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ABSTRACT 
The combination of advanced genomic technologies and 
computational tools enables researchers to conduct large-
scale experiments that answer biological questions in 
unprecedented ways. However, interaction tools in this area 
currently remain immature. We propose that tangible, 
embedded, and embodied interaction (TEI) offers unique 
opportunities for enhancing discovery and learning in 
genomics. Also, designing for problems in genomics can 
help move forward the theory and practice of TEI. We 
present challenges and key questions for TEI research in 
genomics, lessons learned from three case studies, and 
potential areas of focus for TEI research and design. 
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INTRODUCTION 
Advances in genomic technologies have transformed 
biological inquiry and have the potential to alter medical 
practice to offer much-improved health care [7]. Genomic 
and biological technologies are also positioned to address 
some of the most pressing problems of our times, including 
food and clean water shortage, as well as increased demand 
for alternative energy sources [6]. 

The application of genomic technologies has opened new 
interfaces between biology and computer science, fueling 
fields such as bioinformatics that enable biological 

questions to be tackled computationally [7]. Resonant with 
broader evolutions in science, the study of genomes is 
evolving on an equal footing in theory, experimentation, 
and computation. The combination of advanced genomic 
technologies (e.g. second generation DNA sequencing) and 
powerful computational tools has facilitated biological 
investigations in a manner and scale previously not possible 
[24]. Rather than only small-scale analyses, researchers 
now often conduct large-scale experiments in which 
information from multiple genes and genomes is measured, 
recorded, analyzed, and stored in databases.  

The bottlenecks and challenges along the path to 
transforming the “big data” generated by these experiments 
into biological insights – including observations about the 
data that constitute units of discovery [30] – are formidable 
and numerous [7]. For one, data analysis is now replacing 
data generation as the rate-limiting step in genomic research 
[24]. Large-scale genome research efforts, which involve 
generating and interpreting data at an unprecedented scale, 
have brought into focus the need for new computational 
tools that facilitate meaningful analyses.  

The deluge of information generated by emerging genomic 
technologies has driven a change not only in scale of 
investigations, but also in the tools used by biologists. Next 
to the pipette and pen, a web browser is today one of the 
most widespread biology tools, as it provides access to 
powerful computational resources [35]. Web technologies 
have been massively adopted toward facilitating improved 
access for biologists, who presently are often not computer 
experts. However, today’s computational tools show severe 
limitations in persistence, usability, and support for 
collaboration and high-level reasoning [3, 21, 45].  

Based on our experiences working at the intersection of 
Genomics and TEI both in the capacity of interaction 
designers [35-37, 43, 49] and genomic investigators [11, 16, 
27], we propose that the research area of TEI offers special 
opportunities for enhancing discovery and learning in 
genomics. We see these prospects arising from design and 
realization of interfaces for exploration, interpretation, 
organization, manipulation, and sharing of vast dataspaces 
mediating the construction of new insights. We further 
suggest needs for innovative interfaces enhancing discovery 
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processes involving big data present an opportunity to drive 
forward the field of TEI. Participants of the inaugural TEI 
conference panel, in discussing research agendas for the 
field, suggested: “more complex computation should be 
occurring behind the tangible interface, instead of only one-
to-one input-output.” [13]. We view developments in 
computational sciences and TEI as intertwined, with both 
Computational STEAM (science, technology, engineering, 
art, and math) and TEI prospectively advanced by 
leveraging old and new synergisms between scientific 
disciplines, arts, and culture [43].  

In this paper we discuss opportunities and challenges for 
the application of TEI research to computational genomics. 
Our contribution in this work is threefold. First, we analyze 
and characterize the genomics problem domain, deriving 
challenges and key questions for TEI research. Second, we 
present lessons from three case studies at the intersection of 
TEI and computational genomics/biology. Finally, drawing 
on our described experiences, we discuss areas for design 
focus that show potential to advance discovery and 
practices in genomics, as well as to contribute new 
knowledge to the theory and methods of TEI. We begin 
with a brief survey of related work in TEI for the sciences.  

RELATED WORK 
A number of systems illustrate possibilities for supporting 
scientific discovery and higher education with TEI. Brooks 
et al. [4] developed an early haptic display for scientific 
visualization. Gillet et al. [9] presented a tangible user 
interface for molecular biology that used augmented reality 
technology to view 3D molecular models. Schkolne et al. 
[31] developed an immersive tangible interface for the 
design of DNA molecules. While these systems highlight 
potential benefits of TEI for scientists, they focus on the 
representation of objects with inherent physical structure. 
We are interested in a broader use case, where abstract 
information is represented and manipulated.  

Several projects investigate augmented capture and situated 
access to biological data. Labscape [2] is a smart 
environment for cell biology labs. ButterflyNet [50] is a 
mobile capture and access system for field biologists. 
Mackay et al. [17] and Tabard et al. [39] explore the 
integration of biologists’ notebooks with physical and 
digital information sources. Our efforts have been oriented 
toward the (computational) workbench, but are synergistic 
with past and future paper-entangled opportunities.  

To date, several systems have been developed to facilitate 
collaboration among scientists across large displays and 
multi-touch tables. WeSpace [46] integrates a large data 
wall with a multi-touch table and personal laptops. 
TeamTag [29] allows biodiversity researchers to 
collaboratively search, label, and browse digital photos. 
eLabBench [40] investigated tabletop interfaces as 
interactive wet lab benches. Kuznetsov et al. explored the 
development of artifacts for supporting DIYbio [15]. 

Finally, TEI systems have also illustrated the potential to 
support science education. We discuss several relevant to 
genomics. Augmented Chemistry [8] is a tangible user 
interface for chemistry education. Involv [12] is a tabletop 
interface for exploring the Encyclopedia of Life that shares 
our challenge of creating effective interaction techniques 
for large data spaces. PhyloGenie [32] is a tabletop 
interface for collaborative learning of phylogeny through 
guided activity. We are interested in the development of 
interfaces that promote open-ended hands-on inquiry. 

CHALLENGES FOR TEI 
The field of genomics encompasses a broad scope of 
scientific inquiry focusing on the organization and function 
of genomes. This wide-ranging scientific discipline gives 
rise to a set of design challenges for TEI.  

Challenges #1: Diverse Audience 
At least four distinctive user groups are involved in the 
domain of genomics. Each is marked by unique needs, and 
thus likely best serviced by distinct design criteria, which in 
turn may be realized in different tools: 

First, genomic scientists are domain experts whose goal is 
to derive scientific insights from large-scale data sets. 
Genomic scientists work on a broad variety of tasks, each 
with its own biological entities of interest and analytic 
workflows. Three core tasks are typically included in a 
broad range of investigations [24, 35]: 1) Annotating 
sequence data; 2) Browsing annotations mapped to a 
reference genome; and 3) Comparing genomic sequences. 
Scientists require tools that combine powerful automated 
computational analysis with support for manual inspection, 
interpretation, and high-level reasoning. 

Second, future scientists are students early in their scientific 
career. Training in genomics often includes research 
experiences that require access to and the manipulation of 
large-scale data sets through the use of sophisticated 
computational methods and interfaces. However, current 
interfaces pose a high threshold for novice users and do not 
support important aspects of learning such as inquiry-based 
high-level reasoning, the development of process 
knowledge, and collaborative learning [21, 25, 35]. 

Third, citizen scientists are people with little or no formal 
scientific training who seek to make meaningful contribu-
tions to research. While some crowd-sourcing projects 
provide novel interfaces for citizen scientists to help 
analyze data collected by scientists (e.g. [5]), there is a 
growing movement to empower people to gather, control, 
and analyze their own data. Prompted by the increasing 
availability of consumer DNA tests, citizen science research 
in genomics is often motivated by questions people have 
about their health risks and how to prevent them. For 
example, DIYGenomics is a citizen science organization 
that facilitates sharing genetic information, tracking data, 
and forming collaborations. The work of citizen scientists 
in genomics sometimes leads to scientific contribution (e.g. 
[18]). Still, existing platforms only serve as starting points 



in addressing the growing need for tools that will make it 
easier for people to contribute to research.  

Fourth, the general public refers to the need to increase the 
awareness of citizens and policy makers to the opportunities 
and challenges of genomic research and its potential to 
transform public health. For this audience, the challenge is 
to develop culturally competent educational tools and 
material that communicate complex data to non-scientists. 

This diverse audience opens new opportunities and 
questions for TEI research. For one, while TEI researchers 
have focused substantial effort on novice users and “walk-
up-and-interact” systems, little work investigates the design 
of TEI systems for expert users. What is the potential of 
TEI systems that involve experts interacting with big data? 
What sort of custom hardware, visual design, and user 
training would they require? Also, while several studies 
have investigated the effects of TEI on learning, most have 
focused on children. How can interactive surfaces be used 
to help students in higher education learn complex 
concepts? Finally, how can artistic and cultural artifacts be 
used to communicate scientific data in outreach programs? 
Challenges #2: Scale 
Current genomic research combines unprecedented capacity 
for data generation with powerful computational tools, 
resulting in large-scale investigations. We discuss the scale 
of the data and the collaboration such investigations entail.  
Data: The recent introduction of next-generation sequenc-
ing technology and the rapidly falling costs of DNA 
sequencing (far faster than Moore’s Law [19]) are rapidly 
changing the landscape of genomics. Many genomic 
research studies now involve the detailed study of multiple 
(sometimes thousands) whole genomes. A single genome 
often contains several billion DNA base pairs. An 
assembled genome could be seen as a linear sequence of 
genomic letters for each chromosome. In practice, reality is 
often more complex. With next-generation sequencing, a 
genome is fragmented into millions of short DNA 
fragments. A second-generation DNA sequencer identifies 
(with some errors) the sequence of base pairs on each of 
these DNA fragments. The sequence reads of the most 
commonly used sequencing technologies are relatively 
short. These can be used for numerous approaches and ana-
lyses – e.g., through genome assembly, or detecting single 
nucleotide variations, repetitive (non-gene) content, etc. 

TEI research has not yet addressed scale and complexity at 
these magnitudes. Challenges include development of inter-
faces going beyond one-to-one mapping, providing means 
for searching, comparing, and sharing big data. What 
representations are appropriate for large, abstract data? 
What interaction techniques could potentially reduce the 
mental workload associated with handling big data? 
Collaboration: Research in genomics relies increasingly on 
large-scale projects with hundreds of collaborators 
distributed across dozens of institutions spanning the globe. 
For example, the International Cancer Genome Consortium 

(ICGC) [7] leads a long-term effort encompassing over 20 
projects from 14 countries, with hundreds of collaborators. 
Within these large collaborative efforts, smaller co-located 
often-interdisciplinary teams carry out individual projects. 
Collaborative work in such teams is typically based on 
emails, weekly conference calls, and face-to-face meetings 
[35]. Researchers store their results in a shared database. 
Communication is often the key to project success.  

Despite the importance of collaboration, current bio-
informatics tools do not support collaborative exploration. 
While TEI has supported small co-located collaboration 
over short time scales, a challenge includes how to manage 
the work across entire teams, given their global nature and 
large temporal scale. For example, how to provide activity 
and progress visualizations across separate systems? How 
to increase awareness across time and location? 
Challenges #3: Heterogeneous Data 
Biologists combine multiple forms of evidence to discover 
connections and causal relationships, as well as to examine 
information at different levels of granularity [21, 35]. For 
example, the investigation of cancer genomes includes 
studying local changes such as substitution mutations and 
insertions/deletions, as well as global changes such as 
chromosomal rearrangement and nucleic acids of foreign 
origin (e.g. oncogenic viruses) [7]. This requires users to 
move back and forth between levels of granularity without 
losing context – from viewing an entire genome or a large 
chromosome area to the base-pair level and back. 
Considering other data, such as alterations in the 
mechanisms that regulate gene expression, is also important 
in the investigation of cancer tumors, but requires the use of 
different bioinformatics tools. In addition, biologists often 
compare the genomes of multiple tumors. To do so they 
load multiple genomes to a single genome browser window, 
which results in displaying a large (and often overwhelm-
ing) number of parallel tracks for a short stretch of DNA.  

The need to link various datasets and tools to gain insight 
into complex systems, poses several challenges for TEI. For 
example, how to design interfaces that facilitate the 
manipulation of big data in a way that highlights 
connections between multiple forms of evidence? Or, how 
to represent abstract heterogeneous information while at the 
same time promoting learning and discovery? 

CASE STUDIES 
Following, we describe three case studies focused on 
computational genomics, which attempt to tackle the 
challenges discussed above. While these systems have 
limitations, they highlight the potential of leveraging TEI 
techniques to facilitate effective interaction with big data. 

CS1: Tabletop genome browsing & primer design 
G-nome Surfer Pro [37] is a tabletop interface for browsing 
prokaryotic genomic data. It was designed to support teams 
of students participating in authentic scientific inquiries. Its 
design was motivated by the lack of bioinformatics tools, 



which support integrated workflow while facilitating 
collaboration, learning, and high-level reasoning [3, 21]. 

Prokaryotic genomes differ from eukaryotic genomes. They 
are smaller and typically contain a single gene-rich circular 
piece of chromosomal DNA. Considering these differences 
between eukaryota and prokaryota, the development of G-
nome Surfer Pro, while drawing on earlier versions of G-
nome Surfer [35, 36], required the design of new 
visualizations and interaction techniques. The design of G-
nome Surfer Pro (see Figure 1) is a result of a participatory 
design process where we partnered with domain experts. 
Our goals included: 1) Lowering the threshold for using 
advanced bioinformatics tools; 2) Supporting an integrated 
and flexible workflow; and 3) Fostering collaboration and 
reflection. Our design was informed by existing research, 
indicating that tabletop interfaces support collaboration 
through visibility of actions and egalitarian input [14, 20] 
and afford distributed cognition [26]. 

  
Figure 1. Students using G-nome Surfer Pro (left): 

displaying chromosome visualizations, DNA sequence, 
and related publications (right). 

The current prototype of G-nome Surfer Pro utilizes multi-
touch interaction techniques with a visual genomic map: a 
circular genome visualization (i.e. wheel) displaying an 
overview of the entire genome, along with a magnified 
view of a slice of the chromosome. Users are able to pan 
the chromosome left and right either by rotating the 
chromosome wheel (for coarse navigation) or by using a 
flick gesture on top of the magnified slice (for fine 
navigation). A visual indicator links the wheel and the slice, 
helping users to maintain a sense of location. Users can 
retrieve genomic sequences, access GenBank notes, search 
for publications, or access a primer designer. Users can 
spatially manipulate, annotate, and compare information 
artifacts. Figure 1 shows a screen capture from G-nome 
Surfer Pro that displays a genomic map, an aligned 
sequence, and related information artifacts. 

In addition to facilitating genome browsing, G-nome Surfer 
Pro also introduces support for manipulating DNA through 
the task of primer design. This task involves the 
identification and testing of short sequences of DNA 
marking the start and end of a particular region of DNA 
sequence. G-nome Surfer Pro allows scientists to test and 
manipulate their primers through direct manipulation, 
giving the user control over their primer design process.  

G-nome Surfer Pro was evaluated with 14 undergraduate 

research students. Findings indicated that G-nome Surfer 
Pro was an effective tool for complex interaction with large 
amounts of prokaryotic genomic data. In particular, we 
found that the multi-touch interaction seemed natural to 
users while the horizontal surface facilitated effective 
collaboration styles. The evaluation of G-nome Surfer 2.0, a 
sister application which was designed for the exploration of 
eukaryotic genomics [36, 37], also highlighted how users 
applied spatial problem solving techniques facilitated by the 
large horizontal surface to explore large data sets. Such 
techniques include accumulation and arrangement, as well 
as side-by-side comparison, of artifacts.  

During the two years in which we developed different 
prototypes of G-nome Surfer [35, 36, 37], we experimented 
with various visual and tangible representations of different 
aspects of the genome browsing workflow. For example, 
we used tangible test tubes as containers for particular data 
sets [35]. We also used iconic and playful tangibles for 
invoking certain computational functions. While we 
demonstrated that tangible interactions can facilitate 
immediate, visible, and easily reversible manipulations, it 
also became evident that further investigations are required 
for identifying combinations of control (multi-touch and 
tangible) and representations (physical and visual) that 
allow for open-ended, powerful, and expressive inquiries. 

CS2: Tangibles-targeted computational genomics 
Our second case study considers computational genomics 
work conducted with a vision toward tangible interaction 
support. We briefly describe two efforts, each a part of 
large international genome consortia.  

Our first major experience in a computational genomics 
effort engaged the rhesus macaque genome, together with 
~250 collaborating scientists [11, 27].  We compared the 
rhesus macaque genome with the human and chimpanzee 
genome; characterized similarities and differences in a 
particular class of genomic content; and experimentally 
validated these computational results. Roughly 400,000 
differences in genomic content relative to the human and 
chimpanzee genomes were detected and analyzed. To 
realize this, ~200 compute cores were used for 2-3 weeks 
non-stop. This is comparable to a single-processor 
computer running nonstop for a decade.  We anticipated 
code parallelization would be complex; but for our highly 
repetitive analysis, it was relatively straightforward.  

Instead, the scale and complexity of data analysis was most 
remarkable. For compatibility with mainstream tools, our 
analyses yielded several million small files (e.g., 10-15 files 
per gap, across 400k gaps). For flavor, even when used on a 
high-performance networked file system, a recursive file 
listing took four days to complete. In a second iteration, we 
used constellations of several hundred ZIP files. This aided 
computational efficiency, but not human navigation. 

Our second major genomics experience was with the 
orangutan genome [16]. With the rhesus genome project, 
our efforts largely confirmed an anticipated result. With 



orangutan, the opposite held true: our efforts yielded a 
highly unexpected result. Specifically, one genomic 
element of interest had far fewer species-specific insertions 
than expected. Initially, this struck us as highly unlikely, 
leading us to distrust our analyses. Ultimately, a world 
expert confirmed this result, leading to a major finding. 
This process increased our interest in approaches for 
visualizing and interactively manipulating analyses to gain 
confidence in unexpected findings. 

Another experience related to databases. Chastened by our 
earlier file system experiences and inspired by the scientific 
database discussions of Gray et al. [10], we attempted to 
employ SQL databases to manage our analyses. We were 
working with second generation DNA sequencer datasets, 
each containing more than 10 million small DNA 
fragments. With multiple records per fragment, we faced 
databases with hundreds of billions of records per dataset. 

At these scales, SQL behaviors that are desirable for more 
traditional datasets became problematic. For example, in 
order to guarantee that a database will not be corrupted by 
an incomplete operation, SQL databases typically guarantee 
provisions for “rollback”. However, for our data, if one 
wishes to toggle a single status bit-flag across all fragments, 
it could take days or even weeks to execute. The SQL tool 
did not have profiling support. Consequently, a week of 
processing would pass, and it was indeterminable whether 
processing was nearly complete, or barely begun. 

These and other experiences left us with hopes and 
opportunities for applying tangible interfaces to genomics. 
Tangible representations of multi-stage workflows could be 
applied to launching and tracking the progress of complex 
analyses, and facilitating discussions of assumptions, way-
points, and results. Parameterized, annotatable visualiza-
tions of complex, large-scale datasets would be highly 
valuable. Weekly conference calls of genome consortia 
often involve 50 or more participants spanning the globe. 
Tools for allowing these teams to hold constructive 
discussions, actively manipulating assumptions, and seeing 
immediate consequences could have high impact.  

CS3: Tangibles for visualizing systems biology 
Pathways [49] is designed to support computational 
modeling of biochemical systems to simulate and 
understand phenomena such as different diseases or plant 
systems. The target users are researchers with engineering 
or mathematics backgrounds who currently model in 
several overlapping iterative stages. A model is constructed 
as a system of ordinary differential equations (ODEs) that 
represent reactions in the biochemical system. Experimental 
data is gathered from literature or experimental biology 
collaborators. The ODE system is solved numerically and 
the results are plotted as graphs, which are compared with 
the experimental data. The graphs rarely match at first try, 
and the modelers adjust parameters (e.g. concentrations of 
molecules) to “fit” the ODE output to the experimental 
data. The model must fit the global pattern of the data. For a 

network of N equations, this is like comparing two N-
dimensional structures over time. Much of the fitting 
process is thus done using optimization algorithms, which 
try out values in the solution space with the goal of 
reducing the difference between the ODE and experimental 
curves for all equations in the network. Finally, the model is 
run through diagnostic tests. If these fail, the parameters 
need to be tuned or the pathway changed. 

The modeling process involves many separate tasks: e.g. 
sketching, developing algorithms, analyzing output, and 
gathering data. A big challenge is the difficulty of finding 
rich and dependable data. The data used is typically very 
sparse. A related challenge is that a range of parameter 
values can generate model results that fit the data. In other 
words, the solution may not be unique, and so achieving fit 
does not necessarily mean that the model has successfully 
captured the biological mechanism being modeled. There is 
also the possibility that the network may be wrong and the 
modeler may need to add or remove components.  

  
Figure 2. Two researchers using Pathways (left); a 
tangible dial is used to adjust the concentration of a 

molecule in the reaction network (right).  
Pathways [49] (see Figure 2) aims to support the modeling 
process by providing: (1) a comprehensive representation 
that brings together the different stages of the modeling 
process, and (2) kinesthetic interaction with the system that 
can give the modeler an embodied sense of fit. In other 
words, the physical interactions with the interface should 
relate to the properties of the biological process being 
modeled, so that as the modeler gets a physical feel for the 
way the model works, they simultaneously develop a 
clearer conceptual understanding of the mechanism it 
represents. This design goal builds on theories of embodied 
cognition, which hold that sensory and motor processes 
play significant roles in cognitive processes [1, 47]. 

The first version of Pathways shows a dynamic display of 
the reaction network and associated graphs. More recent 
versions also provide a representation of the experimental 
data. The user manipulates the model with tangible controls 
and tries to bring it closer to the experimental data. 
Pathways still has limitations. The biggest is that the 
tangible manipulations currently happen in a localized 
manner, making it difficult to get a global embodied feel for 
the model. However, it has become evident that a tool like 
Pathways could simplify the modeling process and could 
also enhance collaboration between engineers and 



biologists by providing them with a shared representation 
for thinking about the biological systems they study. 

POTENTIAL AREAS FOR TEI ENGAGEMENT 
Designing TEI systems to tackle problems in genomics 
goes beyond the application of existing approaches. 
Addressing the scientific challenges discussed above will 
necessarily challenge some of the interaction methods used 
in TEI systems to date. We believe that forging 
collaborations between TEI and genomics researchers can 
create a positive feedback loop that will help to move both 
fields forward. Drawing on our case studies, we discuss 
areas for design focus that can capitalize on the unique 
affordances of TEI. We believe that developing novel TEI 
designs in these areas can potentially advance discovery 
and practices in genomics, as well as contribute new 
knowledge to the theory and methods of TEI. 

Area #1: Understanding complex problems 
All three case studies illustrate complex problems involving 
biological elements and mechanisms that are still under 
investigation. CS3 illustrates that current computational 
modeling practices are difficult to follow and understand. 
To support understanding and discovery, tools need to 
provide access to relevant aspects of the problem (data, 
reactions, etc.) using a comprehensible representation, as 
well as to enable manipulation of biological data in ways 
that help users develop accurate mental models. TEI 
research has demonstrated different ways to facilitate 
problem solving and understanding through bodily actions, 
physical manipulation, and tangible representations [34]. 
Some of the core questions in TEI surround representation. 
What should be physical, and what should be digital? How 
should abstract concepts be effectively embodied? 

Recent theories in the cognitive sciences, such as embodied 
cognition, provide data that illustrates the importance of the 
body, external artifacts, and the environment in reasoning 
and learning [1, 47]. In the sciences this is hardly 
surprising, since external artifacts, including sketches, 
diagrams, and physical models have long been used to 
support reasoning [22, 23]. TEI approaches, which employ 
kinesthetic, direct, gestural and spatial interactions with 
both physical and digital representations, are thus well 
suited to support scientific discovery. In TEI systems, users 
manipulate physical and digital artifacts with their hands, 
such as the data and models in CS1 and CS3. They can also 
arrange and manipulate the data spatially (CS1 and CS3).  

Major challenges include identifying ways too combine 
physical and digital representations that support powerful 
and expressive inquiry as well as designing the interaction 
system such that its dynamic or movement properties relate 
to those of the studied biological system. If such 
relationships can be established, TEI systems could engage 
the connection between the hand, the eye, and the brain to 
support users’ conceptual understanding.  

Area #2: Visualizing biological data 
Visualization is one of the areas in which the arts have 
forged a close relationship with science and technology 
(e.g. [48]), as art and design disciplines have a long history 
for turning ideas and experiences into expressive creations, 
realistic and abstract. Each of our case studies addresses 
different challenges for visualizing biological data. CS1 
illustrates the need to navigate and view data at different 
scales. CS2 highlights the potentially enormous size of the 
data set. CS3 demonstrates the potential sparseness and 
unreliability of available data. All demonstrate a need to 
compare and analyze separate pieces of data in parallel.  

The large surfaces, horizontal and vertical, that are a feature 
in many TEI systems are well suited to displaying and 
navigating large amounts of data. Still, designing and 
developing effective visualization techniques that can 
support these needs and support high-level understanding is 
a big challenge. Tabletop interfaces in particular can allow 
the combination of physical manipulation with the display 
of dynamic information at different scales. Parallel 
interactions, multi-handed or multi-user, can allow 
comparison and analysis of multiple pieces of data. With 
TEI, visualization of data can also be realized in different 
forms, not only on flat surfaces, but also physically 
embodied, or as combinations of graphical and physical 
artifacts (e.g., [44]). Opportunities and challenges for TEI 
include devising methods for realizing these visualizations, 
representing and swiftly transforming between multiple 
scales while maintaining context, perhaps enhanced by 
emerging sensing technologies and smart materials.  

Paths forward seem likely to begin with small steps toward 
specific problems; then investigating how supporting 
visualization and interaction methods can be generalized. 
Some of these generalizations may draw from or contribute 
to other areas of interactive computational STEAM.  

Area #3: Enabling large collaborations 
The case studies illustrate different kinds of collaborative 
practices in computational biology and genomics, from 
small groups of students working together in CS1, to large 
teams of experts in international genome consortia in CS2. 
In the case of small groups working together on problem 
solving tasks, TEI systems provide form factors that foster 
collaboration and parallel interactions by multiple users, 
tabletop interfaces are well suited for this, as are 
combinations of tables, wall displays, personal devices, and 
tangible artifacts (see e.g., [33]).  

One challenge for TEI is the development of systems that 
can support large collaborations like in CS2. One feature of 
these collaborations is that they often consist of smaller co-
located teams working together as part of a large distributed 
team. Extending to large group collaboration is thus a 
question of connecting TEI systems for individual smaller 
teams across space and time, to create a shared platform for 
the larger distributed team. This approach has been 
explored by mixed presence groupware (MPG) systems, 



which typically employ touch or pen interaction and 
support remote awareness through visual representations of 
remote users’ arms (e.g., [41, 42]). However, MPG systems 
have rarely considered tangible interaction or distributed 
teams at more than two locations. A challenge for TEI 
researchers is thus to investigate how the benefits of 
tangible interaction for co-located collaboration might 
extend into remote-team collaboration situations, especially 
across more than two sites. 

Area #4: Supporting diverse audiences 
The case studies illustrate groups of users working in 
different contexts, from students in CS1, to experts in CS2, 
and both novices and experts in CS3. These audiences are 
also diverse in terms of their disciplinary backgrounds: 
biologists, engineers, mathematicians, computer scientists, 
and beyond. International genome consortia as shown in 
CS2 particularly represent an inherently diverse user 
population. CS1 and CS3 demonstrate how tabletop 
interfaces can support different user groups working with 
biological information. The study conducted in CS1 also 
shows how tabletops can support shared problem solving.  

As discussed above, the visibility of actions and egalitarian 
input afforded by TEI systems can help to support 
collaboration [14, 20]. We believe the shared displays and 
multi-user input common in many TEI systems can help in 
communicating ideas between diverse users and in 
supporting the development of shared mental models, an 
important aspect of collaborative problem solving. This is 
crucial for learning, as in CS1, and for supporting collabor-
ation between users with different expertise, as in CS2 and 
CS3. While TEI seems to have the potential to support 
collaborative scientific practices, much work is still needed 
to understand how it can best support the needs of the 
diverse stakeholders in the genomics community.  

Area #5: Managing varied timescales 
The case studies illustrate how research and collaboration 
timelines can range from one semester, as in CS1, to many 
years, as in the consortia of CS2 or the lab of CS3. 
Similarly, given the size and scale of genomics data, 
computational processing times can range from seconds to 
weeks or months. Maintaining awareness of and access to 
large data repositories over long periods of time (e.g. years) 
can hold transformative impact in genomics. 

As discussed in [43], milliseconds and minutes are well 
understood to HCI, but insufficient for engaging longer 
interaction cycles. In human and cultural terms, heirlooms 
are passed down across generations, and some buildings 
maintained for thousands of years. TEI design, with its 
interweaving of the digital and physical, has the potential to 
address these varied timescales, and can investigate 
complementary interaction approaches, materials, and 
construction methods that address the varied informational, 
computational, and human timescales of genomics research. 

CONCLUSION 
We have provided a characterization of the genomics 
domain, raised challenges and questions for TEI research, 
and discussed lessons learned from three case studies. We 
have described potential areas in which TEI can contribute 
to the practice of genomics and also advance its own 
theories and methods. We expect effort in this space to also 
build on and contribute to other related fields, including 
CSCW, information visualization, and others. The interface 
between interdisciplinary fields is an exciting space; a vast 
region in which researchers can set off on wild explorations 
and forge completely new paths. These paths are not clearly 
determined; many open questions and challenges remain. 
We have begun to sketch some possible prospects and 
directions, and hope to have inspired both researchers and 
broader audiences to engage the challenges and pursue 
impact in the art and science of genomic interaction design. 
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