
Header for SPIE use

Optimal Parallel Error-Diffusion Dithering

Panagiotis T. Metaxasa

Computer Science Department
Wellesley College

ABSTRACT

Error diffusion dithering is a technique that is used to represent a grayscale image on a printer, a computer monitor or other
bi-level displays. For a number of years it was believed that error diffusion algorithms can not be parallelized. On this paper
we present a simple error-diffusion parallel algorithm that can be easily implemented on parallel computers that contain
linear arrays of processing elements. It can also be implemented easily on specialized hardware. One of the advantages of our
algorithm is its low implementation cost, its scalability, and its ability to benefit from standard fault-tolerance techniques.

 Keywords: Dithering, Halftoning, Image Processing, Parallel Processing

1. INTRODUCTION

Dithering, or halftoning, is a technique that is used to represent a grayscale image on a printer, a computer monitor or other
displays that are capable of producing only binary elements. It works by rendering on such bi-level displays the illusion of
continuous-tone pictures. See the Appendix for examples of continuous-tone and dithered images. Significant effort has been
invested in the past to dithering, both in industry11 and in academia9.

Despite the numerous dithering techniques developed in the last twenty years, the one that has emerged as a standard because
of its simplicity and quality of output is the so-called error-diffusion algorithm. This algorithm, first proposed by Floyd and
Steinberg1, is schematically shown in Fig. 1.

Threshold

"error"

J[n] I[n]

Error Filter

e[n]

+

+

Figure 1. Error-diffusion process

Pixels J[n] of the continuous-tone digital image are processes in a linear fashion, left-to-right and top-to-bottom. At every
step, the algorithm compares the grayscale value of the current pixel, represented by an integer between 0 and 255, to some
threshold value (typically 128). If the grayscale value is greater than the threshold, the pixel is considered black and its output
value I[n] is set to 1, else it is considered white and I[n] is set to 0. The difference between the pixel's original grayscale
value and the threshold is considered as error. To achieve the effect of continuous-tone illusion, this error is distributed to the

a Correspondence: Email: pmetaxas@wellesley.edu Telephone: 781-283-3054 Fax: 781-283-3642 This research was partially
supported by a Brachman-Hoffman Award and by NSF Award CCR-9504421.

four neighboring pixels that have not been processed yet, according to the matrix shown graphically in Fig.2, proposed by
Floyd and Steinberg1 (FS).

7/16

1/165/163/16

error

Figure 2. Diffusion matrix of distributing error fractions to four neighboring pixels1.

A small modification of the above error diffusion matrix was proposed by Fan12. The new matrix, which is considered to
improve the quality of the dithered image without increasing the total work done by the algorithm, is shown in Fig. 3.

7/16

1/16 5/163/16

error

Figure 3. Modified diffusion matrix of Fan12.

Dithering is a very time consuming process, as anyone who has tried to print grayscale or color images on a printer has
noticed. In fact, it requires five floating-point multiplication operations and five memory accesses to process each pixel of the
image. For an image with dimensions n by m it takes 10·n·m such operations, and is therefore computationally quite
expensive.

The algorithm complexity gets even worse in more elaborate error-dithering matrices, like those proposed by Jarvis, Judice
and Ninke2 and by Stucki3. In their algorithms, which are refinements of FS, the error is distributed to the 12 unprocessed
neighboring pixels as shown in Figs. 4 and 5.

Each of these dithering matrices produces better visual results than the FS algorithm, but they are even more computationally
expensive, requiring 24·n·m floating point multiplications and memory accesses for each n by m image. For a good
coverage of the various dithering methods, consult the book by Ulichney9.

In this paper we propose a parallel algorithm that can achieve the same effects and visual quality, but much faster than the
sequential ones1-3. Our algorithm, parallel error-diffusion dithering, is described in the next sections. We also show how to
implement the algorithm on parallel computers that contain a linear array of processing elements.

7/48

5/487/485/48

error 5/48

3/483/48

3/485/483/48 1/481/48

Figure 4. Error diffusion matrix of Jarvis, Judice and Ninke2

8/42
error 4/42

2/42

1/42

4/42 8/42 4/42 2/42

2/42 4/42 2/42 1/42

Figure 5. Error diffusion matrix of Stucki3

The basic result of the paper is the following: By using a linear array of N processors we can dither an image O(N) times
faster than the sequential error-diffusion dithering techniques. In that respect, our algorithm is (asymptotically) optimal.
Early results of our implementation in software show that the predicted theoretical performance can be achieved. Moreover,
its simplicity guarantees that increased performance can be achieved if the algorithm is implemented in hardware.

2. PARALLEL PROCESSING MODEL

The parallel algorithm we propose uses a linear array (Fig. 6) of processing elements (PE’s). Each such PE is has
input/output capability and can communicate directly with its left and right neighbors. The first and last processors may have
only one neighbor each or may be connected to each other.

P P P P P P P P

Figure 6. A linear array of eight processing elements.

This structure can be found embedded on every existing general-purpose parallel machine. Leighton's classic book10 has an
excellent coverage on embedding linear arrays on a variety of interconnection architectures, including multidimensional
arrays, hypercubes, trees, mesh-of-trees, etc. A linear array can also be constructed from scratch by connecting
processor/memory chips.

We should point out that, one of the advantages of using simple processor structures like linear arrays is their scalability. One
can add easily PE’s in the interconnecting bus, thus increasing the dithering power of the machine without redesigning or
replacing the remaining circuitry or the software. Moreover, one can remove and replace defective PE’s from the processor
array at a minimum cost. Finally, our algorithm enables fault-tolerance, in the sense that it allows the machine to work in the
presence of faulty processors by employing standard techniques that will ignore and skip over the faulty processors.

3. DITHERING IN PARALLEL

3.1 Motivation
Let us first study the dependencies generated by the FS algorithm. Observe that the dithered value of each pixel with
coordinates (i, j) depends not only on its own initial grayscale value but also on the diffused errors (and therefore the original
grayscale values) of all the pixels (x, y) in the trapezoidal area defined by the following expression (Fig. 7)

(x, y) s.t., 1 ≤ x ≤ i, 1 ≤ y ≤ 2j +1

i

j 2j+1

(i,j)

Figure 7. Data dependency for the (i, j)-th pixel.

For a number of years it was believed that error diffusion algorithms, in the spirit of FS, can not be parallelized. In fact,
Knuth4 states that "[the Floyd-Steinberg algorithm] is an inherently serial method; the value of [the pixel in the right lower
corner of the image] depends on all m·n entries of [the input]".

Similar statements without justification appear also in several other papers5-7. However, the above argument is not valid. As a
counterexample, consider the operation prefix sum8. The prefix sum of an array Ai, 1 ≤ i ≤ n, is another array Bi, 1 ≤ i ≤ n,
such that, for each i, Bi = A1 +···+ A i. Even though the last element of An depends on all the previous ones, yet the prefix
sum of the whole array can be calculated very fast in parallel (in fact, in logarithmic parallel time). The dependency simply
means that its calculation cannot be completed before the calculation of the elements it depends upon. However, this does not
imply an inherently serial method, because calculations of partial results can overlap.

Our parallelization is based on the following scheduling invariant I:

Invariant I: The pixels of the image for dithering are scheduled for dithering so that a pixel is processed only after all the
pixels that it is dependent upon, have already been processed.

Apparently, maintaining this invariant guarantees correctly computed dithering. There are several possible implementations
of this scheduling invariant. In this paper we describe one of the simpler ones. We note here that the naive way of processing
a diagonal of pixels simultaneously (Fig. 8.) does not maintain the invariant I. The reason is that the value of the lower left
pixel depends on all of the pixels on the diagonal, and therefore, it would not be possible to process the whole diagonal
simultaneously. For similar reasons, processing simultaneously the pixels of a row or a column of the image does not
maintain the invariant I.

Figure 8. The naive way of processing diagonals of pixels simultaneously does not work.

3.2 Image Slices
We now show how to dither in parallel an image composed of n rows by m columns of pixels using error-diffusion on a
linear array of N processors. We consider first the parallelization of the FS algorithm. We describe a simple scheduling that
obeys the invariant I. Pixels are scheduled for dithering at processing times that follow the pattern in Fig. 9.

1 2 3 4 5 6 7 8 9

3 4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12 13

7 8 9 10 11 12 13 14 15

9 10 11 12 13 14 15 16 17

11 12 13 14 15 16 17 18 19

13 14 15 16 17 18 19 20 21 . . .

.

.

.

. . .

.

.

.

Figure 9. Image slices processed by each processor and processing times for each pixel.

The algorithm operates as follows: Let k = (n-1)/3, where n is the number of rows of the image. The three upper leftmost
pixels are processed and the resulting errors are calculated by the k-th processor in the processor array, called the starting
processor. After these three steps, the k-th processor sends the appropriate fractions of the errors to its two neighbors, pk-1 and
pk+1. It then continues processing the 2nd, 3rd and 4th pixel of the second row of input (Fig. 9). In the meantime, processors
pk-1 and pk+1 can proceed with their own calculations.

P
k-1

P
k-2

P
k

P
k+1

P
k+2

. . .

. . .

.

.

.

.

.

.

Figure 10. Direction of pixel movement through the processor array at an angle. For algorithms like those in Refs. 2-3, 12,
a decreased slope is needed to avoid the data dependencies.

. . .

. . .

.

.

.
.
.
.

Figure 11. Snapshot of the algorithm at the 8th step. Note that the currently dithered pixels
depend on pixels dithered at the 5th, 6th and 7th steps.

To achieve this scheduing, the pixels of the image to be dithered are being "fed" into the processor array in a slanted fashion
as shown in Fig. 10. A snapshot of the working algorithm is shown in Fig. 11. The upper left corner of the image has been
dithered, while the remaining image continues to being fed into the processor array.

Each processor evaluates only the pixels in a slanted area of width at least 3, at time steps shown in Fig. 9. In the next
section we show how to calculate these time steps. Note that at each time step, the set of pixels being simultaneously
processed depends only on pixels that have already been processed in previous steps, and therefore it is correctly computed.

3.3 Running Time
We require the width of the slanted area to be at least 3 for increased efficiency. For widths of 1 or 2 pixels, each processor
communicates with both its neighbors at every step. Since communication in parallel processing systems is in general several
times more expensive than computation, we save time by having each processor communicate with only one of its neighbors
at each step. In fact, depending on the communication/computation ratio of the particular linear array used, it is usually worth
assigning a wider slanted area to each processor to compensate for the difference.

For N (n+m)/3 each processor evaluates at most 3n pixels, where n is the number of rows in the image. If N < (n+m)/3
the image is divided in (n+m)/N wider slanted areas. Given a large enough N , the running time of the algorithm is

T(n, m) = 2 n + m

which is asymptotically smaller than 10·n·m and 24·n·m that the sequential algorithms require. In particular, when processing
a square image, the running time is T(n, n) = 3 ·n versus 10·n2 and 24·n2 of the sequential algorithms1-3.

Apparently, the efficiency of our method depends on the "squareness" of the image, in other words, on how close to 0 is the
quantity |n - m|. A thin, skinny image would dither much slower than a square image with the same number of pixels. If m is
much larger than n, we could transpose the image before processing, since there is no difference in quality on the final
dithered image. Therefore the total running time is

T(n, m) = 2 min(n, m) + max(n, m)

4. IMPLEMENTATION ON A LINEAR ARRAY

Our algorithm uses a linear array of N processors. We present a possible implementation on a linear array. For our
preliminary experiments, we used as a linear array the 32 processors of the zero-th row of a MasPar MP-1101 parallel
machine, but any linear array configuration would do.

The main implementation difficulty is to have each processor pi in the linear array know, at time t, which pixel to process

and where to send the resulting error fractions. As we mentioned, the k-th (starting) processor, where k = (n-1)/3 , initiates
the image dithering by processing the three upper-leftmost pixels. We call the processing of three consecutive pixels in the
image a superstep.

A simple counting argument shows that processor pk+ to the right of pk at time τ ≥ 2α+1 is ready to process pixels

(τ, 3α+τ), (τ, 3α+τ+1) and (τ, 3α+τ+2), while processor pk- to the left of pk at time τ ≥ 2α−1 processes pixels

(2α+τ, −α+τ), (2α+τ, −α+τ+1) and (2α+τ, −α+τ+2). Of course a pixel (i,j) is processed if 1 ≤ i ≤ n , 1 ≤ j ≤ m, else it is
ignored. Below we give details on how these scheduling times are calculated and sample SIMD implementation code.

Implementing this in software is straightforward:

• Processor pk+α wakes up at time α+1 and initializes variables x = 1 and y = 3α+1. It then processes pixels with

coordinates (x, y++), (x, y++), (x++, y--) until all of the image has been processed. Here, by y++ (respectively, y--)
we denote the C-like opration of incrementing (respectively, decrementing) after using variable y.

• Processor pk-α wakes up at time 2α-1 and initializes variables x = 3α-1 and y = -1. Then, it processes the three

pixels (x, y++), (x, y++), (x++, y--) until all of the image has been processed. (Of course, a pixel is processed only when
y>1.)

The following tables gives the coordinates of the pixels accessed by processors to the right and to the left of the starting
processor. Of particular importance are the processors pk+α and pk-α .

Table 1: Scheduling times for processors to the right of the starting processor.

superstep pk pk+1 pk+2 ... pk+α
1 (1,1)

(1,2)
(1,3)

2 (2,2) (1,4)
(2,3) (1,5)
(2,4) (1,6)

3 (3,3) (2,5) (1,7)
(3,4) (2,6) (1,8)
(3,5) (2,7) (1,9)

...
+1 (α+1, α+1) ... (1, 3α+1)

(α+1, α+2) (1, 3α+2)
(α+1, α+3) (1, 3α+3)

+2 (α+2, α+2) ... (2, 3α+2)
(α+2, α+3) (2, 3α+3)
(α+2, α+4) (2, 3α+4)

...
+ (α+τ, α+τ) ... (, 3 +)

(α+τ, α+τ+1) (τ, 3α+(τ+1))
(α+τ, α+τ+2) (τ, 3α+(τ+2))

Table 2: Scheduling times for processors to the left of the starting processor.

superstep pk-α ... pk-2 pk-1 pk

1 (1,1)
(1,2)

(2,1) (1,3)
2 (2,2)

(3,1) (2,3)
(3,2) (2,4)

3 (4,1) (3,3)
(4,2) (3,4)

(5,1) (4,3) (3,5)
...

(α+(α+τ), −2α+(α+τ)) =
(2α+τ, −α+τ)

(α+τ+1, α+τ−2) (α+τ, α+τ)

(2α+τ, −α+τ+1) (α+τ+1, α+τ−1) (α+τ, α+τ+1)
(2α+τ, −α+τ+2) (α+τ+1, α+τ) (α+τ, α+τ+2)

...
2 -1 (2α, 2α-3) (2α-1, 2α-1)

(2α, 2α-2) (2α-1, 2α)
(3α-1, 1) (2α, 2α-1) (2α-1, 2α+1)

2 (2α+1, 2α-2) (2α, 2α)
(3α, 1) (2α+1, 2α-1) (2α, 2α+1)
(3α, 2) (2α+1, 2α) (2α, 2α+)

2 +1 (α+1, 2) (2α+1, 2α+1)
(3α+1, 3) (2α+1, 2α+2)
(3α+1, 4) (2α+1, 2α+3)

It turns out that the whole process can be captured in the following code fraction:

/* Dithering of an image with dimensions n by m */
/* Without loss of generality we assume n < m */
/* starting processor is the one with procID == k */
k = ceil((n-1)/3);

/* initialization */
alpha = procID - k;
/* alpha < 0 for proc's on the left of starting proc */
/* alpha > 0 for proc's on the right of starting proc */
x = alpha + 1;
y = 2*alpha + 1;

/* processing */
for (t=1; t<2*n+m; t++){

if valid_pixel(x, y) process_pixel(x, y++);
if valid_pixel(x, y) process_pixel(x, y++);
if valid_pixel(x, y) process_pixel(x++, y--);

}

Procedure valid_pixel(x, y) checks to see if 1 x n and 1 y m. Procedure process_pixel(x, y)
calculates the dithered value of the pixel and the error from dithering, and sends the appropriate portions of the error to the
two neighboring processors.

5. CONCLUSION

We have shown that it is possible to parallelize the well-known and widely used error-diffusion sequential algorithms by
presenting a technique that, using a linear array of N processors, achieves an optimal speedup of O(N) over the sequential
algorithms. This result opens several questions for research. In particular, it would be desirable to achieve experimental
confirmation of this paper’s result. It also would be interesting to see how the algorithm can be adapted to run on parallel
machines that employ more advanced architectures than the linear array, such as multidimensional arrays, mesh of trees,
hypercubes, butterflies, etc. In this case, the challenge would be to maintain the optimal speedup on machines with more
sophisticated parallel architectures.

ACHNOWLEDGEMENT

The author would like to thank Professor V. Michael Bove Jr. for many useful discussions on dithering and for his permission
to use the grayscale and dithered images that appear in the Appendix.

REFERENCES

1. Robert W. Floyd and Louis Steinberg, An Adaptive Algorithm for Spatial Grayscale. Proceedings of the Society for
Information Display 17 (2) 75-77, 1976

2. J. F. Jarvis, C. N. Judice and W. H. Ninke, A Survey of Techniques for the Display of Continuous Tone Pictures on Bi-
level Displays. Computer Graphics and Image Processing, 5 13-40, 1976

3. P. Stucki, MECCA - a multiple error correcting computation algorithm for bi-level image hard copy reproduction.
Research report RZ1060, IBM Research Laboratory, Zurich, Switzerland, 1981.

4. Donald E. Knuth, Digital Halftones by Dot Diffusion. ACM Transactions on Graphics, 6 (4) 245-273, 1987.
5. Yuefeng Zhang and Robert E. Webber, Space Diffusion: An Improved Parallel Halftoning Technique Using Space-

Filling Curves. ACM SIGGRAPH Computer Graphics Proceedings, pp. 305-312, 1993.

6. Yuefeng Zhang, Line Diffusion: A Parallel Error Diffusion Algorithm for Digital Halftoning, The Visual Computer, 12
(1) 40-46, 1996.

7. Victor Ostromoukhov, Roger D. Hersch and Isaac Amidror, Rotated Dispersed Dither: A New Technique for Digital
Halftoning. ACM SIGGRAPH Computer Graphics Proceedings, pp. 123-130, 1994.

8. Guy Blelloch, Vector Models for Data-Parallel Computing. MIT Press, Cambridge, Mass., 1990.
9. Robert Ulichney, Digital Halftoning. MIT Press, Cambridge, Mass., 1987
10. F. Thompson Leighton, Introduction to Parallel Algorithms and Architectures. Morgan-Kaufmann, 1992.
11. Peter R. Jones, Evolution of halftoning technology in the United States patent literature. Journal of Electronic Imaging 3

(3) pp 257 – 275, 1994.
12. Zhigang Fan, A simple modification of error-diffusion weights. In the Proceedings of SPIE’92.

APPENDIX

Above, a 256-by-256 continuous-tone image and below, the same image dithered.

