
1

Wellesley College ◊ CS115/PHYS115 Robotic Design Studio

Challenges
Below is a list of “challenges” that you will be asked to complete during the first 6 or 7 class
meetings. You should document each of the challenges in your design journal.

Challenge 1: Kinetic Sculpture
With one or two other partners, build a very simple kinetic sculpture out of Lego parts that is
controlled by the Handy Board with a simple Handy Logo program. The control should involve at
least one motor and two different kinds of sensors (e.g., switch, light sensor, reflectance sensor).
For example, one sensor might turn the sculpture on while the other might turn it off. Or you might
use the two sensors to control two different kinds of motors.

Include in your design journal a description of the sculpture (including a rough sketch) and the
Handy Logo program.

Here, and for almost every other challenge in the course, you may need to go through several
iterations before you achieve the behavior you desire. This is not a bad thing, but an expected aspect
of the design process that offers rich opportunities for learning. In your design journal, you should
document each iteration of a design, indicating what worked well, what didn't work so well, and what
you learned from the experience.

Challenge 2: How Does SciBorg Follow a Line?
The first menu selection on a SciBorg Handy Board is follow-line. Executing the program
causes the SciBorg to follow a black line. The goal of this challenge is to figure out how it follows
the line -- i.e. to determine the algorithm used by the follow-line program.

You should work in teams with two or three members. Each team should have one SciBorg, a sheet
of large paper, and a black marker (you may need to share markers between teams). Perform
experiments with the SciBorg to deduce the algorithm employed by follow-line. In your design
journal, document your hypotheses, experiments, and conclusions. You should include an English
description of the follow-line algorithm that explains all the behaviors you observe, including not
only the line-following behavior but also the song-playing behavior.

Pay special attention to figuring out which sensors and actuators participate in the behavior. Recall
that the analog sensor display mode (which you get by turning the knob on the Handy Board past
menu item 7) is a particularly good way to monitor analog sensors. You might also want to
experiment with different colors of markers and papers. Can SciBorg follow a red line? What
happens if you place SciBorg on black paper? On the rug?

Challenge 3: Simple SciBorg Modifications
Here you are asked to predict the consequences of some simple modifications to SciBorg. Think
carefully about your predictions and record them in your design journal. Later (maybe even the next
day), test your predictions on an actual SciBorg and record your observations. Explain any
discrepancies between a prediction and an observation.

a. Changing the Blackness Threshold. SciBorg's notion of what constitutes a black line is
determined by a "blackness threshold". You can add 10 to this threshold via the black+10
menu option and subtract 10 via the black-10 menu option. (Each can be executed multiple
times, and each indicates the threshold number that results from the operation.) Predict what

2

will happen if the blackness threshold is set at the minimum value (0) and at the maximum
value (250). When testing your prediction, record the range of blackness thresholds in
which SciBorg exhibits the "normal" line-following behavior.

b. Swapping Sensors Assume that the blackness threshold is reset to its initial setting. Predict
what will happen to the follow-line behavior if you swap the connectors in analog sensor
ports 0 and 1.

c. Swapping Motors. Assume that the blackness threshold and sensor ports are reset to their
initial settings. Predict what will happen to the follow-line behavior if you swap the
connectors in motor ports A and B.

Challenge 4: New SciBorg Programs

Below are specifications for the behavior of four new SciBorg programs. Working in teams of two
or three members, implement (i.e. write Handy Logo code for) and test at least three of these
programs and include the code in your design journal. Remember to use comments to document
any aspects of your code that need explanation. You are encouraged to do all four programs if time
permits.

One of the best ways to learn how to write good code is to read code written by others. We
encourage you to share your code with your classmates by posting it to the Challenges sub-
conference on FirstClass.

1. ping-pong: Using the front and back bumper sensors, program SciBorg to bounce back and
forth between two walls or obstacles.

2. follow-light: Using the light sensors at the front of SciBorg, program SciBorg to follow a
moving flashlight. Hint: test the difference between the two light sensor values. Extra
Challenge: Have the SciBorg stop moving when there is insufficient light.

flashlight

light sensors

3. escape: Program SciBorg to find its way out of a field of obstacles. The random procedure
is quite helpful here.

3

4. sobriety: SciBorg's line following algorithm causes it to zig-zag back and forth a lot. Modify
the line following behavior to reduce the number of zig-zags. That is, try to make SciBorg
go as straight as possible when following a straight line segment. Does this change the
behavior of SciBorg at a dead end (i.e., a line that just stops)?

Challenge 5: Sensor Interaction

On your own, or in a small group, write the following two Handy Logo programs, in which
switches 7 and 8 independently control motors a and b (respectively). In both programs, the
switches can be pressed in any order and any number of switches (zero, one, two) may be
pressed at once. Do not use any concurrency commands (e.g. launch, forever, when,
every). Test your programs to make sure they work, and include them in your design
journal.

1. ab-on-off: Motor a is on when switch 7 is pressed and is off otherwise; motor b is on when
switch 8 is pressed and is off otherwise.

2. ab-toggle: Pressing switch 7 toggles motor a and pressing switch 8 toggles motor b.

Note: ab-on-off is relatively easy, but ab-toggle is very hard. Programs like ab-toggle are an
excellent motivation for the concurrency commands we will study at the end of the second week of
the course (see Challenge 12). Hint: use global variables for ab-toggle.

Challenge 6: Indestructible Box

By yourself, build a Lego box that holds at least two red "weight bricks" and can be consistently
dropped from a height of 6 feet without coming apart. Some of the idioms described in the handout
on “Building Strong LEGO Structures” and also Fred Martin’s "The Art of Lego Design" are
particularly helpful in this challenge. Demonstrate your indestructible box to one of us (your
instructors) and write up a brief description of your design in your design journal. As usual, you
can expect to go through several iterations before you achieve the goal.

Challenge 7: Single Motor Racing Vehicle
In a group with two or three members, design a vehicle with a single motor that can carry a 1.0 kg
weight as fast as possible. You should use one of the gray rectangular motors that does not have
internal gearing. This will force you to experiment with building your own gear trains. It will be

4

helpful to study the handout on “LEGO Gears and Motors” and also the section on gears in "The
Art of Lego Design".

This is a non-trivial challenge that will require many design iterations on your part. You will have
several days to work on this challenge. There will first be a test run in which you will pit your
vehicle against others on a 2.5 meter course. On the following day, a final competitive event will be
held. You should document each iteration of your design in your design journal.

Challenge 8: Communicating Crickets
Following the guidelines the “Communicating With Crickets” handout, build your own
“Dancing Crickets.” Record your experiences and observations in your design journal.

Challenge 9: Everyday Sensors

Many sensors are embedded in machines, devices, pieces of equipment , etc. that you frequently
use. In your design journal, make a list of ten sensors you can encounter on the Wellesley campus:
in your dorm, classrooms, common areas, outside, and so forth. You need not be able to see a
sensor in order to deduce that it exists. Try to avoid listing simple switch-like sensors, such as light
switches, mouse buttons, faucet handles, etc. The sensor may be embedded in a piece of equipment
or machine, such as an automobile or photocopy machine.

Challenge 10: Animal Sensors

Animals display an astonishing variety of behaviors. Many of these behaviors depend crucially on
special-purpose sensors possessed by an animal. Find an animal sensor that intrigues you and write
a few paragraphs in your design journal describing what the sensor is used for, how it works, and
why it interests you. Remember that humans are animals, too. Try to use at least two sources of
information, and be sure to give a bibliographic reference for each such source. It's OK to use
newspapers, popular magazines and journals (e.g., Audubon, National Geographic, Natural History,
Newsweek, Scientific American, Time, etc.), and articles posted on the Internet, but you are also
encouraged to check more "serious" journals (e.g. Nature, Science) and books.

Challenge 11: Auto-Thresholding

Constance has built a robot that uses a light sensor as a “shadow detector” – when passersby cast
a shadow on the robot, it springs into action. In the robot lab, she notices that whenever anybody
walks in front of her robot, the light sensor reading goes above 20. (Remember, higher numbers
correspond to less light reaching the light sensor.) She gets her robot working perfectly with the
following Handy Logo code:

 to react-to-shadow
 waituntil [(sensor 0) > 20]
 spring-into-action
 end

On the day of the big robot exhibition, Constance moves her robot to a sunlit exhibition space. In
the mid-afternoon, there is so much light that her robot never turns on when people pass by it.
After the sun has set, her robot turns on whether or not people are passing by.

Of course, the cause of this heart-breaking behavior is the fact that Constance has “hard-wired”
(i.e., fixed as a constant) the threshold value used by her program. A threshold value that works well
in one ambient lighting condition may fail miserably in other environments.

A much better strategy is auto-thresholding, in which the robot detects and records the ambient
lighting conditions each time its main program starts, and uses this information to automatically
determine the correct shadow threshold. Your challenge is to implement this strategy by hooking a

5

light sensor to the Handy Board and writing code that can reliably detect shadows under a variety of
ambient lighting conditions (e.g., robot lab with lights on and off, Sage lounge, outdoors on a sunny
day). Your shadow detector can trigger any simple action of your choice – e.g., turn on a motor,
beep, etc.

Challenge 12: Modularizing Behavior
On your own, write the following Handy Logo programs. Use the concurrency constructs
discussed in class. Appreciate how difficult the programs would be if you could not use the
concurrency constructs!

1. ab-toggle: Pressing switch 7 toggles motor a and pressing switch 8 toggles motor b. The
switches can be pressed in any order and any number of switches (zero, one, two) may be
pressed at once. (This is the same problem as Challenge 5, #2, but here concurrency yields a
simpler solution.)

2. a-toggle-reverse: Pressing switch 7 toggles motor a and pressing switch 8 reverses its
direction.

3. ab-onfor: Pressing switch 7 turns motor a on for one second and pressing switch 8 turns
motor b on for one second. Each switch should be active even when the other motor is on.

