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Abstract This paper introduces a paradigm for describ-
ing and specifying tangible user interfaces (TUIs). The
proposed Token and Constraints (TAC) paradigm
captures the core components of TUIs while addressing
many of the conceptual challenges unique to building
these interfaces. The paradigm enables the description of
a broad range of TUIs by providing a common set of
constructs. Thus, the TAC paradigm lays the foundation
for a high-level description language and a software
toolkit for TUIs. We evaluate the proposed paradigm by
testing its ability to specify a wide variety of existing
TUIs.

Keywords Tangible user interface Æ Physical
computing Æ Token and constraints Æ User interface
management system Æ User interface description
language Æ Software toolkit

1 Introduction

The last decade has seen a wave of new research aimed
at fusing the physical and digital worlds. This work has
led to the development of a collection of interfaces
allowing users to take advantage of their spatial skills
and to interact collaboratively with augmented physical
objects in order to access and manipulate digital infor-
mation. These interfaces are referred to as Tangible User
Interfaces (TUIs) [1].

Interaction with TUIs draws on a user’s existing skills
of interaction with the real world, thereby, offering the
promise of interfaces that are quicker to learn and easier

to use. However, these interfaces are currently more
challenging to build than traditional user interfaces.
Following are some of the conceptual, methodological,
and technical challenges that TUI developers face:

Interlinked virtual and physical worlds While conven-
tional interfaces rely on virtual objects only, TUIs use
both virtual and physical objects, which coexist and
exchange information with each other. An important
role of the TUI developer is to determine which infor-
mation is best represented digitally and which is best
represented physically [2].

Multiple behaviors In graphical user interfaces (GUIs),
each widget encapsulates its behavior. In a TUI, the
behavior of a physical object is not determined by the
nature of the physical object alone, but also by that
object’s interactions with other physical and virtual
artifacts. Furthermore, the object’s behavior may
change when a new physical object is added to the TUI.
Therefore, when specifying the behavior of a certain
physical object, the designer is required to take into
consideration the mutual impact of physical objects.

Multiple actions Foley et al. [3], in a widely accepted
paper, suggested that, in an interactive graphical system,
there are six fundamental interaction tasks: select,
position, orient, path, quantify, and text. However, in a
three-dimensional, physical world, there are numerous
activities that can be performed with, or upon, any
physical object (e.g., squeeze, stroke, toss, push, tap, pat,
etc.). Hence, the designer is charged with selecting and
defining which are the meaningful actions.

No standard input/output devices In TUIs, there are
currently no standard input or output devices for
accomplishing a given task. For example, measuring the
movement of an object may be implemented using
magnet sensation, RFID, or computer vision. Though
identical in purpose, each technology currently requires
a different set of physical devices, instructions, and code.

O. Shaer (&) Æ N. Leland Æ R. J. K. Jacob
Department of Computer Science, Tufts University,
Medford, MA 02155, USA
E-mail: oshaer@cs.tufts.edu

E. H. Calvillo-Gamez
Universidad Politécnica de San Luis Potosı́,
San Luis Potosı́, Mexico

Pers Ubiquit Comput (2004) 8: 359–369
DOI 10.1007/s00779-004-0298-3



Thus, the integration of novel technologies into an
application is difficult and costly [4].

Continuous interaction Tangible user interfaces support
a combination of discrete and continuous interaction.
When users continuously interact with physical objects,
they perceive that their motions are directly mapped to
changes in the digital information. However, existing
event-based models for designing interactive systems
currently fail to capture continuous interaction explicitly
[5]. Thus, TUI software developers are often required to
deal with continuous interaction in considerably ad-hoc,
low-level programming approaches.

Distributed interaction Dourish [6] noted that, in a
TUI, there is no single point of interaction, as multiple
users can simultaneously interact with multiple physical
objects. In addition, the same action in a given interac-
tion may be distributed across multiple physical objects.
Existing models for designing interactive systems usually
handle multiple input devices by serializing all input into
one common stream [5]. However, in TUIs, this method
is less appropriate since the input is logically parallel and
the users’ perception is that two or more dialogs are
taking place simultaneously. It is important to note that
we are referring here to the importance of parallel design
at the conceptual and software model level, and not at
the microprocessor level (which may deal with such an
interface in a parallel or single channel way).

To address these challenges, a software toolkit for
specifying, simulating, and building TUIs is needed.
However, before such a toolkit can be built, it is first
necessary to identify the set of constructs required to
describe the structure and functionality of a large subset
of TUIs. Our proposed token and constraints (TAC)
paradigm provides a set of core constructs, which are,
for a wide range of TUIs, what widgets and events are to
GUIs.

The paper is organized as follows. We first discuss
related work, which lays the foundation for the TAC
paradigm. We then introduce the TAC paradigm and
explain how it should be applied in specifying TUIs.
Next, we evaluate the TAC paradigm by testing its
ability to describe a wide variety of existing TUIs. Fol-
lowing the TAC paradigm evaluation, we discuss its
contribution to TUI developers. Finally, we discuss our
conclusions and plans for developing a new toolkit
based on our approach.

1.1 Related work

Fitzmaurice et al. [7] laid the foundation for a new
framework with their discussion of the graspable user
interface. In 1997, Ishii and Ullmer [1] suggested the
term ‘‘tangible user interface’’ as referring to systems
that augment the real world by coupling digital infor-
mation to tangible objects. Holmquist et al. [8] intro-

duced taxonomy of physical objects that can be linked to
digital information, suggesting three categories of
objects: containers, tokens, and tools. By their descrip-
tion, containers refer to generic objects used to move
information between platforms, tokens refer to physical
objects used to access stored information and tools are
used to manipulate information. Koleva et al. [9] sug-
gested a framework for the classification of TUIs based
on the degree of coherence between physical and digital
objects.

In his dissertation, Ullmer [2] introduced the concept
of token+constraint systems, which considers tokens as
physical objects representing digital information or
operations, and constraints confining regions in which
tokens are placed and manipulated. He suggested that
the design space of TUIs includes three high-level cate-
gories: interactive surfaces, which are systems where the
user manipulates physical objects upon a planar surface;
constructive assemblies, which refers to systems inspired
by Lego, in which users interconnect modular elements;
and tokens+constraint. This classification of TUIs
provides a basis for considering TUIs as related elements
of a larger design space rather than isolated systems;
however, it does not cover the entire TUI design space.
The TAC paradigm uses Ullmer’s [2] token+constraint
approach as its basis. It then extends the concept of
constraint, stressing that a TUI may be described as a set
of relationships between a token, a set of constraints,
and a variable. The main principles of the TAC para-
digm were introduced in [10]. A new, extensively revised
version of the TAC paradigm is discussed in detail in the
following section.

Several human–computer interaction (HCI) models
are relevant to the modeling of tangible interaction and
the structure of TUIs. The MVC model [11] highlights
the separation of a GUI into a view, provided by the
graphical display, control, provided by the mouse and
keyboard, and model. Taking MVC as their basis, Ull-
mer and Ishii [2, 12] presented an interaction model for
TUIs, the MCRit, that highlights the integration of
representation and control in TUIs. PAC [13] is an
implementation model that recursively structures an
interactive application in terms of presentation,
abstraction, and control. Myers [14] suggested a model
for handling input that encapsulates interactive behav-
iors into a few interactor object types. Application
programmers can then create instances of these inter-
actor objects.

Finally, a few models and toolkits have appeared in
related research areas that link the physical and digital
worlds. Fishkin et al. [15] proposed a paradigm and
design framework for embodied user interfaces. Jacob
et al. [5] presented a software model and specification
language for non-WIMP user interfaces. The term
‘‘non-WIMP user interface’’ refers to a set of emerging
computer environments, such as virtual environments,
eye-movement-based user interfaces, physical and
ubiquitous computing. Their approach was based on the
view that the essence of non-WIMP dialog is a set of

360



continuous relationships, most of them temporary.
VRID [16] is a design methodology for developing VR
interfaces. iStuff [17], Phidgets [18], and Papier-Mâché
[4] are all toolkits providing high-level APIs for different
sensing mechanisms. iStuff is designed specifically for the
ubiquitous computing environment and supports wire-
less devices, Phidgets encapsulates communication with
USB-attached physical devices, and Papier-Mâché in-
tends to support computer vision, RFID, and Barcode.
While all of these facilitate the integration of physical
objects and sensing mechanisms into TUIs, they do not
provide support for the association of high-level
semantics to physical objects. Building upon this foun-
dation, we have extended these ideas and we propose a
paradigm for specifying TUIs.

1.2 The Marble Answering Machine

One of the earliest illustrations of interlinking the
physical and digital worlds is provided in the design of
the Marble answering machine. It was designed and
prototyped by Durrell Bishop, while a student at the
Royal College of Art, as a way to explore ways in which
computing can be taken off the desk and integrated into
every day objects [19].

We have selected the Marble Answering Machine [19]
as a leading example throughout this paper because it
clearly demonstrates the concept of accessing digital
information by manipulating physical objects. In the
Marble Answering Machine, incoming voice messages
are attached to marbles. To play a message, the user
grabs a message (marble) and places it in an indentation
on the machine [19]. To return a call, the user places a
marble in an indentation in an augmented telephone.
Though additional functionality is available, this de-
scribes the functionality necessary to understand our
examples. Figs. 4, 5, 6, 7, and 8 illustrate the Marble
answering machine.

2 The TAC paradigm

The TAC paradigm we propose identifies the common
components and properties sufficient for specifying the
structure and functionality of a wide range of TUIs.

Our approach is based on the notion that a TUI may
be described as a set of relationships between physical
objects and digital information. These relationships are
defined by the TUI developer and may be instantiated
by the user. After a relationship has been instantiated, a
user may manipulate physical objects in order to access
or manipulate digital information.

As is common in evolving research areas, the termi-
nology used to discuss TUIs has not yet reached wide-
spread consensus. Therefore, we would like to begin by
defining the following terms: pyfo, token, constraint,
variable, and TAC. After defining these terms, we will
use them to describe TUIs. The Marble Answering

Machine [19] will be used as an example throughout
both the introduction of the TAC paradigm terminology
and the ensuing discussion of the TAC paradigm prop-
erties.

2.1 TAC terminology

A pyfo is a physical object that takes part in a TUI. A
pyfo may be comprised of a number of other pyfos (e.g.,
a box may be made up of six pyfo ‘‘sides’’). We chose the
term ‘‘pyfo’’, which has a Spanish influence, in order to
avoid the use of the term ‘‘Object’’, which has multiple
meanings in the field of computer science and HCI. We
also wanted to avoid the term ‘‘physical object’’ because
of its common use in reference to elements of the
physical world, which have no connection to TUIs. The
term ‘‘pyfo’’ has the advantage of being brief while still
bearing resemblance to ‘‘physical object’’, and main-
taining its specificity to the world of TUIs.

Pyfos may enhance their physical properties with
digital properties such as graphics and sound. In the
Marble answering machine [19], both the marbles and
the answering machine itself are considered pyfos. There
are two types of pyfos: tokens and constraints. Each
pyfo can be a token, a constraint, or both.

A token is a graspable pyfo that represents digital
information or a computational function in an applica-
tion. The user interacts with the token in order to access
or manipulate the digital information.

The physical properties of a token may reflect the
nature of either the information or the function it rep-
resents. Also, the token’s physical properties may afford
how it is to be manipulated. For example, we consider
marbles in the Marble answering machine [19] tokens.
The user interacts with a marble in order to access the
message it represents. The physical properties of the
marble suggest that the user can grab the marble and
pick it up. WebStickers is another example of a system
where users take advantage of an object’s physical
properties, and use these properties as cognitive cues for
finding Web sites [20]. In WebStickers, the user couples a
certain Web site to a physical object, and then interacts
with the object to access the Web site. We consider the
physical objects as tokens.

A constraint is a pyfo that limits the behavior of the
token with which it is associated. The physical properties
of the constraint guide the user in understanding how to
manipulate the token and how to interpret the compo-
sitions of token and constraints. The constraint limits
the token’s behavior in the following three ways:

1. The physical properties of the constraint, such as
orientation, material, textures, etc., suggest to the
user how to manipulate (and how not to manipulate)
the associated token. For example, in the Marble
Answering Machine [19], the size and shape of the
‘‘play message’’ indentation affords placement of a
marble in the indentation. The size of the indentation
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also suggests that only one marble at a time may be
placed in the indentation (see Fig. 1).

2. The constraint limits the physical interaction space of
the token. When tokens are manipulated within the
confines of a constraint, their interaction space is
limited to the space provided by the constraint. For
example, in the Senseboard system [21], pucks are
manipulated within the confines of a grid. Alterna-
tively, additional pyfos placed within the confines of
the same constraint serve to further limit the token’s
interaction space. In Senseboard for example, exist-
ing pucks on the Senseboard grid prevent users from
placing a new puck in the exact same location as an
existing puck (see Fig. 2).

3. The constraint serves as a reference frame for the
interpretation of token and constraint compositions.
Compositions of token and constraints may be inter-
preted either in spatial terms, such as coordinates or
numerical values, or in relative terms, such as the
prepositions: first, left, of, beside, etc. [2]. In both
cases, the compositions are interpreted with respect
to a reference frame.

A reference frame is defined in physics as a way of
assigning coordinates to a given space or as a way of
describing positions in space [22]. In the TUI context,
spatial and relative relationships between a token and a
constraint are expressed with respect to the constraint.
Therefore, the constraint provides the reference frame
for the spatial or relative interpretation. A constraint
also provides the reference frame for interpreting com-
positions of a token and some other pyfo associated with

the same constraint, thus, sharing the same reference
frame (see Fig. 3). We have already discussed why we
consider this ‘‘other pyfo’’ as a constraint. Hence, a
single constraint provides the reference frame for inter-
preting the relationship between a token and all of its
constraints.

An example of token and constraint compositions
that are relatively interpreted can be found in the next
section under the discussion of Tangible Query Inter-
faces [23]. Figures 1, 2, and 3 illustrate the three ways
constraints can limit the behavior of a token.

A variable is digital information, or a computational
function, in an application. Some variables are coupled
to tokens, while others are semantic variables in the
application.

A TAC is the relationship between a token, its vari-
able, and one or more constraints. Often, this relation-
ship is temporary. The relationship is defined by the
designer, and is instantiated by either the designer or the
user. The physical manipulation of a TAC is the
manipulation of a token with respect to its constraints,
and it has computational implications.

For example, the composition of a marble located in
the incoming message queue is considered as a TAC.
The TAC consists of the following: the marble is a token,
the indentation (representing the incoming message
queue) and the other marbles in the queue are the con-
straints, and the message coupled to the marble is the
variable. Having defined a terminology, we now use this
terminology to describe TUIs.

2.2 Properties of the TAC paradigm

The TAC paradigm contains five key properties; couple,
relative definition, association, computational interpreta-
tion, and manipulation. Following the definition of these
properties, we evaluate their robustness by demonstrat-
ing their application on a wide variety of TUIs. We use
the Marble Answering Machine [19] as a leading
example throughout the definitions, describing how the
system would be designed using the TAC paradigm.

Couple: a pyfo must be coupled with a variable in order to
be considered a token When a pyfo is coupled with a

Fig. 1 The physical properties of the constraint affords placement
of the token in the indentation

Fig. 2 The board and other pucks physically limit the interaction
space of the new puck

Fig. 3 The table serves as a reference frame for the user’s
interaction with the buildings
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variable, it becomes a token. The designer defines what
type of variable may be associated with a certain pyfo.
The actual coupling of the variable to the token is then
executed either by the designer at design time or by the
user at run time. The former is referred to as static
coupling, the latter as dynamic binding.

For example, in the Marble Answering Machine [19],
a marble coupled to a message is considered as a token.
When designing the system, the designer would deter-
mine that a ‘‘message’’ variable should be associated
with a marble. Then, at run time, the machine couples
incoming messages to specific marbles.

Relative definition: each pyfo may be defined as a token, a
constraint, or both. The marbles in the Marble
Answering Machine [19] are coupled to incoming mes-
sages and, therefore, can be considered as tokens.
However, consider marble A; it is constrained by the
indentation of the incoming message queue of the
machine, which physically channels the marble. It is,
however, also constrained by the other marbles in the
message queue, which limit the amount of available
space in the queue. In this case, a marble may be defined
as either a token or a constraint, depending on the
marble being discussed.

The first and second properties are illustrated in
Figs. 4 and 5.

Association A new TAC is created when a token is phys-
ically associated with a constraint. New constraints may
be added to an existing TAC. When a token is associated
with a constraint, a new TAC relationship is created. In
the example of the Marble answering machine [19], when
marble A is associated with the incoming message
queue, a new TAC is created. The new TAC consists of a
token—marble A, and a constraint list that includes the
queue itself and the other marbles in the queue. Later,
when a new marble is added to the queue, the new
marble is added as a constraint to the TAC containing
marble A as a token. When the user removes marble A
from the queue, this TAC is destroyed.

Token and constraints have a recursive structure in
that a given TAC can serve as a token or a constraint for

other TACs; that is, larger TAC structures subsume
smaller TAC instances. An example of a recursive TAC
is discussed in the next section under the specification of
Tangible Query Interfaces [23].

Figure 6 illustrates the third property.

Computational interpretation: the physical manipulation
of a TAC has computational interpretation. The
manipulation of a token with respect to its constraints
has computational interpretation and, therefore, chan-
ges the state of the application. Manipulation of a token
outside its constraints has no computational interpreta-
tion. Only when a token is associated with constraints
does its manipulation have computational interpreta-
tion.

For example, in the case of the Marble Answering
Machine [19], when the user adds a marble to the replay
indentation, the machine plays the message; when the
marble is removed from the indentation, the message
stops playing and the message status is changed from
new to old. The user observes the change in message

Fig. 4 Couple (redrawn based on Durrell Bishop’s illustration
from [19])

Fig. 5 Relative definition (redrawn based on Durrell Bishop’s
illustration from [19])

Fig. 6 Association (redrawn based on Durrell Bishop’s illustration
from [19])
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state in the form of feedback from the application. The
designer determines the nature of this feedback.

On the other hand, the manipulation of a marble
located outside the defined regions of the machine (its
constraint) has no computational interpretation and,
therefore, has no effect on the application’s state.

Manipulation: each TAC can be manipulated discretely,
continuously, or in both ways. The physical manipulation
of a token is afforded by the physical properties of its
constraints. Consider the example of the Marble
Answering Machine [19]. The TAC, comprised of the
marble token and the replay indentation constraint, can
be manipulated by adding or removing the marble to/
from the indentation. This is a discrete manipulation,
which can be derived from the physical properties of the
indentation, in that the size and the location of the
replay indentation suggest to the user that the TAC may
be manipulated in these ways. An example of continuous
behavior can be found later in this paper under the Urp
[24] specification.

Figures 7 and 8 illustrate the fourth and fifth prop-
erties.

2.3 Specifying a TUI using the TAC paradigm

The TAC paradigm describes a TUI as a set of TAC
relationships. Specifying a TUI using the TAC paradigm
consists of defining the possible TAC relationships
within a TUI. For each TAC, the developer defines its
token and constraints. He then describes the behavior of
a TAC by specifying the actions that may be performed
on its token, together with their responses. The TAC
relationships are defined by the developer, but may be
instantiated by either the user or the developer. Typi-
cally, instantiation of a TAC is initiated in response to a
discrete event. For each TAC that may be instantiated
or destroyed at run time, the TUI developer must define
the discrete actions add and remove, which instantiate or
destroy the TAC. These actions may also have addi-
tional computational effects on the TUI beyond simply
instantiating and destroying TACs. An example of this
is found in the Urp [24] specification.

In this section, we have presented a conceptual
framework for TUIs. We have introduced a terminology
and key properties, which together provide TUI devel-
opers with a common vocabulary and conceptual tools
for specifying the functionality and structure of TUIs.
We identified pyfos, tokens, and constraints as the core
components of TUIs, and suggested that TAC objects
are the conceptual building blocks of TUIs. Similar to
widgets in a GUI, TAC objects encapsulate the set of
meaningful actions that can be performed upon a
physical object in a TUI. In the next section, we evaluate
the TAC paradigm’s ability to describe a broad range of
interfaces by specifying a variety of TUIs using the
proposed paradigm.

3 Evaluating the TAC paradigm

We have proposed a new paradigm. In order to evaluate
its ability to specify a large subset of TUIs, we have
specified a wide range of existing TUIs using the con-
structs provided by the paradigm. Each of the TUI
specifications we have chosen to include in this paper
serves as a representative for an existing class of TUIs.
Together, they cover an important and large subset of
the TUI design space. In our selection of TUI classes, we
utilized Ullmer’s [2] division of the TUI design space
into three high-level classifications and selected repre-
sentatives from each classification: interactive surfaces,
constructive assemblies, and token+constraint. We also
selected TUIs that fall outside these classifications.

We specified each TUI by listing its TAC relation-
ships in terms of representation and behavior. Represen-
tation refers to the physical association of a token to its
constraints. Behavior refers to the variable coupled to the
token and to the actions a user may perform on a TAC.
For each TAC that can be instantiated and destroyed at
run time, we specified the discrete actions add (add token
to constraint) and remove (remove token from con-

Fig. 7 Computational interpretation (redrawn based on Durrell
Bishop’s illustration from [19])

Fig. 8 Manipulation (redrawn based on Durrell Bishop’s illustra-
tion from [19])
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straint), which, correspondingly, activate or deactivate a
TAC.

3.1 The Designers’ Outpost

The Designers’ Outpost [25] is representative of the
interactive surfaces category. The system allows users to
design the information architecture of websites. Work-
ing collaboratively on a whiteboard where regular Post-
It notes represent Web pages, users are able to structure
the information by moving notes around the board and
then link the information and annotate it using elec-
tronic pens. Table 1 summarizes the specification of the
Designers’ Outpost system.

An interesting aspect of the Designers’ Outpost speci-
fication is that the scope of the system extends beyond
TUIs. Once the physical note becomes an electronic note,
it is no longer a physical object, and therefore, the system
moves away from a state that is purely tangible. Instead,
the system operates more like a GUI where the user
directly manipulates an electronic note. However, as seen
below, the TAC paradigm is still able to describe the
system and is therefore, applicable for systems that
combine tangible and graphical interaction.

3.2 Computational building blocks

Computational building blocks [26] is representative of
the constructive assemblies category. It allows users to
construct a structure using Lego-type building blocks,
which is later displayed graphically on a computer
screen. Each block is encoded with information about its

shape, color, and texture. Also, each block is aware of
those blocks that it considers as neighbors. A neighbor is
any block physically connected on the top or bottom of
a given block.

An interesting aspect of this system specification is
that any given block may be considered as either a token
or a constraint, depending on the TAC relationship
being discussed. A block is considered a token when the
block is statically coupled to a digital block variable and
physically constrained by its neighbors (the blocks to
which it is connected). This same block is also consid-
ered a constraint for its neighbors. Table 2 summarizes
the specification of the Computational Building Blocks
system.

3.3 Tangible Query Interfaces

Tangible Query Interfaces [23] is representative of the
token+constraint category. It uses physically con-
strained tokens to express, manipulate, and visualize
parameterized database queries. We would like to
highlight two interesting aspects which arise from the
specification of the tangible query interfaces system.
First, the system illustrates the recursive structure of a
TAC. TAC 3 in Table 3 is comprised of a token, a
parameter bar with upper and lower sliders, constrained
by a query rack. A closer look at the token in TAC 3,
reveals that the token itself is comprised of two TACs;
TAC 1 and TAC 2 in Table 3. Since a TAC can be
comprised of other TACs, we defined the structure of
TACs as recursive. Second, in this system, we see an
example of relative interpretation of token and constraint
compositions. The proximity of the parameter bars

Table 1 The Designers’ Outpost [25] specification using the TAC paradigm

TAC Representation Behavior

Token Constraints Variable Action Observed feedback

1 Paper note BoardNotes Paper note Add to board Adds paper note to board. Add
a Web page to a Web page list

Remove from board Removes paper note from board
and removes any links to it

Move Moves the physical location of paper
note maintaining any links

Tap Activates emenu
2 Eraser BoardPaper notesLinks Links Add to board None

Remove from board None
Erase Removes links

3 Eraser BoardPaper notesDrawings Drawings Add to board None
Remove from board None
Erase Remove drawings

4 Move tool BoardNotesEnote Enote Add to board None
Remove from board None
Move Moves the physical location of enote

maintaining any links
5 Pen BoardNotes Link Add to board None

Remove from board None
Draw Adds links

6 Pen Board Drawing Add to board None
Remove from board None
Draw Adds drawings
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located on the query rack impacts the system’s inter-
pretation of the query parameters. That is, if one unit is
adjacent to, or ‘‘next to’’ another, the operator AND is
applied to the two adjacent parameters. When units
stand separate in the query rack (and there is more than
one parameter), the OR operator is applied. The query
rack serves as a reference frame for both the user’s
interpretation and the actual computational interpreta-
tion of the parameter bars and query rack composition.
Table 3 summarizes the specification of the Tangible
Query Interfaces System.

3.4 ComTouch

ComTouch [27] is a TUI providing the user with tangible
feedback initiated by a remote user. The system is
designed like a normal cell phone, but it augments verbal
communication with haptic feedback, allowing the user
to express a non-verbal message, such as emotion or

conversional cue. When user A is talking to user B, he
may squeeze the cell phone to augment his verbal
message. User B then feels the vibration of his device.
The intensity of the vibration can be interpreted as the
intensity of message. It is easy to see that ComTouch
does not fall under any of Ullmer’s classifications.
Table 4 presents the ComTouch specification.

The specification of this system consists of two TAC
relationships. In both relationships, the hand is consid-
ered as a physical object, and serves as either a token or a
constraint. The first TAC considers the cell phone as a
token linked to the variable, non-verbal message. The
vibration of the cell phone allows a user to receive this
message and to interpret it. The vibration is constrained
by the hand, which provides the reference frame for its
interpretation. In the second TAC, the hand is now
considered as a token linked to the non-verbal message.
The user presses the hand on the cell phone to express
the message. The user’s ability to press is physically
constrained by the cell phone.

Table 2 Computational Building Blocks [26] specification using the TAC paradigm

TAC Representation Behavior

Token Constraints Variable Action Observed feedback

1 Block Neighbor blocks Block Add to neighbor blocks Adds block to digital structure
Remove from neighbor blocks Removes block from digital structure

Table 3 Tangible query interfaces [23] specification using the TAC paradigm

TAC Representation Behavior

Token Constraints Variable Action Observed feedback

1 Upper slider Parameter bars
Lower slider

Upper bound variable
value in query

Slide (vertically) Display is updated to reflect
new upper bound

2 Lower slider Parameter bars
Upper slider

Lower bound variable
value in query

Slide (vertically) Display is updated to reflect
new lower bound

3 Parameter bar and sliders
(TAC 1 and TAC 2)

Query rack
Other parameters

Query Add to query rack Adds a new parameter to the
query. Display is updated
accordingly

Remove from
query rack

Removes a parameter from
the query. Display is updated
accordingly

Slide (horizontally) Display is updated according
to the applied logical operator,
AND or OR

Table 4 ComTouch [27] specification using the TAC Paradigm

TAC Representation Behavior

Token Constraints Variable Action Observed feedback

1 Cell phone Hand Non-verbal message Add to hand None
Remove from hand None
Vibrate None

2 Hand Cell phone Non-verbal message Add to cell phone None
Remove from cell phone None
Press Remote phone vibrates
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3.5 Urp

The Urp [24] system is also an example of an interactive
surfaces interface. It uses physical models of buildings
manipulated on a table to help urban planners perform
analysis of shadows, proximities, reflections, wind, and
visual space. Table 5 summarizes the specification of the
Urp system. The specification of this system highlights
two interesting features of TUIs; continuous interaction
and temporary relationships between token and
constraints.

The manipulation of buildings upon the table surface
illustrates continuous interaction. Using the example of
a building’s shadow, when the user slides a building
from point A to point B, the system does not wait until
the building gets to point B to display the changes in the
shadow. Instead, the shadow cast by the building is
continuously updated to reflect each position of the
building between point A and B.

The temporary nature of the TAC relationship is
demonstrated by TAC 6, the TAC comprised of the

material tool as a token and a building as a constraint.
The instantiation and manipulation of this TAC are one
and the same. The moment the user touches the building
with the material tool, the TAC is activated and the
material of the building is changed. The relationship
only lasts for a moment. Once activated, the TAC may
be immediately terminated, since there is no further need
to hold the material tool against the building.

4 Discussion

The TAC paradigm was intended to provide a simple
and elegant set of constructs sufficient to describe the
functionality and structure of a broad range of TUIs.
These constructs in turn will serve as the basis for a
high-level description language and a software toolkit for
TUIs.

To evaluate the TAC paradigm’s ability to describe a
broad range of TUIs, we analyzed a wide variety of
interfaces and have shown that the set of constructs it

Table 5 Urp [24] specification using the TAC paradigm

TAC Representation Behavior

Token Constraints Variable Action Observed feedback

1 Building TableOther
buildings
Roads

Building Add to table Displays shadows cast by the
building, according to time of day

Remove from table Removes physical building from
display; removes any display
information related to the building

Move Moves the physical location of the
building, updating the display
accordingly

2 Road tool Table
Buildings

Road Add to table Adds a road to the display with
simulated traffic on it

Remove from table Removes road and any associated
traffic lights from display

Slide Moves the physical location of the road,
adjusting traffic and traffic lights
accordingly

3 Distance
measuring tool

TableBuildings
Roads

Distance
function

Add to a building
or a road

Distance tool has two ends. When distance
end is added to one constraint, a drag line
appears; if added to two constraints, a line
connecting the two constraints appears
showing the distance between the two.
Otherwise, if erase end is used, the line
disappears from display

Remove from a building
or a road

None

4 Wind tool Table Wind Add to table Airflow simulator activated
Remove from table Airflow simulator deactivated
Orienting Display reflects changes in wind direction

5 Anemometer tool Table Wind Add to table Display indicates wind flow magnitude
at the arrow point

Remove from table Display of wind flow magnitude removed
6 Material Transforming

tool
BuildingsTable Building Add to a building Changes the building’s material.

Display changes accordingly
Remove from a building None

7 Clock dial Clock board Sun Set time Display changes to reflect new time
of day

8 Clock (TAC 7) Table Sun Add to table None (enables time setting)
Remove from table None (disables time setting)
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provides is sufficient for specifying TUIs classified as
interactive surfaces, constructive assemblies, and
token+constraints systems [2], as well as additional
interfaces we studied outside these classifications, such
as ComTouch [27]. We believe that the TAC paradigm
may be applicable to specify an even broader range of
interfaces, and, to test this assumption, we intend to use
the TAC paradigm in the development of new TUIs.

The TAC paradigm addresses the conceptual chal-
lenges discussed in the introduction. The notion of a
TAC allows designers to encapsulate the token’s
behavior at the TAC level rather than at the pyfo level.
Therefore, theTUI developer can specify the set of actions
that are meaningful when executed with respect to a
certain set of constraints. For example, in the Tangible
Query Interfaces system [23], sliding a parameter bar is
an action that only has meaning when manipu-
lated with respect to the query rack. By allowing the
encapsulation of actions in the TAC, our paradigm
mediates the challenges of multiple actions and multiple
behaviors.

The simplicity of specifying a TUI using the TAC
paradigm may encourage TUI developers to better
address the challenges of interlinked virtual and physical
worlds by experimenting with representing tokens in
different forms, either digital or physical. The TAC
paradigm implicitly supports distributed interaction, as
it is simply a declarative specification for a set of TAC
relationships maintained in parallel.

To address technical challenges such as lack of stan-
dard input/output devices and continuous interaction, a
toolkit providing developers with a set of practical tools
is needed. Such a toolkit is discussed under future work.

The TAC paradigm currently does not provide a
mechanism or a language for describing and/or analyz-
ing issues such as form and the affordance of different
materials, colors, or shapes. Currently, it only addresses
the function and the structure of TUIs. However, it is
expected that a toolkit based on the TAC paradigm
would provide designers with the mechanism to experi-
ment with pyfos in different forms.

As TUIs evolve, the importance of discussing and
analytically analyzing and comparing alternative designs
for TUIs increases. The TAC paradigm itself is not
meant to be an analytical tool for analyzing or com-
paring design hypotheses; rather, it is concerned with
identifying the constructs necessary for a TUI toolkit.
However, it may serve as a basis for the development of
an analytical tool aimed at assisting designers in gaining
new insights in the TUI design process.

5 Future work

Having established a conceptual framework for speci-
fying TUIs, we are currently developing a high-level
description language and software toolkit to bridge the
gap between the conceptual foundations of TUIs and
the practical complexities of building these systems.

Our toolkit will allow designers to specify a TUI
using a high-level description language based on the
TAC paradigm. This specification would then be trans-
lated into a simulation program or a program control-
ling a set of physical interaction objects. With our
toolkit, the TUI implementation will consist of two
parts: a lexical handler handling the communication of
the user with a set of physical objects, and the applica-
tion logic. A lexical handler is provided for each
implementation mechanism supported by the toolkit so
the same application logic may be prototyped using
different implementation mechanisms. A control com-
ponent is responsible for the communication between
the lexical handler and the application logic, thus, pro-
viding desirable technological independence.

We have built a prototype toolkit providing designers
with a 3D graphical modeling tool and form-based tools
to specify TUIs. The system translates the TUI
description into a high-level description language and
simulates tangible interaction in a Java3D-based virtual
reality environment. We intend to develop a full toolkit
for specifying, simulating, and programming TUIs. We
are developing an automatic generator of interactive C
code from a high-level specification which supports TUI
prototyping using a Handyboard microcontroller. We
are also developing a lexical handler that supports
prototyping interfaces using RFID tags. We are inter-
ested in cooperating with existing physical computing
toolkits to extend the technologies supported by our
system.

6 Conclusions

We have presented the TAC paradigm, a conceptual
framework for TUIs. Our paradigm is based on the
notion that a TUI consists of a set of TAC relationships,
some of which are recursive and/or temporary. We
evaluated the proposed paradigm by applying its key
properties to a wide variety of TUIs, and showed that
the set of constructs it provides are indeed sufficient for
describing a wide variety of TUIs.

Many concerns have been left for future consider-
ation. Matters such as interoperability of TUIs, mass
production of TUIs, security and privacy in tangible
interactions are all potential research directions. We
look forward to collaborating with others to explore the
exciting space of TUIs.
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