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ABSTRACT 
Emerging multi-touch and tangible interaction techniques 
have a potential for enhancing learning and discovery but 
have limitations when manipulating large data sets. Our 
goal is to define novel interaction techniques for multi-
touch and tangible interfaces, which support the exploration 
of and learning from large data sets. In this paper we 
discuss conceptual, cognitive, and technical dimensions of 
gestural interaction with active tangible tokens for 
manipulating large data sets. 
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INTRODUCTION 
To date, little research has been devoted to investigating 
tangible and multi-touch interaction in data-intensive 
domains such as genomics, environmental studies, and 
social networks.  Here, learning and discovery rely on 
manipulating large data sets using sophisticated 
computational methods [25]. Tangible and tabletop 
interactions provide form factors that foster collaboration 
through visibility of actions, multiple access points, and 
egalitarian input [10, 17, 26], and support distributed 
cognition [22, 26]. In the context of data exploration, the 
ability to support collaborative work and enhance reasoning 

could lead to new discoveries. 

Designing tangible and multi-touch systems that support 
learning and discovery in data-intensive areas requires 
going beyond the application of existing interaction 
techniques. While direct touch is currently a standard input 
method for interactive surfaces, in data-intense applications 
visual representations are typically small, finger size and 
occlusion may interfere with direct interaction of small 
targets through touch [9, 32]. Similarly, WIMP-style 
control elements provided by various multi-touch toolkits, 
such as scrollbars, sliders, check boxes, and text fields, may 
often pose the same challenges for effective and accurate 
touch interaction, or take expensive screen real-estate [9]. 
For some data manipulation tasks that require high 
precision, touch-based graphical representations such as 
knobs and sliders are less effective than their physical 
counterparts [8]. 

Several researchers have considered novel multi-touch 
gesture-based interaction techniques for data driven 
applications; e.g. [9, 12, 32]. However, while providing 
advantage over touch interaction with WIMP style controls, 
multi-touch gestures often suffer from low discoverability 
and lack of persistence [9]. Considering these limitations of 
multi-touch interaction for Big Data exploration, we 
suggest that tangible systems with clear feedback and 
strong constraints provide an alternative approach for 
exploring Big Data.  

Such systems can utilize both soft (graphical) and hard 
(physical) tokens and constraints to guide users in querying 
and interpreting large data sets, enabling users to 
collaboratively engage in problem solving. Technological 
advances and mass-market offerings such as Sifteo Cubes 
[1] also open possibilities for the use of active tokens [36].  

Active tokens are programmable physical objects with 
integrated display, sensing, or actuation technologies (e.g., 
[1, 16, 28, 35, 36]). Thus, they can be reconfigured over 
time, allowing users to dynamically modify their 
associations with datasets or controls. The use of active 

 



tokens expands the design space of token and constraints 
interaction [24, 27]. Combining interactive multi-touch 
surfaces with active tokens could facilitate the presentation 
and manipulation of Big Data while preserving benefits of 
tangible interaction such as support for two-handed 
interaction, co-located collaboration, and strong 
affordances. We focus on a sub-class of active tokens that 
can be manipulated using gestures independently from 
global constraints. Gestural interaction with active tokens 
blurs the boundaries between tangible and gestural 
interaction, and fits within the area defined as “tangible 
gesture interaction” [31].  

In this paper, we briefly consider the conceptual dimensions 
for gestural interaction with tangible active tokens, discuss 
cognitive foundations for gesture-based interaction with 
active tokens for discovery and learning, and examine 
recent technical configurations that are relevant to this area. 

CONCEPTUAL DIMENSIONS 
Tangible Tokens and Constraints (TAC) systems [24, 27] 
engage the physical expression of digital syntax through 
configurations of tokens and constraints. For example, 
token and constraint relations such as presence, position, 
sequence, proximity, connection, and adjacency are 
utilized to encode information as well as to communicate to 
users what kinds of interactions an interface can (and 
cannot) support.  The manipulation of a token in respect to 
its constraints results in modifying both physical and digital 
states of the system. Gestural interaction with active tokens 
expands the design space of TAC interaction, blurring 
boundaries between tangible and gestural interaction.  

Several prior systems have explored gesture-based 
interaction with active tokens.  For example, the Tangible 
Video Editor [36] employed active tokens to represent 
video clips. SynFlo [35] utilized active tokens to simulate a 
biology experiment and evoked gestures such as pouring 
and shaking. However, aside from the parameter bars of 
Tangible Query System [28], the Big Data context has yet 
to be engaged.  

In [30] we investigate user-generated gestures for exploring 
large data sets. Our findings highlight three characteristics 
of gestural interaction with tokens: space, flow, and 
cardinality: Space describes where an interaction takes 
place: typically on-surface (integral), on-bezel (proximal), 
and in-air (distal).  The dimension of flow is adopted from 
[34] and may be regarded as having both discrete and 
continuous dimensions. Cardinality indicates the number of 
hands and tokens involved in a gesture, with atomic, 
compound, and parallel subelements. These characteristics 
are elaborated in  [30]. However, gesture sets are yet to be 
evaluated within task and data-driven scenario.  

COGNITIVE FOUNDATIONS 
The centralist (brain-centric) view of cognition has in recent 
decades been shifting to what Killeen and Glenberg [13] 

call an “Exocentric Paradigm.” This posits that cognition is 
a process that involves the brain, the body, and the 
environment. This paradigm is supported by a wide array of 
empirical evidence, which falls broadly under terms like 
“embodied cognition,” “situated cognition,” and 
“distributed cognition” [11, 15, 33]. From the perspective 
of our active token and Big Data discussion, we are 
especially interested in how evolving notions of cognition 
can further our understanding of how people’s physical 
actions and interactions with their environment support 
scientific reasoning; and how this understanding can inform 
the design of physical and computational tools for 
discovery and learning.  

External representations and scientific reasoning 
From early childhood, our interaction with physical objects 
appears to be closely connected with our learning and 
thinking processes. For example, researchers have shown 
that touching physical objects can help young children learn 
how to count by helping them keep track of their activities, 
and by allowing them to connect each physical object with 
a number [2]. Studies with children have also shown a co-
development of language and gesture [6] and the origins of 
gestures appear to be connected to physical actions. 

In thinking about complex problems, scientists employ 
external artifacts (e.g., models, diagrams, instruments) to 
support their reasoning [20, 21, 23]. A prominent example 
is the double helix model of DNA built by Watson and 
Crick, which enabled the two scientists to quickly form and 
test out hypotheses by manipulating the model’s physical 
structure. Physical models can thus provide an entry point 
for the cognitive apparatus in the form of both conceptual 
and material manipulation [5]. 

Computational systems can also embody knowledge. 
Typically, visualizations are used to make computational 
models accessible to human cognitive capabilities. Some 
visualizations can be interactively explored and filtered in 
order to find patterns that might enhance understanding. 
However, the interaction with most visualizations is not 
closely connected to the underlying model of the studied 
phenomenon or system. That is, the interactions users have 
with most interactive visualizations (e.g., using button 
clicks, menu selections, etc.) are very unlike Watson and 
Crick’s manipulation of the physical DNA model. In the 
latter case, the actions made with the physical model were 
tightly coupled with the scientists’ emerging conceptual 
model, which helped to leverage the connection in the brain 
between motor, perceptual, cognitive processes in the 
development of insights [7]. We believe that systems that 
employ active tokens have the potential to leverage gestural 
interaction/manipulation in order to create a similar 
connection between the computational model/data and the 
user’s conceptual model in areas of scientific problem 
solving. 



Tokens and gestures for thinking and learning 
Martin and Schwartz [18] have investigated how physical 
actions impact thinking and learning. They provide four 
ways in which this happens: induction, off-loading, 
repurposing, and physically distributed learning. Although 
our focus is not limited to children, we use these categories 
as a framework for considering how gestural interactions 
with active tokens might support thinking and learning. 

Induction is when people do not have stable ideas, but they 
are acting in a stable environment that offers clear feedback 
and strong constraints that can guide interpretation [18]. In 
this case, physical actions can enable them to query the 
environment and test their hypotheses. From an interaction 
perspective, well-designed feedback and constraints could 
thus allow TAC systems to support testing of hypotheses 
and problem solving. For example, graphical (soft) or 
physical (hard) constraints and the shape of tangibles can 
suggest ways in which tangibles can be placed on an 
interactive surface or combined together.  

Off-loading is when both people’s ideas and the 
environment in which they operate are stable [18]. In this 
case, people rely on the environment to reduce cognitive 
load of a task -- often called distributed cognition [11]. 
From an interaction perspective, physical tokens can 
support distributed cognition as users spread and group 
them in different ways [3, 4, 22]. Although it is also 
possible to spread and group digital artifacts, e.g. via multi-
touch interaction, Antle and Wang’s comparison of TUI 
and multi-touch interaction in a puzzle-solving task [4] 
revealed that the TUI condition supported more efficient 
and effective motor-cognitive strategies.  

Repurposing is when people have stable ideas about the 
given problem but their environment is adaptable and can 
be changed to achieve their goals [18]. This relates to 
Kirsch and Maglio’s distinction between pragmatic and 
epistemic actions [15]. Pragmatic actions bring people 
closer to their goal; epistemic actions mostly support 
people’s ability to think about the problem. Although 
tokens have physical form factors and constraints that 
suggest ways to manipulate them, the characteristics of 
gestural interaction with tokens described above (space, 
flow, cardinality) point to ways in which TAC systems 
might leave room for individual customization. For 
example, tokens placed on-surface may have certain 
defined behaviors, while on-bezel or in-air interaction with 
the same tokens might allow users to redefine their 
functions, allowing each person to develop their own 
strategies for problem-solving.  

Physically distributed learning is when people’s ideas and 
the environment are both adaptable [18]. Here, people may 
interact with their environment without knowing exactly 
what steps they need to take or even the final state. By 
studying how children learn fractions with different 
materials, Martin and Schwartz [18] found that the 
emergence of new interpretations through physical 

adaptations of the environment is a benefit of physical 
action for learning abstract ideas. This suggests that system 
designers need not always provide tightly structured 
environments, but should allow people to create their own 
structures for problem solving. The combination of gestural 
interaction with active tokens can provide ways to make 
TAC interaction more adaptable and open-ended.  

TECHNICAL CONFIGURATIONS 
Here we provide a brief overview of some recent technical 
advancements relevant to TAC systems. 

Tables, tablets, and smartphones 
Interactive tables and tablets have been available in varying 
forms for several decades.  While interactive tables have 
not reached the mass market, the commercial release first of 
Microsoft PixelSense [19], and more recently of lower-cost 
capacitive tables, are laying the hardware foundations for 
broader dissemination.  Even more impactful is the 
pervasive consumer adoption of smartphone and tablet 
technologies. Many of these devices are sensor-rich and 
some including RFID/NFC technologies. Tablets and 
smartphones provide near-ready platforms for the mediation 
of diverse 1D and 2D constraints. Mass commercialization 
of inch-scale devices such as Sifteos [1] offer compelling 
platforms for active tokens. 

Embedded computing 
The last decade has witnessed explosive growth and 
adoption of the Arduino and Raspberry Pi processors, 
which offer a compelling mix of mass-market economics, 
mass community investment, and high-level software 
environments. Viewed from a TAC perspective, in synergy 
with mass-market tablets, such embedded tools can 
complement sensing and mediation capacities such as 
sensing on the central active surface, and on the bezels. 
 Bezel integrations can both extend the interaction real 
estate of individual devices [29]; and help stitch together 
tiled arrays of devices. 

CONCLUSION 
In this paper we considered conceptual, cognitive, and 
technical dimensions for gestural interaction with tangible 
active tokens. Gestural interaction with active tokens 
expands the design space of tangible Token and Constraints 
system and offers new possibilities for learning from and 
understanding of large data sets.  
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