FROM PARALLEL TO SEQUENTTAL:
KEEPING OPTIMALITY IN ALGORITHMS

Panagiotis Metaxas* Michael Mytilinaios!
Wellesley Colleget Athens University of Economics?

Abstract

In this paper we first give a survey that describes the reductions between several
fundamental parallel graph problems. Then, we examine the possibility of designing
simple and practical sequential algorithms from parallel ones. Interestingly enough,
we show how to design fast (in fact optimal) sequential algorithms from the optimal
parallel algorithms for a graph theoretic problem that arizes often in many areas
including Economics and Operations Research. In particular, we give two optimal
algorithms that solve the vertex updating for a minimum spanning tree problem.
Finally, we show how these algorithms can be used to obtain incremental algorithms
for computing the minimum spanning tree (MST) of a graph. The MST algorithms
are optimal for dense graphs.

1 Introduction

Parallelizing Sequential Algorithms. Ever since the first attempt of building parallel
machines, researchers have looked into the existing sequential algorithms in an effort to par-
allelize them efficiently. Unfortunately, most of the time, this proved to be a difficult task,
because some of the basic sequential algorithms turned out to be inefficient in their parallel
versions. Breadth-first search of a graph, one of the basic graph searching techniques, has a
fast parallel version which runs in O(log® n) time, where n is the number of graph vertices.
However, this algorithm uses a large number (almost n?) of processors, making the solution
impractical. Others, like the well known depth-first search algorithm, do not seem to have
a corresponding fast parallel version at all. (By “fast” we mean an algorithm running in
polylogarithmic parallel time using a polynomial number of processors.)

Reductions. These observations suggest that the reductions between parallel graph
algorithms do not resemble those of sequential algorithms. The reduction graph of Figure 1

*Email address: takis@bambam.wellesley.edu

'Email address: mmit@isosun. ARIADNE-t.gr

iDepartment of Computer Science, 106 Central Street, Wellesley, MA 02181, USA.
$Department of Informatics, 76 Patission Street, Athens, Greece 104 34.

outlines a survey that depicts this situation. In this graph, an arc from problem X to
problem Y implies that Y uses as subroutine an algorithm that solves X. A label on the
graph refers to the paper in the bibliography that establishes the reduction. A preliminary
version of this survey appeared in [Met91].

Optimality and Efficiency. Before we proceed, we need a few definitions. We say
that a sequential algorithm for some problem of size n is optimal if it runs in time that
matches a lower bound for the problem to within a constant factor. Let ¢(n) denote the
parallel running time for some parallel algorithm, and p(n) denote the number of processors
employed by the algorithm. Then, w(n) = t(n) X p(n) denotes the work performed by the
algorithm. A parallel algorithm for some problem is said to be optimal if it has polyloga-
rithmic parallel running time and the work w(n) performed by the algorithm is O(T'(n)),
where T'(n) is the running time of the best sequential algorithm for the same problem. If,
instead, w(n) is within a polylogarithmic factor of the optimal speedup, the algorithm is
called efficient.

It is well known that a parallel algorithm that performs work w(n) can be simulated
on a sequential machine in time O(w(n)). Such simulations, however, have usually a large
overhead because the uni-processor machine has to switch context very often in order to
simulate a single step on each processor. Thus, these simulations are considered impractical
and complicated. In our approach, we will be looking for algorithms for which we can
separate the computing and scheduling parts. We can think of the computing part as the
“heart” of the algorithm, i.e. the part of the code that the solution is computed. On the
other hand, the scheduling part is the code that “directs” the solution. In the algorithms we
present, the computing part is identical in both the parallel and the sequential algorithms.

In the remaining of this paper we examine the possibility of designing simple and prac-
tical sequential algorithms from parallel ones. Interestingly enough, we show how to design
fast (in fact optimal) sequential algorithms from the optimal parallel algorithms for a graph
theoretic problem that arizes often in many areas including Economics and Operations Re-
search. In particular, we give two optimal algorithms that solve the vertex updating for
a MST problem. Finally, we show how these algorithms can be used to obtain incremen-
tal algorithms for computing the minimum spanning tree (MST) of a graph. The MST
algorithms are optimal for dense graphs.

1.1 Definition of the Problem.

The vertex updating problem for a minimum spanning tree is defined as follows: We are
given a weighted graph G = (V| Eg) with n = |V| vertices and m = |Eg| edges, along
with a MST T = (V, E). The graph is augmented by a new vertex z and n weighted edges
connecting z to every vertex in V. We want to compute a new MST 7" = (V U {z}, E').
The updating MST problem arizes often in practice in very diverse areas that vary
from VLSI design and Artificial Intelligence to Operations Research and Economics. The
problem has been addressed in the past in both the parallel [PR86, VD86, JM88, JM92a]
and sequential settings. Optimal sequential algorithms have been given in [SP75, CHT78].

Prefix Sum

Deterministic
Coin
[CV89 Tossing Pseudotree
Contraction
‘ ‘ [GPS87] Edge-list
List Ranking Augmentation
Coloring
ITV85 Planar graphs (IMO1
Growth-Control
Euler Tour Schedule
on trees
[ADKPgg] Lowest
ACD. Common Graph
Ancestor Connectivity
[CV88
Tree [MRS8 [AV84]
Contraction Euler Tour
on graphs
[JM92a)] Biconnectivjty [JM92b] l
Decomp051t10n Strong
Expression Orientation M.LS.
Evaluation
Updating M.S.T.
M.S.T.
s-t numbering
[JM92a]
2-edge
Triconnectivity connectivity
Multiple
Updating M.S.T. Planarity test

Figure 1: The reduction graph of parallel algorithms for some basic graph problems.

In [JM92a] a set of rules is given which is used in conjunction with parallel tree contrac-
tion methods to develop optimal parallel algorithms for the EREW PRAM (exclusive-read
exclusive-write parallel random access machine) model, the weakest of the PRAM models.
These algorithms run in ¢(n) = O(lgn) time (where lgn denotes log, n) using p(n) = n/lgn
processors, thus achieving work optimality of w(n) = t(n) X p(n) = O(n). Note that the
vertex updating problem has a lower bound of Q(n) sequential time. To see that, consider
the time it takes to find the maximum weighted edge on a tree composed of a single path
of length n — 1, and whose ends are connected to the newly introduced vertex z.

Two Useful Observations We will use the rules of [JM92a] to develop simple and
practical optimal sequential algorithms for the updating MST problem. These rules try
to break small cycles (i.e. cycles of length 3 or 4) and are based on the following two
observations:

1. The edge with minimum weight incident to some vertex will always be included
into the MST. In fact, many sequential and parallel algorithms are based on this
observation (Prim’s algorithm and [SP75, CLC82] actually use this fact). In our
algorithms, edge inclusion makes use of this observation.

2. Whenever some edge is found to correspond to the maximum weighted edge (MaxWE)
of some cycle it can be removed from the tree without affecting the computation of
the remaining graph. (Kruskal’s MST algorithm makes use of this fact.) In the
algorithms we describe, edge ezclusion is based on this observation.

2 The Algorithms

Representation. Upon introducing the new vertex z along with n weighted edges, (Z)
cycles are created. ' If we break these cycles by deleting the maximum weight edge
(MaxWE) that appears in each cycle, the resulting tree will be the new MST T". It is easy
to see that at most n of these 2n — 1 weighted edges will be included into 7. No non-tree
edge of the old graph can be included because all of them are already MaxWE on some
existing cycle in the original graph, so we need not consider any such edge. For this reason
we may take the input to be a tree T' with n — 1 weighted edges (corresponding to the given
MST) and n weighted nodes (corresponding to weights of the newly introduced edges to
z). We will call this object a weighted tree.

Without loss of generality we may assume that the weighted tree is binary. If this is
not the case, there is an easy transformation which, given a weighted tree having vertices
of unbounded degree, transforms it into an equivalent binary weighted tree T' = (Vr, E7).
This transformation is as follows: Each node v = ug with & > 2 children is augmented with
k — 2 fake nodes u; to form a right path. Each of the children v; of node v is attached
as a left child of u;_;, while ug_, has a right child as well. The edges connecting the u,’s

Tf, in an instance of the problem, z is not connected to some vertex z, we can assume an edge (z,z)
having maximum weight.

have weights —oco which makes them unremovable by the algorithm. The fake nodes do
not have weights. They are introduced only to fix the order of processing of v’s children.
At the end of the algorithm the right path is always included in the MST of the binarized
problem, giving a unique obvious solution to the general problem.

We assume that for each node of the binary tree the following pointers are defined:
par(v) and ch(v) denote the parent and the child of node v. Note that whenever we refer
to a child of some node v, there will be no ambiguity because v will only have one child.
Also, we have a function weight : VrUEr — R. weight (v,w) represents the weight of edge
(v,w) € G, while weight (edge(v)) is the weight of weighted node v. By that we mean
the weight of the newly introduced edge (z,v) or, during the execution of the algorithm,
the weight of the MaxWE on the path from z to v via examined nodes.

The rules, presented in the following two subroutines, apply on tree nodes by “pruning”
nodes with degree 1 (leaves of the tree or roots with one child) and “shortcutting” nodes
of degree 2 (roots or nodes with only one child).

procedure prune(v)

a := weight(v, par(v));
b := weight(edge(v));
c := weight(par(v));

if a = max{a,b,c} then
exclude(v, par(v)); include(edge(v));
else if b = max{a,b,c} then
exclude(edge(v)); include(v, par(v));
else if ¢ = max{a,b,c} then
exclude(edge(par(v))); include(min{(v, par(v)), edge(v)});
edge(par(v)) := max{(v, par(v)), edge(v)};

procedure shortcut(v)
a := weight(edge(v));

b:= weight(v, ch(v));
c:= weight (edge(ch(v)));
d:= weight(v, par(v));

e := weight(par(v));

if a = max{a,b,c} or a = max{a,d,e} then
exclude(edge(v)); include(min{(v, ch(v)), (v, par(v))});
(par(v), ch(v)) := max{(v, ch(v)), (v, par(v))};

else if b := max{a,b,c} then
exclude(v, ch(v)); prune(v);

else if d = max{a,d,e} then
exclude(v, par(v)); prune(v);

else if ¢ = max{a,b,c} and e = max{a,d,e} then
exclude(edge(par(v))); exclude(edge(ch(v)));
include(min{edge(v), (v, ch(v)), (v, par(v))});

edge(par(v)) := max{edge(v), (v, par(v))};
edge(ch(v)) := max{edge(v), (v, ch(v))};

The algorithms are based on the existence of a valid tree-contraction schedule. A valid
tree-contraction schedule is one which schedules the nodes of the binary tree for pruning
and shortcutting in such a way that (i) when a node is operated upon it has degree one or
two, and (ii) neighboring nodes are not operated upon simultaneously. For the sequential
algorithms only the first condition needs to be satisfied.

We now present two optimal sequential algorithms for the updating MST problem.

Postorder. The simpler algorithm to implement is the following: Visit the nodes of the
weighted tree in postorder. A node is processed after all its children have been processed,
therefore only the pruning rules are needed. Since each node is processed at most once, we
have an O(n) sequential algorithm.

Remove on the fly. Use depth-first-search to visit the nodes of the tree. Every time
a node of degree 1 or 2 is encountered, process it using a pruning or a shortcutting rule,
respectively. Each node will be visited at most twice (one on the way down the tree and
one on the way up the tree), so its running time is O(n).

Let us remark here that more algorithms can be derived by using other valid tree-

contraction schedules like the ones reported in [ADKP89, CV88].

3 Incremental MST Algorithms

Using the previously described updating algorithms we can obtain incremental algorithms
that compute the minimum spanning tree of a graph G in time 31,7 = O(n?). These
algorithms are optimal for dense graphs, i.e. for graphs having ©(n?) edges.

In the remaining part of this section we give the MST algorithm. In brief, the algorithm
starts from the empty graph Gy and computes the MST of the given graph G,, = G in n
steps by augmenting in each step G,_; to G;. Each augmentation introduces a new vertex
v; along with the edges that connect it to vertices already in G;_;, and then calls the vertex
updating routine.

Algorithm Incr-MST

Let vq,...,v, be a numbering of the vertices.
GO = (%7E0) — (070))
MST(Go) « 0;

for 2 «— 1 ton do
Compute M ST(G;) where G; = (Vi1 Uv;, E;_1 U (v;,2))
and z € V;_;

4 Conclusions

In this paper we have presented an efficient way of designing sequential algorithms from

existing parallel ones. Our approach requires that the scheduling and computing parts of
the parallel algorithm are well defined and can be separated. This is the case of algorithms
that use a valid tree-contraction schedule. We have shown that in this case, optimal, simple
algorithms can be derived.

Our work shows that the design of sequential algorithms can be enriched form the
research in parallel algorithms. Usually the research has followed the opposite direction.

References

[ADKP89] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A simple parallel

[AV84]

[CHTS]

[CLC82]

[CV8s]

[CV89)

[GPS8T]

[JM88]

[TM91]

[JM92a]

[TM92b]

tree contraction algorithm. Journal of Algorithms, 10:287-302, 1989.

M. Atallah and U. Vishkin. Finding Euler tours in parallel. Journal of Computer and
System Sciences, 29:330-337, 1984.

F. Chin and D. Houck. Algorithms for updating minimal spanning trees. Journal of
Computer and System Sciences, 16(12):333-344, 1978.

F.Y. Chin, J. Lam, and I-N. Chen. Efficient parallel algorithms for some graph prob-
lems. Communications of ACM, 25(9):659-665, September 1982.

R. Cole and U. Vishkin. The accelerated centroid decomposition technique for optimal
parallel tree evaluation in logarithmic time. Algor., 3:329-346, 1988.

R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Infor-
mation and Computation, 81:334-352, 1989.

A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking in sparce
graphs. In Proc. 19th Annual ACM Symp. on Th. of Comp., pages 315-324, 1987.

H. Jung and K. Mehlhorn. Parallel algorithms for computing maximal independent
sets in trees and for updating minimum spanning trees. Information Processing Let-
ters, 27(5):227-236, April, 28 1988.

D.B. Johnson and P. Metaxas. Connected components in O(log?’/2 n) parallel time
for the CREW PRAM. In Proc. of 32nd IEEE Symposium on the Foundations of
Computer Science (FOCS’91), October 1991.

D.B. Johnson and P. Metaxas. Optimal algorithms for the vertex updating problem
of a minimum spanning tree. In Proc. of the 6th Intl Parallel Proccessing Symposium
(IPPS °92), pages 306-314, March 1992.

D.B. Johnson and P. Metaxas. A parallel algorithm for computing minimum span-
ning trees. In Proc. of the 4th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’92), June 1992.

[Met91]

[MR86]

[PR86]

[SP75]

[TV85]

[VD86]

P. Metaxas. Parallel Algorithms for Graph Problems. PhD thesis, Dept. of Math. and
Computer Science, Dartmouth College, Hanover, NH, July 1991.

G.L. Miller and V. Ramachandran. Efficient parallel ear decomposition with applica-
tions. Technical report, MSRI, Berkeley, CA, 1986.

S. Pawagi and I.V. Ramakrishnan. An O(logn) algorithm for parallel update of min-
imum spanning trees. Infor. Proc. Lett., 22(5):223-229, April, 28 1986.

P.M. Spira and A. Pan. On finding and updating spanning trees and shortest paths.
SIAM Journal on Computing, 4(3):375-380, September 1975.

R.E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM
Journal of Computing, 14(4):862-874, 1985.

P. Varman and K. Doshi. A parallel vertex insertion algorithm for minimum spanning
trees. In 18th ICALP, Lect. Not., volume 226, pages 424-433, 1986.

