
Robotic Design Studio:
Exploring the Big Ideas of Engineering

In a Liberal Arts Environment1

Franklyn Turbak2

Robbie Berg3

Final version of a paper to be published in
 Journal of Science Education and Technology

Submitted January 21, 2002

Suggested Running Head:  Robotic Design Studio

                                                
1 This is a significantly expanded version of an extended abstract that appears in (Stein, to appear).
2 Corresponding Author: Computer Science Department, Wellesley College, 106 Central St., Wellesley,
MA 02481; fturbak@wellesley.edu; (781) 283-3049.
3 Physics Department, Wellesley College, 106 Central St., Wellesley, MA 02481; rberg@wellesley.edu



ABSTRACT

In this paper we argue that it is important to introduce liberal arts students to the essence of

engineering.  Toward this end we have developed Robotic Design Studio, a course where

students learn how to design, assemble, and program robots made out of LEGO parts, sensors,

motors, and small embedded computers.  The course has no prerequisites and has attracted

students from a wide range of backgrounds.  The course culminates in an exhibition where

students show off the robots that they have designed and built.  These creative projects tie

together aspects of a surprisingly wide range of disciplines.  Robotic Design Studio represents an

alternative vision of how robot design can be used to teach engineering in a way that is more

inclusive and provides more room for artistic expression than contest-centered formats.  A web

site with detailed descriptions of student projects and all other course materials can be found at:

http://cs.wellesley.edu/rds.

Keywords: Robots, design, engineering, liberal arts, undergraduate education



Robotic Design Studio 1

INTRODUCTION

Traditionally, engineering courses have had little or no place in a typical liberal arts

education.  A standard argument is that engineering does not belong in a liberal arts curriculum

because it is too practice- and detailed-oriented.  The purpose of liberal arts education is to give

students the necessary set of intellectual tools to live fulfilled lives, not to give a narrow

professional training.

The purpose of the [liberal arts] college was partly defined in contradistinction to

other forms of education: a [liberal arts] college education was supposed to be

broad rather than specific, “liberal” rather than professional, relevant but not

“narrowly vocational”. (Reuben, 1996)

This separation between engineering and a liberal education goes back a long way: the use of

word “liberal” to describe this kind of education dates to the ancient Greeks.  They conceived of

the liberal arts as an education for “free men”, namely those who had the luxury of pursuing

ideas and thoughts without the burden of having to do something as mundane as making things

(Farrington, 1949).

Today, most people view engineering as characterized by discipline-specific knowledge and

skills studied at the university level by a small handful of specialized technicians.  But we argue

for a broader perspective in which the essence of engineering is viewed as a fundamental

component of a liberal arts education for the following reasons:

• Constructionist Learning:  At its core, engineering is about designing and building

solutions to problems.  Educational research based on constructionist theories of

learning has shown that people’s richest learning experiences often occur when they are

engaged in creating, designing, and making personally meaningful artifacts (Papert,

1980; Resnick and Ocko, 1991; Papert, 1994; Kolodner et al., 1998).  Engaging

students in designing and building activities helps them to become better learners and

problem solvers – key goals of a liberal arts education.  Yet, in large part because of the

absence of engineering, design-based learning is largely missing from the liberal arts

curriculum.  Interestingly, artistic disciplines such as sculpture, painting, music, and

                                                



   Turbak and Berg2

writing tend to have more constructionist activities than the sciences, where a large part

of the laboratory experience typically involves duplicating experiments designed by

others.

• Big Ideas of Engineering:  Every field has its “big ideas”: key concepts necessary for

understanding the field that often shed light on other disciplines as well.  There are

many “big ideas” in engineering (e.g., iterative design, real-world constraints, tradeoffs,

feedback, complexity management techniques) that are important for understanding not

only classical engineered systems but also for understanding social systems and the

natural world.  Exposure to these ideas, which are typically lacking in a liberal arts

education, gives students a new conceptual framework for understanding a wide range

of disciplines.

• Interdisciplinary Nature:  Any given engineering task almost always involves solving

problems in multiple disciplines, typically including not only math and the natural

sciences but also human factors, sociology, economics, politics, and art.  An oft-touted

advantage of a liberal arts education is that it encourages students to cross traditional

barriers between disciplines and make connections between them.  Engineering

problems are an natural source of interdisciplinary activities.

• Technological Literacy:  An important goal of a liberal arts education is to allow

students to understand and appreciate the modern world and to be able to make

informed decisions about critical issues.  In today’s world we constantly interact with a

vast array of often intimidating and mysterious technological objects.  When students

become designers and builders of technology, rather than passive consumers, much of

the mystery and intimidation vanishes (Resnick et al., 2000).  The notion that

technological literacy should be a core component of a liberal arts curriculum was a

cornerstone of the Sloan Foundation's influential New Liberal Arts Program (Koerner,

1981; Goldberg, 1990).

The issue of teaching engineering in a liberal arts environment has achieved significant

national attention recently due to the development of a new engineering department and degree

program at Smith College (Sippel, 1999).  We take this development, in addition to well-



Robotic Design Studio 3

established engineering programs at liberal arts colleges such as Swarthmore College and Trinity

College,  as strong evidence that engineering is compatible with the liberal arts.  Our focus in

this paper is on the vast majority of liberal arts schools that do not, and are never likely to, have

an engineering program.  We believe that, quite separate from whether a college offers

professional engineering training, it is vitally important to expose all liberal arts students to some

form of engineering for the reasons given above.

Motivated by this belief, our aim is to help change the image and the reality of engineering,

transforming engineering into a subject that can be learned and enjoyed by all liberal arts

students.  We set out to develop an introductory engineering experience at our home institution,

Wellesley College, a undergraduate liberal arts college for women.  We designed our course

guided by the following goals:

• Accessibility:  Because we believe that all of today's liberally educated students should

have an understanding of the big ideas of engineering, we wanted our course to be

accessible to all students, regardless of background.  In order to capture the interests of

a diverse student body, many of whom do not initially consider themselves to be

“interested in engineering”, we wanted the course to have multiple entry points -- i.e., to

be appealing to students from a wide range of disciplines and to offer appropriate

challenges and rewards both for students with little or no technical background as well

as those with significant experience in science and math.

• “Do” Engineering, Not Just Study It:  In order to capture the essence of engineering,

we wanted to engage our students in the hands-on process of constructing their own

engineered artifacts.  An alternative approach is for students to study existing

engineered artifacts, such as refrigerators, washing machines, and automobile

subsystems to see how they work, perhaps in conjunction with studying texts such as

(Macaulay, 1988) or (Norman, 1990).  This is the approach taken in the course

described in (Henderson et al., 1994), where the goal was to overcome the anxiety and

intimidation experienced by women engineering students concerning mechanical and

electrical devices; such a course could be adapted to the liberal arts setting.  While this

alternative approach yields valuable insights about engineering and can have a

significant hands-on component (indeed, we include some of these sorts of activities in



   Turbak and Berg4

our course), it lacks the key constructionist learning benefit of engineering and does not

engage students in essential aspects of the engineering process, such as the iterative

design cycle or problem-solving in the context of real-world constraints.

• Creativity of Expression:  Influenced by constructionism's emphasis on building

personally meaningful artifacts, we wanted our course to focus on activities that

encourage students to express themselves creatively.  We figured that this would not

only help to attract students from the humanities but would also give students in the

sciences a rare chance at such expression in a science-related course.  This goal is

somewhat in conflict with typical engineering situations, in which a particular problem

must be solved within the constraints of certain resource bounds.  Although much

creativity may be required to solve the problem within the constraints, there is typically

little latitude for an engineer to change the nature of the problem to allow a greater

sense of artistic expression.  In our course, we take a broader view of engineering in

which practical aspects are sometimes relaxed in favor of a creative, artistic viewpoint.

Inspired by the successful use of robot-based engineering experiences in a variety of settings

(Martin, 1994; McCartney, 1996; Jones et al., 1998; Beer et al., 1999; Druin and Hendler, 2000;

Martin, 2000; Stein, to appear), we decided to try to adapt this approach to a liberal arts

environment.  The absence of a formal engineering program at Wellesley (or even much of a

presence of engineering anywhere in our school’s curriculum) makes this setting significantly

different from most of the universities and colleges that had previously implemented robot

building experiences.  This led us to develop a course which is in some important ways quite

different from courses developed elsewhere.  These differences, and the rationale behind them,

are the main focus of this paper.

In pursuit of our goals, we developed Robotic Design Studio, an intensive laboratory course in

which students are first introduced to the basics of robotics and then work in groups to design,

implement, and exhibit their own robotic creations.  The name of the course reflects a conscious

effort on our part to draw a parallel between the creative design experience in our course and that

offered in studio art courses.

In many ways, Robotic Design Studio has exceeded our wildest expectations.  Our course has

no prerequisites and over the last seven years has been taken by over 150 students with a very



Robotic Design Studio 5

wide range of backgrounds.  Representing 40 different departmental majors and often coming

without any prior programming or mechanical building experience, our students have created

robots that surprise and delight us with creativity and ingenuity.  The course has had high

visibility and has generated excitement not only among Wellesley College students but also

among the greater Wellesley College community and at other liberal arts colleges as well.  In

fact, faculty at several other liberal arts colleges are following our lead by adapting the Robotic

Design Studio course to their home institutions.

The rest of the paper is structured as follows.  We begin by describing the Robotic Design

Studio course in more detail, focusing on the activities undertaken by the students and the

materials used in the course.  Next, we show how our course exposes students to some “big

ideas” of engineering.  We then discuss the rationale behind and the consequences of our

decision to have the course culminate in an exhibition rather than a competition – something that

sets our course apart from almost all other organized robotic activities.  We conclude by

presenting a few examples of the sorts of robotic projects that students build in our course and

discussing our experience in the course.

ROBOTIC DESIGN STUDIO

Course Structure

Robotic Design Studio typically has an enrollment of 20 to 30 students and meets for 12 or 13

four-hour sessions over a three-and-a-half week January session.  We have found that our course

works well in this intensive short-term mode.  Students have few other obligations during this

time, and are able to focus considerable energy on the course – a fact that is especially important

during the last days of their final project, when many students spend large fractions of the day

(and night) working on their robots.  The faculty load is also lighter at this time, allowing us to

spend significant time mentoring the students outside of the advertised class times.  An important

practical matter is finding a sufficiently large laboratory to house 30 students, a dozen

computers, and a large supply of building materials and still have enough room for students to

build and test their robots.  Each January, we commandeer a large classroom and turn it into an

interim robotics laboratory for the month, often using nearby hallways and classrooms as



   Turbak and Berg6

overflow space.  We have considered teaching the course during a regular semester, but would

need to address our lack of a dedicated robotics laboratory in order to do this.

The first six or seven sessions of the course are organized around a series of challenges and

focus mainly on introducing the students to robot programming and mechanical and structural

design.  For example, on the very first day of the course, we ask our students to build an

interactive “kinetic sculpture" as an introduction to working with programmable bricks, sensors,

and motors.  Several challenges involve studying SciBorg – a pre-constructed LEGO robot that

follows a line – to deduce how it works and then programming it to accomplish several other

tasks.  After they have learned idioms for making strong LEGO structures, the students must

build an “indestructible box” that can survive a six-foot fall without breaking apart.  There is also

a gearing challenge that involves building a drag racer that can carry a one kilogram mass and a

Handy Board, powered by a single low-torque LEGO motor.

During the second half of the course, the focus shifts to designing and building a robot from

scratch.  After a series of brainstorming sessions, students divide in groups of one, two or three

members to work on their final projects.  When forming teams for a project, students are

encouraged to choose teammates with complementary strengths.  For example, an ideal team

should have members with programming experience, mechanical know-how, artistic sense, and

good writing and presentation skills.

The final projects are open-ended.  Students have the freedom to create any robot that

interests them; they are limited only by their own imaginations and the available resources.  This

style of project stands in stark contrast to most robot design experiences (and many real-world

engineering problems), where students are required to build a robot that must perform a

particular task and at the same time must often satisfy additional resource constraints (e.g., be

built out of a certain collection of parts, fit within a certain volume, consume a limited amount of

power, etc.).  The open-ended structure of the Robotics Design Studio final project supports all of

our course goals: (1) it helps to attract students with wide ranges of backgrounds and interests;

(2) it actively involves students in a hands-on design and implementation project; and (3) it

allows students to express themselves creatively.

During the second half of the course, we present tutorials on advanced topics for students who

are interested.  We also teach them simple web page design so that they can document their

robots with a collection of web pages that are added to an on-line museum of all robot projects.



Robotic Design Studio 7

During this time, final project teams give two informal presentations on the progress of their

project in which they elicit feedback from the rest of the class.

Students keep a design journal to document their journey through the course.  In the design

journal, students document their approaches and solutions to the challenge problems and the

evolution of their final robot project, from brainstorming to final product.  The design journal

encourages the students to reflect on the process of engineering as well as the final product.

Digital cameras are an important tool for helping students to document their projects.  We are

beginning to explore the use of digital video for documentation purposes as well.

On the final day of the course students present their robots to the community in a public

exhibition.  The exhibition format is significantly different than the competitions that

characterize most robot courses, and is discussed at further length later.

Hardware

For building their robots, students have access to an extensive, computationally enhanced set

of construction materials that consist of a rich assortment of LEGO mechanical and structural

elements, motors and other actuators, various sensors, and also a number of different kinds of

programmable bricks (described below).  The modularity of the LEGO parts, as well as of the

sensors and actuators (which have standard plugs that connect to ports on the programmable

bricks), help to lower the barriers for constructing robots and iterating designs. The fact that

many students are already familiar with LEGO parts and associate them with a playful aspect of

their childhood goes a long way towards making robotics seem both accessible and fun to

students regardless of their majors and backgrounds.

Although they are not hardware in the traditional sense, we have found that art and craft

materials for decorating robots are essential elements of the construction materials supplied to

the students.  They dramatically increase the opportunities for the robot projects to have strong

narrative and aesthetic components.  The use of craft materials gives the robots in our course a

very different “look and feel” than most other LEGO robots build by college students that we

have seen.  We have found that hot glue is indispensable for mixed media creations involving

LEGO parts, sensors, actuators and craft materials.

Programmable bricks are small, portable computers capable of interacting with the physical

world through sensors and actuators (Resnick, et. al., 1996).  The programmable brick extends



   Turbak and Berg8

the robotic construction kit, enabling students to build not only structures and mechanisms, but

also behaviors.  With programmable bricks, students can spread computation throughout their

worlds, using programmable bricks to build autonomous robots and “creatures”.

We have employed two kinds of programmable bricks (Fig. 1), both of which were developed

at the MIT Media Laboratory:

• Handy Boards: The Handy Board is a commercially available palm-sized computer

with four actuator ports, 16 sensor ports, an infrared receiver, a beeper, and a 32

character LCD display (Martin, 2000).  Programs can be downloaded onto the Handy

Board via an electronic tether connected to a host computer.  The Handy Board can

execute a downloaded program without the tether.

• Crickets: Crickets are a new generation of smaller programmable bricks about the size

of a 9 volt battery (Martin et. al., 2000).  Crickets are smaller, lighter, and cheaper than

their predecessors and have enhanced communications capabilities.  Each Cricket has

an infrared receiver/transmitter pair used for downloading programs and for

communicating with other Crickets. Although a Cricket has only two actuator ports and

two sensor ports, it has a bus connection that allows it to use many more devices, and

inter-Cricket communication makes it possible to use several Crickets to build a

sophisticated robot.

In early versions of Robotic Design Studio, there were very few Crickets, and almost all projects

were based solely on Handy Boards. Now we have about equal numbers of Crickets and Handy

Boards, and projects are shifting more towards Crickets or combinations of Handy Boards and

Crickets.

The commercially successful LEGO Mindstorms (RCX)4 product introduced in 1998  was

inspired by the programmable brick work at the MIT Media Lab.  The availability of this product

greatly facilitates adoption by other schools of the kind of robotic design activities that we have

developed for our Robotic Design Studio course.  In our course, we have not made significant

use of RCX programmable bricks for several reasons: (1) the RCX uses sensors and actuators

that are incompatible with the ones we used for Handy Boards and Crickets; (2) the RCX uses

                                                
4 http://mindstorms.lego.com/



Robotic Design Studio 9

Fig. 1. Programmable bricks. The top device is a Cricket, which is about the size of a 9
volt battery. The bottom device is a Handy Board, a palm-sized robotic computer. The

devices and LEGO figure are shown at roughly the same scale.

different programming environments than the ones we use for Handy Boards and Crickets (see

below); and (3) the RCX has only three actuator ports and three sensor ports.  Like Crickets, the

RCX does have the ability to communicate via infrared with other RCX bricks, but the lack of a

bus port and the relatively large size and expense of an RCX brick makes it far less flexible than

Crickets for building sophisticated robots out of multiple bricks.  An advantage of the RCX is

that it is physically more robust than a Handy Board because its electronics are completely

enclosed in a plastic casing, but this is more important for students younger than the college-age

students that we target in our course.  The open architectures of the Handy Boards and Crickets

make it relatively easy for students to solder together their own custom connectors and sensors.

As an example of the kind of robot that can be built with these materials described above,

consider SciBorg, a Handy Board based LEGO robot that we designed to introduce our students

to the basics of mechanical design and robot programming.  SciBorg is a mobile robot with two



   Turbak and Berg10

independently driven wheels, two frontward-pointing light sensors as “eyes”, two downward-

pointing reflectance sensors that can distinguish between black and white surfaces, and front and

back bumpers attached to touch sensors.  Fig. 2 shows a schematic of SciBorg, illustrating its

sensors and motors and how they are connected to the Handy Board.5

Fig. 2.  Schematic of SciBorg (top view). It has two motors (connected to motor ports a
and b); two reflectance sensors (connected to sensor ports 0 and 1); two light sensors

(connected to sensor ports 2 and 3); and two bumpers (connected to sensor ports 7 and 8).

Software

In Robotic Design Studio, programmable bricks are programmed using Handy Logo and

Cricket Logo.  These are dialects of the Logo programming language (Papert, 1980) that were

developed for Handy Boards and Crickets by Brian Silverman and others at the MIT Media Lab.

These versions of Logo have been extended with special primitives for obtaining sensor data,

controlling actuators, and managing sequential and concurrent processes.

Fig. 3 shows a sample Handy Logo program that controls a SciBorg to follow a black line on

a white background.  The program uses SciBorg’s two downward-pointing reflectance sensors to

detect the black line and SciBorg’s independently driven wheels to move forward. Each fragment

of the program beginning with to and ending with end defines a new procedure, which

effectively extends Logo’s vocabulary with a new verb.

                                                
5 For pictures of SciBorg and instructions on how to build one, see http://cs.wellesley.edu/rds/sciborg.html



Robotic Design Studio 11

to follow-line
  go-forward
  loop [if sees-black? left-sensor
          [pivot-left]
        if sees-black? right-sensor
          [pivot-right]]
end

to go-forward
  left-wheel on thisway
  right-wheel on thisway
end

to pivot-left
  left-wheel off
  right-wheel on thisway
end

to pivot-right
  right-wheel off
  left-wheel on thisway
end

to left-wheel
  a,
end

to right-wheel
  b,
end

to sees-black? :sensor-value
   output :sensor-value > 100
end

to left-sensor
    output sensor 0
end

to right-sensor
    output sensor 1
end

Fig. 3. Handy Logo program for SciBorg line follower.

The follow-line procedure is the entry point to the line-following algorithm. It causes

SciBorg to go straight until one of its reflectance sensors detects black.  Once SciBorg has

detected the black line, it follows the line by keeping it between the two reflectance sensors and

forever wiggling back and forth in a “drunken walk” forward.  That is, if it sees black with its

left sensor, it pivots about its left wheel until it sees black with its right sensor, at which point it

pivots about its right wheel, and so on.

The program in Fig. 1 employs many auxiliary procedures to clarify the structure of the

program. Each one is very simple and has a carefully chosen name indicating its purpose.  For

instance, go-forward is achieved by turning both the left and right wheels on in the forward

direction.  Here on is a Handy Logo primitive for turning on the currently selected motor;

thisway is a primitive that ensures the wheel turns in the forward direction; and left-wheel

and right-wheel are user-defined procedures for selecting the actuators (in this case, motors)

plugged into the motor ports named a and b, respectively.  The pivot-left (pivot-right)

procedure uses similar behavioral fragments to pivot forward around the left (right) wheel. The

sees-black? procedure returns (via output) a truth value that indicates whether the given

sensor reading is greater than the threshold for blackness (the constant 100).  The left-sensor

and right-sensor procedures return the sensor readings available on sensor ports 0 and 1,

respectively.



   Turbak and Berg12

The auxiliary procedures are not strictly necessary. It is possible to express the complete line-

following algorithm using just one procedure in which all the other abstractions have been “in-

lined”, as shown below:

to follow-line
  a, on thisway b, on thisway
  loop [if (sensor 0) > 100
          [a, off b, on thisway]
        if (sensor 1) > 100
          [b, off a, on thisway]]
end

However, this style of programming is discouraged because it leads to code that is difficult to

read and maintain.  Students find the first version of the line-following program easier to

understand because it reads almost like English text.  Moreover, when students are asked to

reprogram SciBorg to perform other tasks, it is helpful for them to use the first version as a

starting point because it provides “vocabulary words” useful in many SciBorg programs.  This

highlights the fact that that even simple programs like follow-line can be used to teach

essential complexity management techniques like abstraction and modularity (Abelson and

Sussman, 1996).

We specifically chose Handy/Cricket Logo as the programming environments for our course

in preference to some other programming environments available for Handy Boards and

Crickets.  Handy Boards  are typically programmed using Interactive C (IC), a variant of the C

programming language. While in some respects IC is more powerful than Handy Logo (e.g., it

supports data structures like arrays lacking in Handy Logo), its syntax and user interface are less

intuitive for novice programmers.  The Logo language and environment were designed to be

simple enough for grade school students to use, so it is not surprising that college students find

them very easy to learn.  Indeed, we expect our students, even those who have never

programmed before, to write simple Handy Logo programs on their very first day of class and to

program SciBorg to perform some non-trivial tasks on the second day of class.

Other programming environments available for the Handy Board, Cricket, and RCX include

graphical environments in which programs are constructed by snapping together jigsaw-like

pieces.  Like Logo, these environments are aimed at making programming accessible to children.

However, these environments are significantly more tedious than text-based environments for

writing non-trivial programs and do not have the full expressive power of Handy/Cricket Logo.

We believe that Handy Logo and Cricket Logo strike a nice balance of being easy for non-



Robotic Design Studio 13

programmers to learn while at the same time being sufficiently expressive for students with

previous programming experience.

The support for concurrency in Handy/Cricket Logo deserves special mention.  Specifying

even simple robot behaviors often requires the concurrent composition of sequential processes.

For example, suppose we want to modify the line-following SciBorg to also play a song every

time its front bumper is pressed.  This behavior can be expressed in Handy Logo as follows:

to follow-line-and-play-song
  when [front-bumper?] [play-song]
  follow-line
end

Assume that play-song plays a song and that front-bumper? returns true if the front bumper is

being pressed and otherwise returns false.  The when command spawns a brand new process that

continually looks for front-bumper? to change from false to true and invokes play-song when

this happens.  The follow-line invocation, which generates its own control loop, executes as a

separate process.  The ability to concurrently compose two control loops is essential for

expressing this sort of behavior in a modular fashion. Without concurrency, it would be

necessary to manually interleave the two loops into a single loop – something that is extremely

complex, even for expert programmers.

Concurrency is often treated as an advanced computer science topic – one often not covered

until late in the undergraduate curriculum.  We find it fascinating that students in Robotic Design

Studio, many of whom have never programmed before, stumble across problems requiring

concurrency on their very first day of the course, and can effectively use concurrency primitives

like when within the first week of the course.  This suggests (1) that robotics is a natural domain

in which to teach concurrency; and (2) that concurrency is a fundamental problem solving

technique that should be taught much earlier in the computer science curriculum.  These points

are made cogently elsewhere, particularly in (Stein, 1998).

WHAT’S THE BIG IDEA?

We should be clear what we mean when we say we want our students to learn the “big ideas

of engineering.”  We are not arguing for a standard professional engineering training that

emphasizes the mastery of narrow, though perhaps very practical, skills (e.g. C++ programming

or digital circuit design).  Rather, we seek to expose students to broad concepts, principles, and



   Turbak and Berg14

problem solving techniques that characterize the essence of engineering across particular

disciplines.

In this section, we discuss several of the big ideas that are addressed in Robotic Design

Studio.  In early incarnations of our course, many of these ideas were only implicit.  As we have

come to recognize their importance, we have begun to teach many of these ideas explicitly.  The

value of using robot design projects as a means of learning engineering principles has been

recognized by many others (Martin, 1994; McCartney, 1996; Jones et al., 1998; Beer et al.,

1999; Druin and Hendler, 2000; Martin, 2000; Stein, to appear). Here we emphasize those

principles that we believe are particularly important in a liberal arts context.

Iterative Design

The essence of engineering is imagining something (typically a solution to a problem),

designing it, building it, and getting it to work.  Robotics is a rich and accessible domain in

which to experience this process.  Furthermore, in the course of their robotic projects, students

learn that engineering is an iterative process in which they continually implement, test, debug,

and refine designs.  This process stands in stark contrast to many traditional experimental lab

courses in the sciences, where students (unlike practicing scientists) rarely have a chance to

design and iterate experiments.

In Robotic Design Studio, students are first exposed to the design cycle in the context of

several challenge problems.  Solving the SciBorg programming challenges typically involves a

fair amount of code debugging, an activity that is terra incognita for students without a

programming background.  Students typically have to iterate their “indestructible box” designs

numerous times before their boxes can survive a six-foot fall intact.  The drag race gearing

challenge has a preliminary contest the day after it is assigned and a final contest on the day after

that.  This builds into the structure of the challenge an opportunity for improving the race car

design between the two contests.

Students gain even more experience with the design cycle in their final robot projects.  Often,

the process of choosing a project requires several iterations.  Initial tinkering with a project idea

can suggest that it is too difficult or impractical, in which case it is necessary to simplify the

project or consider another one.  Once a project is deemed promising, numerous iterations may



Robotic Design Studio 15

be required to solve a particular problem in the project design. Some examples of thorny

problems that have arisen in our course are:

• how can a mechanical arm throw a ball?

• how can a fire-fighting robot dispense shaving cream from a can?

• how can a toy cow dispense milk?

• how can a device sort different kinds of candy?

• how can a robot play a particular note on a xylophone?

As a concrete example of the iterative nature of the design process in robotics, consider the

plight of a group that had built the skeleton of a fire-breathing dragon, but did not know how to

make it “breathe fire”. Here is a wonderful description, written by the group members for the

web pages documenting their robot, of the path they took in solving this problem:

Our main interest in the dragon was to have it blow flames or smoke. Fire was

ruled out due to safety issues so we decided to simulate smoke, the most difficult

aspect of building our dragon. First we considered making him blow bubbles or a

puff of baby powder, but then, for a more authentic effect, decided to try dry ice

or liquid nitrogen. We decided to use liquid nitrogen because it produced more

smoke than dry ice when water was added to it. Our next problem, however, was

determining how to drop the water into the liquid nitrogen when prompted. We

tried making a pipe-like mechanism, having water flow through a straw into the

cup of liquid nitrogen. However, making a device using a sliding gear rack to stop

and start the flow of water in the straw was not effective. The straw was too hard

to pinch and seal off. We realized that just pouring water by some means into the

liquid nitrogen would be more effective, but we had trouble finding a container

that worked well for pouring. We tried a plastic condiment cup and a balloon-like

dropper without success and so ended up with the cap of Dove body wash. It was

the perfect shape to be tipped and to dispense water: slightly elongated and

cradle-like. The liquid nitrogen is contained in three styrofoam cups, each one

placed inside the other. The plastic lid of a Starbuck’s insulated cup serves as a

lid for the liquid nitrogen. A piece of tubing runs from a hole in the lid upward to

the dragon’s mouth. (Cheng et al, 2000).



   Turbak and Berg16

The Real World

Engineering is something that takes place in the real world, not in a textbook. A key challenge

of engineering is that it often involves the design of a complex system with interacting parts,

many of which may be quite different in character.  Robotics projects naturally lend themselves

to design in multiple domains since most robotic projects have mechanical, computational,

electrical, and artistic components, and possibly other components as well. They also serve to

illustrate that the real world tends to be much messier, noisier and more unpredictable than

students have come to expect from the idealized view that dominates textbooks and problem sets.

To highlight the issue of single vs. multiple domains, compare the “bin sorting” problem in

computer science to the candy sorting task undertaken by one group as their final project.  The

bin sorting problem involves placing the elements of a collection into “bins” according to their

type.  In the classical computer science setting, the problem involves creating an array of lists,

say, that partitions a given collection of values by some property.  The focus is purely

computational: developing an algorithm that solves the problem using the least amount of

processor time and/or computer memory. In contrast, sorting candy into bins by type involves

solving numerous problems that are idealized in the purely computational problem.  For instance,

determining the type of a candy is highly non-trivial and requires finding dimensions that

available sensors can use to differentiate the candies.  Unlike computational objects, candies

have mass and volume and must be physically transported from their current position to the

correct bin.  How to transport a candy, how to determine when the correct bin has been reached,

how to insert the candy into the bin – all these are problems in the candy sorting domain that

simply are not present in the purely computational domain.  Computation is also involved in

candy sorting, but it is unlikely that the time and space requirements of the algorithm are primary

concerns.

A classic example of real world effects arises in the context of programming SciBorg to “ping

pong” back and forth between two walls.  A common first attempt at solving this problem looks

like

to ping-pong
  go-forward
  loop [if front-bumper? [reverse]
        if back-bumper? [reverse]]
end



Robotic Design Studio 17

where reverse is assumed to reverse the directions of both wheels.  A problem with this code is

that reversing the motors takes time, and during that time the bumper may continue to be

depressed, in which case the motors are reversed again by the next execution of the loop.  This

can repeat many times, giving rise to a behavior where SciBorg repeatedly bangs into the same

wall after backing up a very short distance.

A more robust solution specifies a different direction of motion for collisions involving

different bumpers:

to ping-pong
  go-forward
  loop [if front-bumper? [go-backward]
        if back-bumper? [go-forward]]
end

In this case, if the front bumper is depressed for multiple executions of the loop, it executes go-

backward multiple times, which has the same effect as executing it once.  Yet even this approach

is not immune to real-world problems.  Occasionally when the front of SciBorg collides with a

wall, the impact causes the back bumper to lift slightly, and shortly after SciBorg has started

moving backwards, the back bumper falls back down, depresses the back touch sensor, and

causes SciBorg to go forward again!

There are numerous environmental factors that can affect robot behavior.  It is not uncommon

for students to discover that a robot that works fine in the robotics lab fails to work properly in

the exhibition area.  Often, this is due to sensor thresholds. It is tempting to use “magic

constants” for sensor threshold levels when programming a robot, like the number 100 for

measuring blackness in the line-following program presented earlier.  However, numbers

appropriate for one environment (e.g., a shaded classroom lit by fluorescent bulbs) may not be

appropriate for another (e.g., a sunlit lounge).  For this reason, we encourage students to design

their robot programs with “field settable” threshold values that they can change when they move

the robot from room to room, or, even better, to use auto-thresholding techniques that measure

ambient properties of a room to automatically calculate an appropriate threshold.  Flash

photography, halogen lamps, bright sunlight, and infrared crosstalk from other robots often

disrupt the behavior of robots that depend on photocell or infrared sensors. Other environmental

factors, such as the color or  friction of a carpet, can greatly influence robot behavior.

The above situations exemplify a class of real-world phenomena that would simply not arise

in a simulated “ideal” environment.  These phenomena, which can be extremely difficult to



   Turbak and Berg18

predict and debug, occur all the time in the context of robotics.  While they can be very

frustrating to deal with, they teach important lessons about problem solving, unexpected

interactions between subsystems, and the limits of ideal models.

Tradeoffs

Due to the multiple interacting domains and subsystems in a typical engineering task, solving

one problem can create others. For instance:

• adding cross-bracing beams to an unstable structure prevents it from falling apart, but

makes it too heavy;

• modifying the gear ratio of a gear train stops a car from stalling, but makes it go slower

than desired;

• using extra distance sensors helps a candle-extinguishing robot align itself to a wall,

but ties up sensor ports needed for detecting the candle.

Sometimes there are clever ways to satisfy what appear to be conflicting goals.  However, in

other cases, the conflict between goals is fundamental and it is impossible to achieve all of them.

For example, there is no way to circumvent the fact of physics that the torque and angular

velocity at the output of a gear train are inversely related.  In such situations it is necessary to

make a tradeoff between goals – to accept that one goal will not be met, or only partially met, so

that another goal may be achieved.

Students in our course frequently encounter all sorts of tradeoffs in robotics projects.  A good

example of this involved a simple device developed by one group for improving communication

with a student’s father-in-law, who was becoming progressively blind and deaf.  The purpose of

the device was to be able to convey the answers to simple questions (involving “yes”, “no”,

“maybe”, and numbers) transmitted by an infrared remote control unit.  The group had to make

many tradeoffs involving the weight, size, physical robustness, reliability, and functionality of

the device.

An important aspect of tradeoffs is that they make it clear that there is no single “right” or

“best” solution to many problems; rather, each solution comes with its own benefits and

drawbacks.  Tradeoffs appear not only in the world of engineering but in the sphere of public

policies: protecting an endangered species may negatively affect worker’s livelihoods; tax

money used to build a new school is not available for elder care; a mother who moves from



Robotic Design Studio 19

welfare to work must find day care for her children.  A goal of a liberal arts education is to

educate an informed citizenry that can wrestle with these sorts of questions in an intelligent

manner.  Although students may study these sorts of tradeoffs in their sociology, economics, and

political science classes, they do not get hands-on experience with seeing the results of making

different tradeoffs.  Solving engineering problems gives this sort of experience and, we believe,

provides new insight into the meaning of tradeoffs.

Feedback

Control systems involving negative and positive feedback are ubiquitous in nature and in

engineered devices.  In negative feedback, deviations from a state drives the system back

towards that state; for instance, a ball perturbed from the bottom of a trough rolls back to the

bottom of the trough.  In positive feedback, deviations from a state drive the system further away

from that state; for instance, a ball perturbed from the top of a hill rolls further away from the top

of the hill.

Robotics is an excellent area in which to learn about, and design with, feedback. A classic

example is a light-seeking robot.  Imagine a rotating robot with left and right photocell sensors

serving as “eyes” that moves according to the following rules:

• if the right eye sees more light than the left eye, the robot rotates toward the right

(clockwise);

• if the left eye sees more light than the right eye, the robot rotates toward the left

(counter-clockwise);

• if the two eyes see the same amount of light, the robot does not rotate.

If a light is turned on in a dark room containing the robot , the robot will rotate toward the light.

This is an example of negative feedback; if a turn towards the light overshoots the target, the

rules cause the robot to turn back in the opposite direction, stabilizing its orientation towards the

light.  Interestingly, the very same robot can be use to illustrate positive feedback.  A light-

seeking robot can alternatively be view as a darkness-avoiding robot.  If the robot is oriented

away from the light (i.e., toward the darkness) to a point where each eye detects the same amount

of darkness, the robot will be still. But this is an unstable position, and any slight difference

between detected light levels in the two eyes will cause the robot to turn away from the darkness.



   Turbak and Berg20

While this example is very simple, negative and positive feedback can be used to construct

robotic “creatures” with surprisingly sophisticated behaviors (Braitenberg, 1984).

In engineering, negative feedback is commonly used as a technique for making systems

stable. Both negative and positive feedback are important concepts for analyzing a wide range of

phenomena, such as population dynamics, financial markets, and the spread of disease.  We

believe that feedback is an engineering-related idea that should be in the conceptual toolkit of

every liberal arts student.

Controlling Complexity

Engineers use several important techniques to combat a potentially overwhelming volume of

complex detail in their work. Two of the most important tools are:

• Abstraction: capturing and generalizing idioms, often into “black box” entities with

simple interfaces.

• Modularity: composing systems out of reusable mix-and-match parts.

In Robotic Design Studio, these techniques are evident in many domains.  LEGO pieces are

extremely modular; they are carefully designed to fit together in many ways.  There are

numerous idiomatic assemblies of LEGO pieces that serve as handy construction abstractions

(Martin, 1995).  Sensors, motors, and programmable bricks are all examples of abstraction: they

are “black box” entities that can effectively be used without understanding the details of how

they work.  Moreover, they are modular: the standard sensor and motor connectors allow them to

be plugged into the programmable bricks in a mix-and-match way.  At the programming level,

procedures introduce abstractions, enabling the definition of new high-level operations while

suppressing implementation details.  Collections of procedures (such as go-straight, turn-

right, and turn-left in the line-following program) can be reused in mix-and-match ways,

effectively defining a new level of programming language.

Once one is aware of these techniques, it is possible to see how ubiquitous they are in the

modern world and how much we depend on them for day-to-day functioning.  The electric power

grid, the water supply, the Internet, and the telephone system are all excellent examples of

important abstractions that we use via a host of modular devices.  Supermarkets and department

stores are purveyors of abstractions; for the most part, we do not want or need to know how a

loaf of bread or piece of clothing are made.  However, becoming conscious of the extent to



Robotic Design Studio 21

which we treat much of the world as black boxes is a first step to asking important questions

about what is inside these boxes: e.g., where does the water come from? what ingredients are

used in the bread? who manufactured the clothing?  An informed citizenry needs to appreciate

the ubiquity of abstraction and modularity and to understand both their benefits and their

drawbacks in a wide range of domains.

EXHIBITIONS, NOT COMPETITIONS

A critical element in the organization of Robotic Design Studio is that it culminates in an

exhibition rather than a competition.  Our course was in good measure inspired by MIT’s “6.270”

Autonomous Robot Design Competition course (Martin, 1992).  In 6.270, students build robots to

compete in a tournament style contest in which robots play a game against one another, with

winners advancing to the next round.  While competitions are exciting and motivational for

many students (particularly the winners), we believe that an exhibition format is more

welcoming to novices, attracts a broader range of students, and allows room for a greater range

of creative expression, while still maintaining the motivational benefits of a public display of the

projects.  The exhibition in our course is widely publicized, much like an art gallery opening

might be, and is attended by about 250 people, including many children. The advantages to this

approach include:

• Personal expression:  Students experience a deep thrill in  being able to start with

nothing more than a vision and a “blank canvas” and end up with a tangible, almost

living, expression of that vision.  Our hope is to capture a feeling similar to that

experienced by an artist and novelist when they create a work.  Allowing students the

freedom to work on a project of their own choosing increases the level of personal

investment they feel in their project.  This personal connection is, according to

constructionist learning theory, a critical factor in creating an environment that is

conducive to learning.  Furthermore, at the exhibition, students receive the benefit of

feedback on their work from a varied and appreciative audience.  The fact that robotics

is a very broad area and encompasses so many different domains makes it easy for

students to find some way to express themselves through robots.



   Turbak and Berg22

• With an exhibition, you can’t lose:  A core design principle of our course is that we are

trying to attract and be welcoming to novices.  A competitive event is, for many

novices,  not very welcoming; the prospect of having to compete against a least some

local experts in a public forum is daunting.  Exhibitions provide an opportunity in

which all participants can be successful.  Moreover, the fact that there is not a particular

pre-ordained problem to be solved leads to a more forgiving and less stressful

environment for the final project.  If a final project idea is simply not working out, it

can be changed even relatively late in the game and still result in a successful project

and positive experience for the group.

• Low floors, high ceilings: While our course is an entry level experience for many, some

students do come to it with a considerable amount of relevant experience.  It is

important to provide a suitable challenge for these more experienced students, and the

open-ended nature of the exhibition format allows this.

• Addressing the gender gap:  We cannot help but notice that most robot competitions (as

well as most engineering professions) are overwhelmingly male in composition.  As we

designed our course we were guided by the intuition that an exhibition format would be

more likely to attract female participants compared to a competitive format.  Of course,

since all of Wellesley’s students are women, we are not in a position to test this

hypothesis.  It would be interesting to see what gender mix would be found in a course

like ours if it were offered in a co–educational environment.

Competitions do have some advantages over exhibitions.  Engineers rarely have the luxury of

picking their own problems or having few constraints on the resources they use.  In this respect,

competitions better reflect the real world; robot contests typically involve solving a problem

specified by someone else using a limited set of materials.  Furthermore, when everyone is

working on the same problem, they can gain a better appreciation for solutions developed by

others.  Some of the negative aspects of competitions can be minimized by steering away from

head-to-head contests and inter-team comparisons and instead emphasizing “tests against nature”

that focus on improvements in a team’s design relative to its early prototypes (Sadler et al.,

2000).



Robotic Design Studio 23

We recognize these benefits and also recognize that different students have different learning

styles.  For some students, a competition may be more motivating than an exhibition.  We

address this issue in Robotic Design Studio by giving students a final project option of starting to

build a robot that will compete in the annual “Fire Fighting” robot contest held at Trinity

College.6   During the past three years, three groups of students have built robots for this contest.

ROBOTS THAT TELL A STORY

The ground rules governing the robots that our students build are intentionally kept extremely

loose.  We provide abundant resources and simply ask the students to build some sort of robot

that they would like to show off at the final exhibition.  Not surprisingly, over the years an

incredibly wide range of projects has been presented.  There have been all sorts of whimsical

creatures and contraptions, such as a friendly smoke breathing dragon, a gorgeous six-foot-long

car wash, a robot that can play “rock, paper scissors” with you, a robotic mother that comforts

her crying baby with a bottle of milk, and a road-crossing, egg-laying chicken.  There have been

re-enactments of great scenes in literature and cinema, such as The Wizard of Oz , Romeo and

Juliet, The Tortoise and the Hare, and the story of the Trojan Horse.

Short of attending the exhibitions, probably the best way to get a sense of this variety is to

visit our online robot project museum at http://cs.wellesley.edu/rds/museum.html, which

contains web pages made by each team of robot builders for their projects.  Figs. 4 through 10

below present a sampling of the 60 projects students have built in Robotic Design Studio during

the six years it has been taught, giving a sense of the variety and richness of their efforts.

Looking at the robots built over the years, a few unmistakable themes emerge.  There is a

strong narrative element to many of the projects; students often use their robots to tell a story,

and they enjoy telling stories about their robots.  Students often build robots that reflect their

interest in other disciplines and extracurricular activities.  Finally, most projects manage to

combine good engineering with artistic flair and dramatic expression.

                                                
6 http://www.trincoll.edu/events/robot/



   Turbak and Berg24

Fig. 4. Inspired by the designer’s interest in competitive rowing, Row-Bot featured a
realistic rowing motion that enables it to paddle around a turtle shaped pond.

Fig 5. Western Duel starred a pair of robotic gunslingers performing the classic pace, turn
and fire sequence found in countless cowboy movies. It featured a sense of drama.(the

winner was determined randomly) and brilliant mechanical design (the loser slouched over).



Robotic Design Studio 25

Fig. 6. Inspired by a visit to a local auto wash, the 6 foot long Rubber Ducky’s Car Wash
featured soap bubbles generated by fans blowing on a bubble wands, gentle mists of water
supplied by LEGO driven aerosol cans, and a visually spectacular buffing action provided

by colorful felt brushes.

Fig. 7. Loom was the brain child of an avid weaver. Built entirely out of LEGO® parts, it
could actually perform a rudimentary type of weaving!



   Turbak and Berg26

Fig. 8. A Gallery of Whimsical Creatures. Smoke-breathing Star Dragon, shown with his
creators in the upper half of the figure, used a clever mechanism that involved pouring

room temperature water into a container of liquid nitrogen in order to create a billowing
vapor whenever he roars. (See the group’s discussion of this mechanism in the text.)
Robotic Chicken  (lower left) always looked both ways before waddling across the

proverbial road. It also laid a (candy) egg whenever anyone cupped a hand behind it. The
Chimera (lower right) was an incredible display of artistry and mechanical ingenuity. Not
only did it flap its wings, with a wonderfully life-like motion, but it also walked on eight

paws and responded to patting its head (purring) or pulling its tail (meowing).



Robotic Design Studio 27

Fig. 9. Paper, Scissors, Rock is a robotic version of the common children's game.  A
robotic hand with four moveable fingers and a stationary thumb is capable of closing itself
into a fist for rock, throwing out just two fingers for scissors or throwing out four fingers
for paper.  The robot randomly "decides" what to throw.  The human opponent wears a

glove equipped with bend sensors so that the robot "knows" what the human threw and can
determine the winner.

Fig. 10. In the Handroid project, a student used two Handy Boards to control a six-motor
LEGO hand that could (slowly) type any specified string of characters. The Handroid
moved back and forth along a gear rack, and reflectance sensors at the tips of each of its

fingers counted keys as it moved.



   Turbak and Berg28

ENGINEERING FOR EVERYONE

The creativity and range of student projects serves to underscore what a good match robotics

is to a liberal arts culture, where people are encouraged to explore and find connections across a

range of disciplines.  The wide variety of projects that have been built in Robotic Design Studio

over the years reflects the diversity in enrollments that we have been successful in attracting.

The 152 students who have taken the course were roughly evenly distributed between the first-

year, sophomore, junior, and senior classes and, as the table below shows, represent a wide range

of departmental majors. (The numbers in the table sum to a number much larger than 152

because of the large fraction of students who double major.)

Table I: Enrollments in Robotic Design Studio 1996-2002, by Major.

Africana Studies 1 Computer Science 34 Middle Eastern Studies 1
American Studies 2 Economics 8 Neuroscience 5
Anthropology 1 Education 1 Philosophy 4
Architecture 3 English 12 Physics 16
Art 9 Environmental Studies 1 Political Science 4
Astrophysics 1 French 2 Psychology 7
Astronomy 2 Geology 2 Religion 1
Biology 14 Greek 1 Russian 2
Biochemistry 4 History 6 Sociology 2
Chemistry 4 International Relations 3 Spanish 2
Chinese 1 Italian 1 Theater Studies 2
Chinese Studies 2 Latin American Studies 2 Women’s Studies 1
Classical Civilizations 2 Math 19 Undecided 4
Cognitive Science 10 Media Arts 4

There is a large and growing community of educational robot builders (Druin and Hendler,

2000; Stein, to appear).  Robot contests from MIT’s 6.270 to cable television’s BattleBots7 have

gained high visibility and inspired many.  Robotic Design Studio represents an alternative vision

of how robot design can be used to teach engineering in a way that is more inclusive and

provides more room for artistic expression than contest-centered formats.

The model provided by college-level courses such as ours can potentially have a very high

leverage outside the university.  The format of activities developed at colleges tends to filter

down to earlier ages; for example unmistakable echoes of the 6.270 contest can be found in the

                                                
7 http://www.battlebots.com/



Robotic Design Studio 29

FIRST LEGO League8 or Botball9 contests aimed at middle school youth.  We hope that Robotic

Design Studio can also serve as a model for robot builders of all ages.

In our view the ancient Greeks were wrong to separate out (and hence devalue) engineering

activities from what they mistakenly believed were more lofty intellectual pursuits.  Sadly, the

traditional liberal arts curriculum of today often makes this same mistake. Doing the kind of

engineering introduced in a course such as Robotic Design Studio is a liberating activity that

should be a component of a liberal education.

ACKNOWLEDGMENTS

Robotic Design Studio has benefited greatly from our collaborations with Fred Martin,

Mitchel Resnick, and Brian Silverman.  Wellesley students Ruth Chuang ‘96 and Rebecca

Lippmann ’98 played important roles in the early development of the course.

The development of Robotic Design Studio was supported by NSF grant DUE-9650969,

funding from the Howard Hughes Medical Institute, and several Wellesley College Educational

Research and Development grants.  The New England Consortium for Undergraduate Science

Education supported a Robotic Design Studio  workshop at Colby College in October 1997,

organized by Batya Friedman, that helped us to disseminate information about our course to

other New England area colleges.  The Consortium for Computing in Small Colleges hosted us

to lead a similar workshop at Sacred Heart College in April 1998.

REFERENCES

Abelson, H., and Sussman, G. J., with Sussman, J. (1996). Structure and Interpretation of Computer
Programs, MIT Press, Cambridge, MA.

Beer, R. D., Chiel, H. J., and Drushel, R. F. (1999). Using Autonomous Robotics to Teach Science
and Engineering. Communications of the ACM 42(6): 85-92.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology, MIT Press., Cambridge,
MA.

Cheng, M,  Openshaw, A, and Wang, S. (2000). Star Dragon (website for Robotic Design Studio
final project). URL: http://nike.wellesley.edu/rds/rds00/star_dragon/.

Druin, A.  and Hendler, J. (Eds.) (2000). Robots for Kids: Exploring New Technologies for Learning
Experiences, Morgan Kaufman /Academic Press, San Francisco.

                                                
8 http://www.legomindstorms.com/fll/
9 http://www.botball.org/



   Turbak and Berg30

Farrington, B. (1949). Greek Science, Penguin, Harmondsworth.

Samuel Goldberg (Ed.) (1990). The New Liberal Arts Program: A 1990 Report, Alfred P. Sloan
Foundation, New York, NY.

Henderson, J. M., Desrochers, D. A., McDonald, K. A., and Bland, M.M. (1994). Building the
Confidence of Women Engineering Students with a New Course to Increase Understanding of
Physical Devices. Journal of Engineering Education 83(4): 337--342.

Koerner, J. D. (Ed.) (1981). The New Liberal Arts: An Exchange of Views. Alfred P. Sloan
Foundation, New York, N.Y.

Kolodner, J. L., Crismond, D., Gray, J., Holbrook, J., and Puntambekar, S. (1998). Learning by
Design from Theory to Practice. In Proceedings of the International Conference of the Learning
Sciences 1998, The EduTech Institute (Georgia Institute of Technology), Atlanta, GA, pp. 16-22.

Jones, J., Flynn, A., Seiger, B.  (1999). Mobile Robots: Inspiration to Implementation (2nd edition),
A.K. Peters, Wellesley, MA.

Macaulay, D. (1988). The Way Things Work, Houghlin Mifflin, Boston.

Martin, F. (1992). The 6.270 Robot Builder's Guide for the 1992 LEGO Robot Design Competition,
Epistemology and Learning Group, MIT Media Lab. URL: ftp://cherupakha.media.mit.
edu/pub/el-publications/Manuals/robot-builders-guide/. See
http://web.mit.edu/6.270/www/ for more information on 6.270.

Martin, F. (1994). Circuits to Control: Learning Engineering by Designing LEGO Robots. Ph.D.
dissertation, MIT Media Laboratory.

Martin, F. (1995). The Art of LEGO Design. The Robotics Practitioner: The Journal for Robot
Builders 1(2). Also available at ftp://cherupakha.media.mit.edu/pub/people/fredm/
artoflego.pdf.

Martin, F. (2000). Robotic Explorations: A Hands-On Introduction to Engineering. Prentice Hall,
Upper Saddle River, NJ. For more information on the Handy Boards used in this book, see
http://www.handyboard.com/.

Martin, F., Mikhak, B., Resnick, M., Silverman, B., and Berg, R. (2000). To Mindstorms and
Beyond: Evolution of a Construction Kit for Magical Machines. In (Druin and Hendler, 2000).
For more information on Crickets, see http://llk.media.mit.edu/projects/cricket/.

McCartney, R. (1996). Introduction to Robotics in Computer Science and Engineering Education.
Computer Science Education  7(2): 135-137.

Norman, D. A. (1990). The Design of Everyday Things, Doubleday, New York, NY.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas, Basic Books, New York,
NY.

Papert, S. (1994). The Children’s Machine, Basic Books, New York, NY.

Resnick, M., and Ocko, S. (1991). LEGO/Logo: Learning Through and About Design. In Harel, I.,
and Papert, S. (Ed.). Constructionism, Ablex Publishing, Norwood, NJ.

Resnick, M., Martin, F., Sargent, R., and Silverman, B. (1996). Programmable Bricks: Toys to Think
With. IBM Systems Journal 35 (3): 443-452.



Robotic Design Studio 31

Resnick, M., Berg, R., and Eisenberg, M. (2000). Beyond Black Boxes: Bringing Transparency and
Aesthetics Back to Scientific Investigation. The Journal of the Learning Sciences  9(1): 17-35.

Reuben, J. (1996). The Making of the Modern University: Intellectual Transformation, and the
Marginalization of Morality, University of Chicago Press, Chicago.

Saddler, P., Coyle, H., and Schwartz, M. Engineering Competitions in the Middle School
Classroom: Key Elements in Developing Effective Design Challenges.  The Journal of The
Learning Sciences  9(3): 299-327.

Sippel, J. (1999). Taking On Engineering's Gender Gap. NewsSmith 13(1). Smith College,
Northhampton, MA. (http://www.smith.edu/newssmith/NSSpring99/cover.html).  See
http://www.science.smith.edu/departments/Engin/ for more information on Smith’s
engineering program.

Stein, L. A. (1998). What We've Swept Under the Rug: Radically Rethinking CS1. Computer
Science Education  8(2): 118-129.

Stein, L. A. (Ed.) (to appear). Proceedings of the 2001 AAAI Spring Symposium On Robotics in
Education.


