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Abstract—The first time in Graph Theory a graph was
characterized as “Bowtie” was in the seminal paper by Broder
et. al. Though no textbook had ever mentioned this type of
graph before, no less an important network than the Web Graph
itself is supposed to resemble this shape. In two large collections
of crawled Web pages and in numerous smaller collections,
researchers discovered Bowties and Bowtie-looking graphs by
studying millions of web pages.

But why do collections of Web pages resemble a Bowtie? The
short answer is “because, given the way the Web is created, that’s
the only shape it could have”. This paper shows why this is the
case and presents an algorithm and software to visualize Bowtie
graphs.

I. INTRODUCTION

The Web is an integral part of our daily lives. Studies report
that billions of people are visiting billions of pages on the Web
every day [1]. It is reasonable, therefore, that one would like
to know what the graph that connects those Web pages looks
like. The Web Graph, as it is known, is the graph comprised of
Web pages interconnected through the hyperlinks they contain.
For simplicity, let’s assume that pages on the Web are only
“static”, that is, they are composed of text and binary files
residing on servers on the Internet. This is not always the
case, since today’s servers can create a “dynamic” page on
request, but this is not important in this discussion.

One explores the Web Graph by starting at some page and
then visiting other pages by clicking on a hyperlink contained
in the currently viewed page. Search engines do the same by
“crawling” the Web: downloading the contents of billions of
Web pages while following the hyperlinks they encounter in
most of them. In either case, however, one can never explore
or crawl the whole Web. How can we tell what the Web Graph
looks like and why?

Ever since the seminal paper [2], it has been claimed that
the Web Graph resembles a “Bowtie”. They came to this
conclusion by studying the connectivity between millions of
web pages, crawled from a few starting points. The name was
actually given by Andrei Broder when with his colleagues
were trying to make sense of the collected Web data: “Indeed
I can personally take full credit (or blame) for the Bowtie
moniker – we were drawing all sort of pictures on the boards
at SRC in Palo Alto and this shape analogy jumped at me.”
[3]
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Fig. 1. The shape of the Web Graph (according to [2]) is mainly a Bowtie
looking graph with a few extra parts. We will refer to the strongly connected
component (SCC) as the CORE, since it more appropriately reflects on its
role.

But, given that no one has ever seen the whole Web, how
can we be sure? And why does it resemble a Bowtie instead of
another shape? A Bowtie, after all, is not among the famous
graphs we have studied in the past in Graph Theory. How come
did we miss it? Is it a new type of graph, one specific to the
Web that could only be encountered there, or is it known by
other names in Graph Theory? This paper will try to answer
these questions.

The remaining of this paper is as follows: In the next
section II we review the various claims on the shape of the
Web that researchers have produced in the past, while in
section III we explain why Bowtie is the right characterization,
and we sketch a proof of this claim. In section IV we present
a Web Graph recognition algorithm which can be applied on
any directed graph and recognize its Bowtie regions, if there
exist. Finally, we end with the conclusions in section V.

II. CLAIMS ON THE SHAPE OF THE WEB GRAPH

The figure that accompanied Broder et. al. [2] paper (see
Figure 1) shows a slightly more complicated picture than
a simple Bowtie. The directed Web Graph has a strongly
connected component in the middle, called the CORE, and two
regions of approximately equal size on the two sides of CORE
named IN and OUT. There are snake-like regions hanging
off IN and OUT, called TENDRILS, and others connecting
them without passing through the CORE, called TUBES.



TABLE I
SIZES OF BOWTIE SUBGRAPHS IN TWO STUDIES

Broder et. al. [2] Donato et. al. [4]

CORE 28% 33%

IN 21% 11%

OUT 21% 39%

TENDR 22% 13%

ISLAND 9% 4%

Total 203.5 M 200M

Fig. 2. The shape of the Web Graph (according to [5]) is more accurately
represented by a daisy-looking graph.

Finally, there are several smaller components, represented by
circles and disconnected from the large Bowtie. No particular
information about their shape of the latter (which we will call
ISLANDS [4]) is reported though they may include a tenth of
the overall Web size or more.

In a subsequent major study a couple years later ([4])
the sizes of the named regions were estimated to differ
significantly from those in the original study, but the Bowtie
shape was not disputed. Table I has details on the region sizes
in these two major studies.

But is this an accurate picture of the Web Graph? After all,
even in 1999 we could only retrieve a small portion of the Web
and it is unlikely that anyone tried to draw even a 200 million
nodes graph. Bowtie is a conceptual (poetic?) characterization
of the Web Graph, something that made sense at the time.
Is it possible that, had the authors been able to draw the full
Web Graph it would look differently? Or that, ten years later,
the Web Graph, probably more than 1,000,000 million nodes
strong, looks very differently? Maybe it looks like a daisy [5]
(see Figure 2), or a teapot [6] (see Figure 3), or a cauliflower
(see Figure 4)? How can we know?

III. THE SHAPE OF THE WEB GRAPH IS A BOWTIE

A main point we make in this paper is this: The shape of
the Web is a Bowtie because that’s the only likely shape that
it could be. Let us explain why this is the case by discussing
first what a Bowtie graph is and how it can appear in directed
graphs grown by independent distributed processes, such as

Fig. 3. The shape of the Chinese Web Graph (according to [6]) is a teapot-
looking graph.

Fig. 4. As far as we know, no one has claimed that the shape of the Web
resembles a cauliflower yet.

the millions of Web pages created by people and machines all
over the world.

In all of the Web Graph representations, its most important
subgraph is its CORE. This is defined to be its largest (not
the only) strongly connected component (SCC). All the other
named regions are defined in relation to the CORE. In the
Bowtie representation, IN is composed of those nodes that are
on a directed path that ends on a node in CORE, but that
they themselves are not part of the CORE. Similarly, OUT is
composed of those nodes that are on a directed path that starts
from a node in CORE, but that they themselves are not part
of the CORE.

These three major regions are not the only ones present in
the Web Graph. We still have not accounted for about a third
of the nodes, according to the studies. ISLANDS are nodes
completely disconnected from CORE, IN and OUT, that is,
there is no directed path that connects them to the Bowtie.
They are depicted by generic circles and no indication exists
about any internal shape they may resemble. (We will see that
they are very likely shaped as Bowties themselves.)

Finally, TENDRILS come in three flavors: TENDRILS-IN
are nodes for which there is a directed path from IN, but
there is no directed path from them to any other component.
Similarly, TENDRILS-OUT are nodes that are on a directed
path to a node in OUT, but no path leads from them to any



Fig. 5. A collection of websites without hyperlinks.

other region. TUBES are nodes that are on a path from a node
in IN to a node in OUT, and there is no path that connects
them to CORE. If their connecting paths were to be broken,
they would end up as one or more simple TENDRILS.

A. How a Bowtie appears

So, all of the different regions in a Bowtie graph are defined
with respect to the CORE. Clearly, if there is no CORE, there
is no Bowtie graph. But it is practically impossible for the
collection of interconnected web pages in the Web Graph not
to have an SCC.

Indeed, given a collection of web pages that are allowed to
link one or more times to any other web page of the collection
they choose to, an SCC is bound to arise, and with it a Bowtie.

The above claim is one that can be proven formally, and we
will give here the pieces of a constructive proof while keeping
the discussion informal. The main pieces of the proof are as
follows.

Consider a collection of Web pages that initially are not
linking to any other page (Figure 5). These web pages do
contain hyperlink references, but we have not consider them
yet. We will consider them in three stages.

First Link. Consider that each node introduces a
single link to other nodes in the collection. As
a result, a pseudo-forest will arise (Figure 6). A
pseudo-forest is a collection of pseudo-trees, which
in turn is a maximally connected set of N nodes
with 1 directed edge (arc) per node. You can think
of a pseudotree as an inverted tree with one more
arc that is bound to create a directed cycle – thus
the prefix “pseudo” in its name.
The existence of pseudotrees guarantees the exis-
tence of directed cycles in the graph. The members
of each such directed cycle are (by definition) mem-
bers of a strongly connected component creating the
first candidates for the CORE! The largest of those
cycles is defined to be the current CORE, though
this characterization may change as more links are
considered.
Pseudotrees arise often in parallel computation (e.g.,
see [7]), when a collection of processors try to
elect a representative by randomly selecting another

Fig. 6. Each web site has chosen independently one link to a site in
the collection. In this instance, five pseudo-trees appear, the smallest one
containing two nodes (one with a self-loop)

processor in the collection. In this case, the pseu-
dotree’s cycle must be broken in order to select
the representative. But on the Web, the members of
such SCCs are gaining some prominence and end up
having a greater PageRank [8].
Note that even with just one link per node, several
other components of a Bowtie also appear. The SCCs
are likely to have “tails” which, for the CORE, is
defined as members of the IN group. However, with
just one link per page, OUT or TENDRILS will not
appear. This will change with the introduction of a
second link.
Pseudotrees with smaller SCCs will be defined as
ISLANDs. It is worth noting that these ISLANDs
will have similar structure to the Bowtie that contains
the CORE, since they are pseudotrees themselves.
In other words, the ISLANDs themselves look like
Bowties, settling one of the questions we posed
above1. We can now correct the famous drawing
from [2] to reflect this fact. See Figure 7.

Second Link. When a second link per web page
is considered, the CORE (and the other SCCs) is
likely to increase in size. This happens whenever any
member from the current CORE links to a web page
in IN, or when a page from OUT links to a page
in the CORE or in the IN, to name but three simple
cases.
Moreover, the number of ISLANDs is likely to

1A related fact is that any sub-collection of nodes in a graph created by
crawled collection of nodes is bound to contain Bowties, no matter if this
collection is in CORE, IN, OUT, etc. This fact, termed ”self-similarity” was
studied first in [9]. Our observation explains why this was to be expected.



Fig. 7. A more accurate description of the Web is that it is composed of a
collection of Bowties, since the disconnected components must also resemble
Bowties, in general. In this figure, we have edited the famous figure by [2]
to reflect this fact.

decrease, e.g., when a node from an ISLAND gets
connected to the Bowtie, the size of the Bowtie
increases and the ISLAND disappears (Figure 8):
If the connecting link comes from the ISLAND, it
becomes part of the IN; if it comes from the CORE
or OUT, becomes part of the OUT; if it comes from
the IN becomes part of the TENDRILS.
In our construction so far we did not address what
happens to web pages that will never link to other
pages, such as images, PDF files or other file formats
that may contain no links. After considering the
introduction of the first link we allow these nodes
to participate in the construction by allowing them
to be linked by other nodes. These nodes without
any links of their own will be part of the OUT or
ISLANDs regions.

Remaining Links So, with just two links per node,
all the regions that compose the Bowtie are poten-
tially in place. As the third and other links are added,
the CORE and the Bowtie will grow even more. For
illustrative purposes, Figure 6 shows five connected
components of similar size. This is not likely what
would happen in practice if nodes were to select
other nodes at random. In fact, it takes little over
a linear number of random links to weakly connect
the whole collection [10].

We should point out that what we present above is not the
order in which links were actually added in the real Web. It
is a scenario of how links could have been added, but likely
they were not. This, however, does not affect the recognition
of the Bowtie regions, as the links we consider in the third
step would only increase the size of the Bowtie regions. This
property is useful in the correctness of our construction since,

Fig. 8. Each web site has chosen a second link to a site in the collection. A
recognizable Bowtie structure has already emerged, along with an ISLAND.
The coloring and the placement of the nodes indicate the characterization of
the node’s region, and is produced by the visualization software we describe
in the next section.

in order to work, we need to start with a collection of nodes
that have at least two links to members of the collection –
not a hard requirement to satisfy – think of the pages in your
favorite site. Of course, if links were deleted at some point,
our analysis can completely ignore them and instead focus on
any current state of the Web.

One final point of clarification for our recognition model is
that the characterization of the CORE may change over time,
especially in the early stages. What was CORE may become
just an SCC because it may be the case that some ISLANDs
got linked in a way that produced a larger CORE. There is
no problem in the proof with that because as we explained,
ISLANDs are also Bowties.

It may also be the case that another SCC that happened
to be outside the CORE region grew so much that its size
grew larger than the CORE. It will be named CORE and the
characterization of some of the other nodes in the Bowtie may
change. For example, in Figure 8, node 22 may select a third
link to 16 and node 12 to 22, joining the 5-member SCC
in the OUT region, while no structural change may happen
in the current SCC. The new 9-member SCC could now be
considered the CORE while the old would be part of IN (see
Figure 9). So, the characterizations of the Bowtie regions may
change without affecting the correctness of the proof about
the overall shape of the graph as a Bowtie.

IV. A BOWTIE RECOGNITION ALGORITHM

We now turn out attention to a Bowtie recognition algorithm
that, given a directed graph, will categorize each vertex by the
Bowtie component that it belongs to. If the input is simply a
directed acyclic graph (a “DAG”), it will report that there is
no CORE, and therefore no Bowtie will be recognized.

We have also created a visualization program that draws
such Bowties using the yEd graph drawing package [11]. It
takes as input the output of the Bowtie recognition algorithm,
colors the nodes according to their region characterization,



Fig. 9. An example on how the characterization of CORE could change
without affecting the existence of a Bowtie graph.

Fig. 10. The input graph to illustrate the Bowtie recognition algorithm.
It contains four non-trivial SCCs, one in each of the CORE, IN, OUT and
TENDRILS regions, the last three drawn in a different color so that they can
be easily identified visually.

and places the colored nodes in a gml-formatted file for
visualization. We will not describe the visualization software
in this paper, but we will note that all of the example pictures
we have included in this paper were drawn by it.

The first step of the algorithm is to separate the input graph
into weakly connected components. To do that we take the
undirected version of the input directed graph and recognize
its connected components. Each of them is a different weakly
connected component that we will process as a separate
Bowtie. The one that contains the largest SCC will be the main
Bowtie while the rest will be labeled as ISLANDs. Without
loss of generality, in the remaining of our description we will
assume we only have one weakly connected component, Wi,
as the algorithm will treat them all in the same manner.

To facilitate the illustration, we refer to Figure 10 as our
input graph. Note that it contains 4 non-trivial SCCs, one in
each of the CORE, IN, OUT and TENDRILS regions.

For each of the weakly connected components Wi we do
the following:

1) First, we compute the strongly connected components
(SCCs) of Wi. To do that, we use the linear-time
algorithm described in [12] that involves first a DFS in

Fig. 11. The SCCs of the input graph in Figure 10 have been identified and
contracted in one representative node per SCC. This contracted graph Ci is
a directed acyclic graph (DAG).

Fig. 12. The output of our algorithm has recognized the Bowtie regions and
draw them so that they resemble, well, a Bowtie.

the input graph and then a DFS of the transpose graph.2

It will potentially have many strongly connected compo-
nents, but the largest will be defined to be the COREi.
The remaining ones could be included in the INi,
OUTi, or TENDRILSi.

2) Next, we compress the input graph so that each SCC
becomes a single node in the compressed graph Ci. (See
Figure 11.) This can also be accomplished in linear time.

3) We run a DFS on the compressed Ci starting from the
node representing the COREi. Those nodes reachable
from COREi are included in OUTi.

4) Next, we run a DFS on the transpose of Ci starting
again from the node representing the COREi, thus
recognizing those vertices to be included in INi.

5) Those nodes not characterized at this point are labeled
as belonging to TENDRILSi.

Overall, the algorithm runs in linear time, which is not
bad for small graphs. The major problem for dealing with
huge graphs comes actually from the requirements for space,

2The authors of [12] indicate that their algorithm is adapted from Aho,
Hopcroft and Ullman, who in turn credit it to S.R. Kosaraju and M. Sharir.



and our implementation can only handle several thousands
nodes on a typical laptop. The authors of the large studies
we mentioned before were able to deal with larger graphs by
sampling random paths in either a pro-processed “connectivity
server” database [2], or using external memory algorithms [4].

V. CONCLUSION

In this paper we presented a proof that the Web Graph
resembles a Bowtie – or, more accurately, a collection of
Bowties. We also presented an algorithm that, given a directed
graph, it will identify the nodes comprising the regions of a
Bowtie, if it exists (that is, unless the input graph is not a
DAG).

Given the importance of the Web, we expect that the name
Bowtie will appear in future Graph Theory textbooks because
it is basic and intuitive, a characterization that “worked out
because everyone gets it immediately” [3]. The question that
is much more difficult to answer is, what are the relative sizes
of the Bowtie components of the Web Graph today? That we
will likely never know with great accuracy, but we suspect
that all Web content provides are trying to make the CORE
as large as possible for their own benefit.

In terms of future research, we can use this algorithm to
recognize the Bowtie regions of graphs that were generated
using particular graph creation strategies. For example, one can
use use the algorithm to recognize instances of Bowties from
graphs generated by a random process [10] and by processes
credited with creating Web Graph-like instances (graphs that
share many statistical characteristics of the Web Graph, such
as exhibiting powerlaw distribution of in-degree). In the latter
category are processes such as Preferential Attachment [13],
Copying, and Multi-layer [4]. The interesting aspects of this
would be to measure the size of the Bowtie components, and
study which parameters may create components that resemble
the sizes observed in real samples.
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reviewing an earlier version of this paper.

REFERENCES

[1] Pew Foundation, “Pew internet and american life project,”
http://www.pewinternet.org, 2008.

[2] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph structure in the web,” Comput.
Networks, vol. 33, no. 1-6, pp. 309–320, 2000.

[3] A. Broder, “Personal communication,” July 30 2011.
[4] D. Donato, L. Laura, S. Leonardi, and S. Millozzi, “The web as a graph:

How far we are,” ACM Trans. Internet Technol., vol. 7, February 2007.
[5] D. Donato, S. Leonardi, S. Millozzi, and P. Tsaparas, “Mining the inner

structure of the web graph,” in Eigth international workshop on the Web
and databases WebDB, June 2005.

[6] J. J. H. Zhu, T. Meng, Z. Xie, G. Li, and X. Li, “A teapot graph and
its hierarchical structure of the chinese web.” in WWW. ACM, 2008,
pp. 1133–1134.

[7] D. B. Johnson and P. T. Metaxas, “Connected components in
O(log3/2 n) parallel time for the CREW PRAM,” Journal of Systems
Sciences, vol. 54, no. 2, pp. 227–242, 1997.

[8] M. Bianchini, M. Gori, and F. Scarselli, “Inside pagerank,” ACM
Trans. Internet Technol., vol. 5, pp. 92–128, February 2005. [Online].
Available: http://doi.acm.org/10.1145/1052934.1052938

[9] S. Dill, R. Kumar, K. S. Mccurley, S. Rajagopalan, D. Sivakumar, and
A. Tomkins, “Self-similarity in the web,” ACM Trans. Inter. Tech., vol. 2,
no. 3, pp. 205–223, 2002.
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