. There was no signifi-
cant difference between the time spent on the artifact itself among
the three conditions [X 2(2)=3.3626, p=0.1861]. However, the time
spent on the description of the artifact differ significantly based on
the condition [X 2(2)=13.0477,p=0.0015]. Post hoc testing identified
that the time spent on the description was significantly higher in
the Sketchfab condition than in the other two conditions. There
was a significant difference in the time spent on other surfaces
[X 2(2)=19.3652,p<0.0001] and the post hoc analysis indicated sig-
nificantly higher time spent in the HoloLens condition. Given that
there was no manipulation AOI for 3D prints condition, we used the
Wilcoxon Test to compare the time that participants spent looking at
manipulation in the HoloLens and Sketchfab conditions. We found
that the time spent on manipulation was significantly higher in
HoloLens condition than Sketchfab condition [Z=14.2857,p<0.0002].

5.2 Fixations
We analyzed fixations from two perspectives; fixation duration, and
the fixation rate.

5.2.1 Fixation Rate. The fixation rate (number of fixations per
minute) for each condition can be found in Figure 7. The overall
fixation rate for the task was not significantly different among the
conditions [X 2(2)=1.3871, p=0.4998]. For distribution of fixations
among various AOI we report on 28 participants due to momentary
server failure for 2 participants in the HoloLens condition (time
mismatch). The fixation rate on the artifact was significantly dif-
ferent [X 2(2)=10.8891, p=0.0043]. Post hoc analysis indicated that
fixation rate for the HoloLens condition is lower than the other
two conditions. Also, the fixation rate on the description was sig-
nificantly different overall [X 2(2)=19.4813, p<0.0001]. The post hoc
analysis indicated that the 3D condition has higher fixation rate on
the description than the other two conditions. Participants also had
significantly higher fixation rates on manipulation for the HoloLens
condition than the Sketchfab condition [Z =8.9195, p=0.0028].

5.2.2 Fixation Duration. We found no evidence that the fixation
duration on the artifact [X 2(2)=2.2405, p=0.3262] or description
[X 2(2)=14.6945, p=0.0191] were different between the three con-
ditions. However, the t-test results showed that the duration of
fixations on the manipulation AOI was significantly higher for
the HoloLens condition that the Sketchfab condition [Z=5.4896,
p=<0.0006]. Note that there is no separate manipulation AOI for
the 3D printed condition.

5.3 Learning Outcomes
We evaluated learning outcomes by counting the number of content
codes in the responses to the question asking participants to write

down the details they noticed while interacting with the artifact.
We found no evidence that the total number of content codes ap-
pearing in the responses were different between the conditions [F
(2,27) = 1.552, p= 0.8570]. On performing ANOVA on the frequency
of mentioning of the individual content codes, we observed that
the facial feature and detail code of the visual observation cate-
gory were significantly different among the conditions. Post hoc
testing indicated facial feature was mentioned significantly more
often with 3D prints than the other two conditions. Detail was also
mentioned significantly less with HoloLens than in the 3D prints
and Sketchfab conditions. Rest of the content codes did not show
significant difference.

5.4 Perceived Workload and Spatial Presence
There was a significant difference in the perceived workload be-
tween conditions [F (2, 27) = 5.7838, p= 0.0081]. Post hoc test
suggested that the participants in the 3D prints condition expe-
rienced significantly higher effort. Users in the HoloLens condi-
tion felt as if the original artifact was physically present in their
environment significantly more than users in the other two condi-
tions [X 2(2)=6.3786, p=0.0412]. Participants also claimed to think
more intensely about the characteristics of the 3D printed artifacts
[X 2(2)=6.7055, p=0.0350].

Figure 6: Timepercentage distribution for users’ gaze among
the three areas of interest(AOI) for each condition.

6 DISCUSSION
6.1 Comparison with The Original Study
The time measured in the original study was the overall time spent
on the task. Using eye tracking, we were able to classify the total
time spent to multiple categories. This enabled us to draw a clear
picture of how users distributed their time between analyzing the
object, reading about it, and manipulating it. Figure 6 and 7 show
this distribution for all three conditions. Our results confirm the re-
sults of the original paper in multiple aspects. Both studies found no
significant difference in the complexity score of the open question
responses about the artifact they viewed. Another common find-
ing was that participants of both studies confirmed the immersive
nature of AR by ranking it the highest when asked if they "felt as
though the original ancient artifact was physically present in [their]
environment". This is despite the fact that 3D printed artifacts were
the only ones to include a sense of touch and to exist physically in
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Figure 7: Fixations per minute for each condition.

the environment for the learners. This result suggests a new line of
investigation, reconsidering Montessori’s finding emphasizing the
role of physical material in learning[24]. The total complexity score
of the open question responses was comparable among conditions
for both studies, However, there were differences with the original
study in the particular thematic codes appeared in the responses.
The original paper showed that the 3D printed condition was sig-
nificantly lower in mentions of color, material, and context. Our
study did not show such differences among conditions. The reason
for this result is not immediately forthcoming; one possibility is
difference between participant populations across the two studies,
as the studies were conducted at different institutions. Fixations
indicate maintaining gaze at a gaze target, during which almost all
the visual information is collected [9, 35, 37]. The rate of fixations
on the artifact was lowest for the HoloLens condition while the
fixation duration was comparable among conditions. Both of the
studies had significantly fewer mentions of facial features in the
open question responses for the HoloLens condition. It is likely that
both the fewer mentions of facial features, and the lower fixation
rate are related to two innate features of the holograms: they have
lower resolution compared to the Sketchfab condition and are not
tactile like the 3D prints condition.

6.2 Physical Artifact vs. Virtual Artifact
Prior research indicates that users have different psychological
responses to virtual and tangible objects[1]. However, studies com-
paring visual behavior for physical and virtual versions of the same
task are surprisingly uncommon [22]. One of our contributions is
making this comparison. Users in the HoloLens condition spent
significantly more time completing the task, however, the total time
they spent looking at the object and their object fixation duration
was comparable to the other conditions. This is an indication that
users’ visual behavior towards virtual learning material is similar
to tangible ones. This result supports users’ claim about the immer-
sive nature of the HoloLens condition; in other words, it seems that
participants appreciated the virtual artifacts like the physical ones.

6.3 Interface and Design Implications
Participants reported comparable satisfaction for tangible and vir-
tual interaction types despite technology limitations for current
AR equipment. Such limitations like the low resolution, narrow
filed of view, and the novelty of the equipment (even though they
were trained on how to use HoloLens) posed interaction constraints

which participants had to overcome in order to interact with the
artifacts. Thus, we are likely to see higher satisfaction measures for
the HoloLens condition if interaction becomes more seamless in fu-
ture products. For example, we observed that the clicking gesture in
the AR environment is easier for the users to perform than the drag-
ging gesture. In fact, by visually inspecting the HoloLens videos,
we observed that the higher gaze time and fixation duration for
manipulation in the HoloLens condition were due to participants’
difficulty performing the dragging gesture. Thus, one possible im-
provement to the interface could be to change how users rotate
artifacts: instead of using the dragging gesture, they might prefer
to click on a bar that controls object rotation.

Research has shown that interaction costs can lead to increased
reflection on the material[9, 26, 36, 38]. Moreover, Marshall claims
that the easy manipulation of concrete objects can result in de-
creased reflection on the learning material [22]. As discussed, the
HoloLens condition introduced interaction constraint to the par-
ticipants. However, in the 3D prints condition users reported that
they "thought intensely about the characteristics of the ancient
artifact" considerably higher than the other conditions. Based on
Marshall’s work[22], we expected that participants would report
higher thought intensity in the HoloLens condition than in the 3D
prints condition, where manipulation was the easiest. This implies
that the manipulation effort required in the HoloLens condition
might have been too high; this implication is also supported by
the fact that participants spent the most time gazing at the ma-
nipulation AOI in this condition. Although manipulation for the
Sketchfab condition was more complicated than handling the 3D
printed artifacts, the Sketchfab condition did not provide the im-
mersive experience for the users which might have been needed

7 LIMITATIONS
One limitation of our detection algorithm is that a minimum color
contrast has to be maintained between the 3D printed object and
background. However, in the future, we anticipate that 3D printed
objects will include color, Hence, future work includes the use of
machine learning algorithms to identify various AOI. Although a
rare occurrence in our study, another challenge was eye trackers
heating up after long usage, creating discomfort for users.

8 CONCLUSION AND FUTUREWORK
By replicating and extending the original study by Pollalis et al.
we were able to gain a thorough understanding of users’ visual
behavior for the purpose of enhancing object-based learning. By
adding eye tracking we found that users’ visual behavior towards
virtual learning material is similar to tangible ones. As mentioned
above, users spent a significant amount of time looking at the
manipulation features of the HoloLens interface. This highlights a
need to further explore the role of physical manipulation in learning.
We plan to extend this study to analyze collaborative object-based
learning and how different interaction styles facilitate collaborative
object-based learning.
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