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ABSTRACT
Digital halftoning, or dithering, is the technique commonly used
to render a color or grayscale image on a printer, a computer
monitor or other bi-level displays.  A particular halftoning
technique that has been used extensively in the past is the so-
called error diffusion  technique. For a number of years it was
believed that this technique is inherently sequential and could not
be parallelized. In this paper we present and analyze a simple, yet
optimal, error-diffusion parallel algorithm for digital halftoning
and we discuss an implementation on a parallel machine. In
particular, we describe implementations on data-parallel
computers that contain linear arrays and two-dimensional meshes
of processing elements. Our algorithm runs in 2·n+m parallel
steps, a considerable improvement over the 10·m·n sequential
algorithm. We expect that this research will lead to the
development of faster printers and larger high-resolution
monitors.

Categories and Subject Descriptors
I.4.3 [Computing Methodologies]: Image Processing and
Computer Vision – enhancement,.

General Terms
Algorithms, Performance, Experimentation.
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Image Processing, Parallel Computing, Digital Halftoning, Error-
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1. INTRODUCTION
1.1 Digital Halftoning
Halftoning is the single most important factor in image
reproduction for devices with a limited range of tone levels [6].
Digital halftoning, is a technique that is used to render a color or
grayscale image on a printer, a computer monitor or other
electronic displays that are capable of producing only binary
elements.  It works by creating the illusion of continuous-tone
pictures on bi-level displays. In electronic imaging, the process is

better known as “dithering” while in computer science the term
“digital halftoning” is more popular. We will use both of these
terms without distinction.
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Figure 1.  A 256 by 256 grayscale image (top) and the same
image halftoned (bottom).

Significant effort has been invested in the past to dithering, both
in industry and academia. The classic book by Ulichney [13] has a
comprehensive coverage of dithering techniques while Jones [5]
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describes the extensive efforts of hardware manufacturers to hold
patents on dithering because it is considered crucial to printer
quality and speed. Figure 1 shows a continuous-tone image and
the same image dithered. Seeing from a distance, the dithered
image gives the illusion of continuous-tone. Why exactly this
works is a subject of human physiology and beyond the scope of
this paper, but we can simply say that the eye blurs the details.

It should be noted, however, that both images of Figure 1 are
halftoned, since they are printed on paper. Moreover, the file
containing the first image is significantly larger than the second
file, and thus, dithering has also been used as a compression and
low bandwidth transmission technique [9].

When studying color halftoning, one only needs to address the
conversion of a grayscale image to binary. The introduction of
color in print images is handled through four superimposed
halftones, one per print color (cyan, yellow, magenta and black).
As a result, dithering a color image is about four times slower
than dithering a grayscale image.

There are two major dithering approaches: ordered and error-
diffusion. Ordered dithering uses carefully chosen square grids of
binary pixels to represent different gray scale ranges. A particular
square grid is chosen so that its pattern corresponds to the
appropriate gray level. The correspondence is established by its
proximity to the average grayscale level. This technique can be
parallelized, since each grid is calculated independently of the
surrounding ones. The final outcome is likely to contain some
characteristic diagonal artifacts which reduce the quality of the
final dithered image.
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Figure 2.  The Floyd-Steinberg dithering process.

Error-diffusion is an alternative dithering technique that has
emerged as the standard because of its simplicity and quality of
output. The error-diffusion algorithm, first proposed by Floyd and
Steinberg [3], is schematically shown in Figure 2 and works as
follows.

Pixels J[n] of the continuous-tone digital image are processes in a
linear fashion, left-to-right and top-to-bottom. At every step, the
algorithm compares the grayscale value of the current pixel,
represented by an integer between 0 and 255, to some threshold
value (typically 128). If the grayscale value is greater than the
threshold, the pixel is considered black and its output value I[n] is
set to 1, else it is considered white and I[n] is set to 0. The
difference between the pixel's original grayscale value and the
threshold is considered as error . To achieve the effect of
continuous-tone illusion without the diagonal visual artifacts, this
error is distributed to four neighboring pixels that have not been
processed yet, according to the matrix shown graphically in
Figure 3, proposed by Floyd and Steinberg [3].

The following pseudocode implements the [3] error-diffusion
dithering of an n by m grayscale image. The boundary conditions
are ignored. The notation (J[i,j] < 128)? 0 : 1  is the C-
like if-then-else shortcut notation.

for i = 1 to n
   for j = 1 to m
      I[i,j] = (J[i,j] < 128)? 0 : 1
      err = J[i,j] - I[i,j]*255
      J[i+1,j] += err*(7/16)
      J[i-1,j+1] += err*(3/16)
      J[i,j+1] += err*(5/16)
      J[i+1,j+1] += err*(1/16)
   end for
end for
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Figure 3.  Diffusion matrix of distributing error fractions to
four neighboring pixels [3].

A small modification of the above error diffusion matrix was
proposed by Fan [2] (Figure 4). The new matrix is believed to
improve the quality of the dithered image without increasing the
total work (i.e., the total number of operations) done by the
algorithm.
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Figure 4.  Modified error-diffusion matrix of [2].

Dithering is a very time consuming process, as anyone who has
tried to print grayscale or color images on a printer has noticed. In
fact, it requires four floating-point multiplication operations and
six memory accesses to process each pixel of the image.  For an
image with dimensions n by m it takes 10·n·m   such operations,
and is therefore computationally quite expensive.

Further, one can improve the visual quality of a halftoned image
by diffusing the error onto a larger area. For example, the matrices
proposed by Jarvis, Judice and Ninke [4] (Figure 5) and Stucki
[11] diffuse the error in the 12 neighboring cells. As a result, these
algorithms are even slower, requiring at least 24·n·m floating point



and memory access operations. Further, when printing color
images, the running time increases by a factor of four.
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Figure 5.  Error diffusion matrix proposed by Jarvis, Judice
and Ninke [4] (top). The matrix of Stucki [11] (bottom) differs

only in the fractions of the diffused error.

1.2 Parallel Halftoning
Parallelizing the error-diffusion methods can lead to
manufacturing faster printers and larger monitors. But it is not
straightforward how parallelization would work. Let us first study
the dependencies generated by the FS algorithm. Observe that the
dithered value of each pixel with coordinates (i, j) depends not
only on its own initial grayscale value but also on the diffused
errors (and therefore the original grayscale values) of all the
pixels (x, y) in the trapezoidal area defined by the following
expression (Figure 6)

(x, y) s.t., 1 ≤ x ≤ i,  1  ≤ y ≤ 2j +1

i

j 2j+1

(i,j)

Figure 6. Data dependency for the (i, j)-th pixel.

For a number of years it was believed that error diffusion
algorithms, in the spirit of [3], cannot be parallelized. In fact,
Knuth [7] states that "[the Floyd-Steinberg algorithm] is an
inherently serial method; the value of [the pixel in the right lower
corner of the image] depends on all m·n entries of [the input]".
Similar statements, but without justification appear also in
[14,15,10].

However, the above argument is not valid, unless one restricts
parallelism to the simultaneous processing of all pixels by an
equal number of processors. In practice, however, rarely this is the
case. Typically, in image processing, large images are split into
horizontal or vertical strips. These strips are processed by a small
number of communicating processors. Parallelization is achieved
when some processing can be overlapped. Let us explain our point
with an example. Consider the well-known operation prefix sum.
The prefix sum of an array A[1..n] produces another array B[1..n],
such that, for each  i,

B[i] = A[1]+…+A[i].

Even though the last element of A[n] depends on all the previous
ones, the prefix sum  of the whole array can be calculated very
fast in parallel — in fact, in logarithmic parallel time [1]. The data
dependency simply means that the calculation of the last element
cannot be completed before the calculation of the elements it
depends upon. However, this does not imply an inherently serial
method, because calculations of partial results can be scheduled to
overlap. Indeed, our parallelization is based on the following
scheduling invariant.

Scheduling Invariant I: Schedule the pixels of the image for
dithering so that a pixel is processed only after all the pixels it is
dependent upon have been processed.

Apparently, maintaining this invariant guarantees correctly
computed error-diffusion dithering. There are several
implementations of this scheduling invariant. In the next section
we describe some of the simpler ones.  However, the naive way of
processing a diagonal d of pixels simultaneously (as in Figure 7)
does not maintain the invariant I. The reason is that the value of
the lower left pixel of d depends on all of the pixels on the
diagonal d . Therefore, it is not be possible to process all of the
pixels of the diagonal simultaneously.  For similar reasons,
processing simultaneously the pixels of rows or columns of the
image does not maintain the invariant.

Figure 7. The straightforward processing diagonals of pixels
simultaneously does not maintain the scheduling invariant.



In this paper we give a parallel algorithm that can achieve the
same effects and visual quality, but much faster than the
sequential implementation of [3].  Our algorithm, parallel error-
diffusion dithering is described in the next section. Using a linear
array of P processors we show how to dither an image O(P)  times
faster than the sequential error-diffusion dithering techniques.  In
that respect, our algorithm is (asymptotically) optimal.
Implementation results show that the predicted theoretical
performance can be achieved. Moreover, its simplicity guarantees
that increased performance can be enhanced if the algorithm is
implemented in hardware. In section 3 we show how to
implement the algorithm on parallel computers that contain linear
arrays or 2-D arrays of processing elements.

2. THE PARALLEL ERROR-DIFFUSION
DITHERING ALGORITHM
2.1 Optimal Scheduling
We now show how to dither in parallel using error-diffusion an
image composed of n rows by m columns of pixels on a linear
array of P processors.   We consider first the parallelization of [3].
In a later section we show how to deal with the parallelization of
the [2] matrix.

The FS dithering matrix means that some pixel (i,j) directly
depends on pixels (i-1, j), (i-1,j-1), (i, j-1) and (i+1, j-1).
Therefore, a scheduling obeys the invariant I if and only if the
processing time T(i,j) for every pixel (i,j) is

T(i,j) > max{T(i-1, j), T(i-1,j-1), T(i, j-1), T(i+1, j-1)} (1)

The optimal scheduling, therefore, is given by the equation:

T(i,j) =1 +  max{T(i-1, j), T(i-1,j-1), T(i, j-1), T(i+1, j-1)} (2)

Pixels can be scheduled for dithering at processing times that
follow the pattern in Figure 8, which obeys the invariant I.
Whenever two pixels have equal scheduling times they can be
processed simultaneously. Dividing the image in  time-
independent diagonal slices as shown in Figure 8 implements the
optimal schedule.
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Figure 8.  Optimal schedule for each pixel and image slices

processed by each processor.

Consider a linear array of P communicating processing elements.
Each such processing element (PE) has input/output capability
and can communicate directly with its left and right neighbors.
The first and last processors may have only one neighbor each or
may be connected to each other. To achieve the optimal
scheduling, slices of image pixels are being “fed” into the
processor array in a slanted fashion, as shown in the Figure 9.
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Figure 9.  Direction of pixel movement through the processor
array (top). Snapshot of the algorithm at the 8th step

(bottom).

The optimal algorithm operates as follows: Let k = È(n-1)/3 ,̆
where n   is the number of rows of the image. The three upper
leftmost pixels are processed and their dithering errors are
calculated by the k-th processor in the linear array, called the
starting processor. After these three steps, the k-th processor
sends the appropriate fractions of the errors to its two neighbors,
processors pk-1 and pk+1. It then continues processing the 2nd, 3rd
and 4th pixel of the second row of the input matrix. In the
meantime, processors pk-1 and pk+1 are activated and can proceed
with the calculations of their own image slices. Figure 10 depicts
a graphic representation of the image after the first third of the
halftoning process.



Figure 10.  A snapshot of the algorithm dithering image of
Figure 1. The upper left corner of the image has been

dithered, while the remaining image continues to being fed
into the processor array.

The main implementation difficulty is to have each processor pi  

in the linear array know, at some time step, which pixel to process
and where to send the resulting error fractions.  As we mentioned,
the starting processor initiates the image dithering by processing
the three upper-leftmost pixels. We call the processing of three
consecutive pixels in the image a superstep.

A simple counting argument shows that processor p k+a  to the

right of p k  at time t ≥ 2a+1 is ready to process pixels

(t, 3a+t), (t, 3a+t+1) and (t, 3a+t+2).

Processor pk-a to the left of pk at time t ≥ 2a-1  processes pixels

(2a+t, -a+t), (2a+t, -a+t+1) and (2a+t, -a+t+2). Of course a
pixel (i,j) is only processed if 1 ≤ i ≤ n , and 1 ≤ j ≤ m, else it is
ignored.

Implementing these steps can be further simplified. Below, by
y++  (respectively, y--) we denote the C-like operation of
incrementing (respectively, decrementing) after using variable y.

• Processor  pk+a  wakes up at time a+1 and initializes

variables x = 1 and y = 3a+1. It then processes pixels
with coordinates (x, y++), (x, y++), (x++, y--) until all
of the image has been processed.

• Processor  pk-a  wakes up at time 2a -1 and initializes

variables x = 3a-1 and y = -1. Then, it processes the
three pixels (x, y++), (x, y++), (x++, y--) until all of the
image has been processed.

The whole process can be captured in the following code fraction:

/* Error-Diffusion Dithering of a */
/* grayscale image with dimensions n by m    */
/* Without loss of generality assume n < m   */

/* starting processor has procID == k */
k = ceil((n-1)/3);

/* initialization */
alpha = procID - k;
/* alpha < 0 for proc's to the left of starting
proc  */
/* alpha > 0 for proc's on the right of starting
proc */
x = alpha + 1;
y = 2*alpha + 1;

/* processing */
for (t=1; t < 2*n+m; t++){
   if valid_pixel(x, y) process_pixel(x, y++);
   if valid_pixel(x, y) process_pixel(x, y++);
   if valid_pixel(x,y) process_pixel(x++, y--);
}

Procedure valid_pixel(x, y) checks to see if  1 ≤ x ≤ n and 1
≤ y ≤ m. Procedure process_pixel(x, y) calculates the
dithered value of the pixel and the error from dithering, and sends
the appropriate portions of the error to the two neighboring
processors.

2.2.  Analysis
Given a large enough group of processors P, the running time of
the algorithm is T(n, m) = 2n + m, which is the time that the lower
right pixels is processed. The running time is asymptotically
smaller than 10·n·m that the sequential algorithm requires. Note
that the halftoning quality is not affected by processing column-
wise, so when n > m, the running time is 2m + n.

In existing parallel systems, communication is generally several
times more expensive than computation. Depending on the
communication-to-computation ratio of the particular system
used, it may be worth assigning a wider slanted area to each
processor.
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Figure 11.  Dithering scheduling times for Fan’s modified
matrix. For [2] as well as [4] and [11], a decreased dithering

slope is needed to maintain the scheduling invariant I.



For P  ≥ È(n+m)/3˘ each processor evaluates at most 3n pixels,

where n  is the number of rows in the image.  If P  < È(n+m)/3˘   
the image is divided in (n+m)/P  wider slanted areas.

Fan’s error-dithering modification requires that the width of the
image slice be at least 4. To see that, observe that, since Fan’s
matrix sends part of the dithering error to the pixel at distance 2 to
its lower left, this pixel is not ready for dithering until after the
current processing step. Therefore, the scheduling steps have to be
modified as in Figure 11.

3. IMPLEMENTATION
3.1.  Platform Description
In our parallel implementations we used a linear array and a two-
dimensional array of processing elements (PE’s).  In the linear
array, each PE is has input/output capability and can communicate
directly with its left and right neighbors. The first and last
processors may have only one neighbor each or may be connected
to each other. A generalization of the linear array architecture is
the two-dimensional array (mesh). In this model, each processing
element is connected to and communicates with four neighboring
PE’s (typically called N, E, S, and W).

These two architectures, and in particular the linear array, can be
found embedded on every existing general-purpose parallel
machine and can also be constructed from scratch by connecting
processor/memory chips. Leighton's classic book [8] has an
excellent coverage on embedding linear arrays on a variety of
interconnection architectures, including multidimensional arrays,
hypercubes, trees, mesh-of-trees, etc.

We now briefly describe the MasPar parallel computer we used in
our implementations. A MasPar system consists of four sections
(Figure 12): The Processor Element (PE) Array, the Array Control
Unit (ACU), the UNIX front-end subsystem and a high-speed I/O
subsystem.

The PE array forms the computational core of the MasPar system
and includes 1K, 2K, 4K, 8K or 16K PEs operating in parallel.
Each PE is a custom designed register-based RISC Processor with
64KB of dedicated data-memory and forty 32-bit registers. A fully
configured MasPar MP-1 has a peak performance of 26K MIPS
(million instructions per second) and 1.2G single-precision
FLOPS (floating-point operations per second), while a fully
configured MP-2 with the second-generation, faster, PE chips
raises this performance to 68K MIPS and 6.3G single-precision
FLOPS. Data is transferred to and from the processors via the
router at up to 1 GByte/sec to an external memory buffer. The
MasPar Disk Array (MPDA) provides up to 528 GBytes of
formatted capacity as a true UNIX file system at up to 200
MBytes/sec.

The native language of a MasPar is MPL, a data-parallel
extension of C. The main data-type difference of MPL with C is
the addition plural variables. A plural variable has many copies,
one on each PE. All copies can be accessed in a single parallel
step. Singular variables are residing onto the ACU.

Figure 12. Simplified diagram of the MasPar architecture.
The high-speed I/O subsystem (not shown here) would be

connected to the global router.

Each PE communicates with other PEs in two ways: With their 8
direct neighbors (N, NE, E, SE, S, SW, W, NW) via a direct data
link called the X-Net (Figure 13), and with a random PE via a 2-
stage butterfly router. The first type of communication is about 16
times faster than the second, and is the one we have used in this
paper. The X-Net is defined for every PE, so MasPar’s
Architecture is effectively a torus.

Figure 13. The 8 direct X-Net communications.

The X-Net makes it possible to use a MasPar with N2   PEs in
several ways, two of which are of special interest in this paper: as
a linear array of up to N2 PEs, and as a 2-D array of N by N PEs.

We should point out that, one of the advantages of using simple
processor structures like linear arrays and meshes is their
scalability. One can add easily PE’s in the interconnecting bus
that increase the dithering power of the machine without
redesigning or replacing the remaining circuitry or the software.
Moreover, one can remove and replace defective PE’s from the
processor array at a minimum cost. Finally, our algorithm enables
fault-tolerance, in the sense that allows the machine to work in the
presence of faulty processors by employing standard techniques
that will ignore and skip over the faulty processors.

3.2.  Results
The communication mechanisms of the MasPar vary considerably
in performance. Given that the calculations performed at every
pixel are short compared to the I/O communication time, we
decided to use the whole machine as a buffer holding the image.
After preloading the image, however, we activate for processing a
small subset of no more than 32 PE’s that behaves as a linear
array.



Assume for simplicity that the image size matches the processor
array size. We first load the image onto the processor array in
bulk, so that processor pi,j  holds pixel (i,j). In practice, each
processor will hold a larger chunk of the image slice. Parallel
computers often have direct parallel I/O subsystems equipped
with disk arrays that facilitate this step. Our machine was not
equipped with such a subsystem, though.

The implementation proceeds as follows: For  1 ≤  r ≤  n+m a
slanted diagonal of the processor array is activated, according to
the optimal scheduling. At every step r, processor pi,j  for which j
= r – 2(i-1) activates itself, processes its local pixel, sends off the
error fractions to the appropriate four neighboring processors and
then deactivated itself. The relation between i, j, and r guarantees
that the right subset of processors is activated at every step. In the
next step, another subset of processors will be activated and
continue the dithering.

Figure 14 shows the timing results of the Floyd-Steinberg error-
diffusion matrix for the sequential and parallel implementations.
The calculated maximum speedup for square images up to 1MB is
10.67. Forward projections indicate that the speedup will reach 16
with images of about 25MB. The theoretically expected maximum
speedup when using 32 processors is 16 due to the shape of the
processing slices. The observed efficiency is 66% of the
theoretical. The loss of efficiency is attributed to the cost of the
machine’s X-net communication hardware. We could not extend
our measurements because we run out of local memory space.

FS runtimes: Varying image sizes
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Figure 14. Running times for the parallel (T_par) and
sequential (T_seq) implementations of dithering using the [3]

error-diffusion matrix.

3.2. Results
We have presented a parallel algorithm for dithering a grayscale
or color image using various error diffusion matrices. This settles
an open question on whether error-diffusion can be parallelized.
The algorithm is optimal in the sense that it implements the best
processing schedule allowed by the data dependencies. We then
described an implementation and results of the algorithm on a
particular SIMD parallel machine. The question that remains open
is whether the algorithm can also be implemented efficiently in a
distributed environment such as the MPI message passing
routines. Also, it would be interesting for implementing the

algorithm in hardware, because it would lead to faster printers and
large display monitors.
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