
page 1 Last modified on 8/10/04

LogoChip Logo Language Reference

v. 2.0

Overview .. 2
Setting and Reading Registers ... 3
Timing .. 6
Input/Output.. 7
Control.. 8

Recursion .. 8
Numbers ... 9

Procedures ...11
Inputs and outputs ..11
The startup procedure ...11
The powerup procedure ..11

Global Variables and Constants..12
Communication..14
The LogoChip Tools File ...14

Appendix ...16
LogoChip Hardware...16
Register Map..17

Special Purpose Registers...17
General Purpose Registers (RAM) ...19

Flash Program Memory Map..19

Table of LogoChip Logo Byte-Codes...21

LogoChip Logo Language Reference - v. 2.0

page 2 Last modified on 8/10/04

 Overview

LogoChip Logo is the a programming environment for the LogoChip, a minimal set of
hardware is based on a Microchip PIC18F2320 microcontroller1.

LogoChip Logo has the following features:

• ability to directly write and read all microcontroller registers

• control structures like if, repeat, wait, waituntil and loop

• global and local variables

• procedure definition with inputs and return values

• a 16-bit number system (addition, subtraction, multiplication, division,
comparison);

• timing functions and a random number function

When using LogoChip Logo, user programs are entered on a desktop computer and
compiled into tokens which are transferred to the LogoChip through a serial
connection. Logo commands can be executed by typing a line in the LogoChip Logo
command center and pressing the <ENTER> key. The maximum size of a LogoChip
Logo program running on a PIC18F2320 microcontroller is 5k bytes. When a program
is downloaded, its size is displayed in the “status box” near the bottom of the Logo
Chip Logo procedures window.

LogoChip Logo is a procedural language; procedures are defined using Logo to and

end syntax:

to <procedure-name>
<procedure-body>
end

User defined procedures are downloaded to the LogoChip by placing them in a text
file , typing the text file name in the textbox in the lower left corner of the command
center and clicking on the download button.

1LogoChip Logo can also PIC18F4320 microcontroller, which has more input / output pins than a
PIC18F2320.

LogoChip Logo Language Reference - v. 2.0

page 3 Last modified on 8/10/04

The LogoChip has the ability to run programs in the absence of a desktop computer. A
pair of special procedures called “startup” and “powerup” can be defined by the user
The powerup procedure will execute when the LogoChip is turned on via its on/off
switch. The startup procedure will execute if the LogoChip is in its idle state and the
start/stop button is pressed.

Reading and Writing Registers

The PIC18F2320 microcontroller has a collection of 640 byte-wide registers with
addresses in the range 0-511 ($000-$1ff) and also 3968-4095 ($f80-$fff). These
registers are implemented as static RAM and include both general purpose registers,
which LogoChip Logo uses for its stack operations and to store global variables, and
also special function registers, which are used by the microcontroller’s central
processing unit and peripheral modules for controlling the desired operation of the
device. All of these registers can be set and read using the LogoChip Logo primitives
described below. For example:

write register-address value writes a one byte value in the register

whose address is register-address.

Example:

write $f81 68 ; writes the number 68 into the
register whose address is $f81 (the
portb register)

The ability to directly write and read all microcontroller registers is central to design
LogoChip design philosophy, giving the user access to much of the microcontroller’s
functionality. However care must be exercised, since many of these registers are used
by the Logo virtual machine and altering any of these registers is likely to cause the
Logo virtual machine to crash. Only a subset of these many registers should be written
to by a LogoChip Logo program. A listing of some of the most commonly used
registers and their addresses is shown in the table below.2

2 A complete register map for the PIC18F2320 microcontroller, along with an explicit listing of
which registers can be written to a LogoChip Logo program without interfering with the operation of
the virtual machine, is given in the Register Map section of the appendix.

LogoChip Logo Language Reference - v. 2.0

page 4 Last modified on 8/10/04

register name register address register function

porta $f80 porta data register

porta-ddr $f92 porta data-direction register

portb $f81 portb data register

portb-ddr $f93 portb data-direction register

portc $f82 portc data register

portc-ddr $f94 portc data-direction register

portd * $f83 portd data register

portd-ddr * $f95 portd data-direction register

porte * $f84 porte data register

porte-ddr * $f96 porte data-direction register

* Only available in the 40 pin version of the LogoChip based on the PIC18F4320
microcontroller

For each of the commonly used registers listed in the above table LogoChip Logo the

register name has been implemented as a predefined constant that returns the address
of the register. So alternatively one can write to portb using:

write portb 68 ; writes the number 68 into the portb
register

The other primitives for reading and writing to registers are:

read register-address reports the one byte value contained in

the register whose address is register-

address.

setbit bit-number register-address

LogoChip Logo Language Reference - v. 2.0

page 5 Last modified on 8/10/04

sets (makes HIGH) the bit-numberth bit

of the register whose address is register-

address.

Example:

setbit 5 portb ; sets bit 5 of the portb register
HIGH

clearbit bit-number register-address

clears (makes LOW) the bit-numberth bit
of the register whose address is register-

address.

togglebit bit-number register-address

toggles the bit-numberth bit of the

register whose address is register-

address.

Example:

togglebit 0 portb ;if bit 0 of the portb register is
set then this command will clear it,
if it is cleared then this command
will set it.

testbit bit-number register-address

reports true if the bit-numberth bit of

register-address is set, reports

false if it is cleared.

Example:

waituntil [testbit 3 portb] ;waits until bit 3 of portb is
set.

In addition to the file registers discussed above, the PIC18F2320 has 8k bytes of flash
memory, which is a type of EEPROM (electrically erasable programmable read only
memory). The contents of the flash memory can be read using:

read-rom rom-address (“read read–only–memory”) reports the

16-bit value obtained from the

LogoChip Logo Language Reference - v. 2.0

page 6 Last modified on 8/10/04

consecutive bytes stored in ROM
locations rom-address and
rom–address + 1.

The addresses of these memory locations are $0000-$1fff. In the LogoChip this
memory is allocated as described in the Flash Program Memory section of the
appendix.

Timing

The timing commands are useful to cause the LogoChip to do something for a length
of time.

Example:
setbit 1 portb ;sets bit 1 of portb for two seconds

and then clears it.
wait 20
clearbit 1 portb

Please note that there are two different reference values for timing: 0.1 second units,
used in wait , and 0.001 second units, used in mwait and timer.

wait duration Delays for a duration of time, where

duration is given in tenths-of-seconds.
E.g., wait 10 inserts a delay of one

second.

mwait duration Delays for a duration of time, where

duration is given in milliseconds. E.g.,

mwait 53 inserts a delay of 53

milliseconds.

timer Reports value of free-running elapsed

time device. Time units are reported in 1
millisecond counts.

resett Resets elapsed time counter to zero.

no-op (“no-operation”) does nothing, takes

about 13 microseconds to execute each

LogoChip Logo Language Reference - v. 2.0

page 7 Last modified on 8/10/04

no-op command. Useful for inserting

short delays.

Example:
to short-wait :n ; a delay of about 13 * :n

microseconds
repeat :n [no-op]

end

Input/Output

flash causes the red/green indicator LED to

flash red and green 5 times.

The red/green indicator LED should also flash when the LogoChip powers up. The
indicator light is steady red when the LogoChip is powered up and idle and steady
green when the LogoChip is running a program.

The LogoChip has 17 pins available to the user for input and output. These are the
pins labeled A0-A5, B0-B7, and C2, C6, and C7.

Each time the LogoChip is turned on, pins A4, B0-B7, and C2, C6, and C7 are
initially configured as digital inputs. All of these pins can be configured changed to
digital outputs through use of the corresponding bit in the microcontroller’s data

direction registers. (Note however that when configured as an output pin A4 is an
“open collector” output so it needs a pull–up resistor to function properly.)

Example:

to set-pinB2-high
clearbit 2 portb-ddr ;clears bit 2 of the portb data

direction register, which turns pin
B2 into an output

setbit 2 portb ;sets bit 2 of portb HIGH, making the
B2 pin go to +Vcc.

Pins A0-A3 and A5 are configured as 10-bit analog to digital converters. Analog
values can be read using:

read-ad num reports the 10 bit digital value

corresponding to the voltage level on a

channel num of porta. (Pins A0-A3 correspond
 to channels 0 through 3, respectively,
 while pin A5 corresponds to channel 4.)

LogoChip Logo Language Reference - v. 2.0

page 8 Last modified on 8/10/04

Control

LogoChip Logo supports the following control structures:

loop [body] Repetitively executes body indefinitely

repeat times [body] Executes body for times repetitions.

times may be a constant or calculated
value.

if condition [body] If condition is true, executes body. Note:

a condition expression that evaluates to
zero is considered “false”; all non-zero
expressions are “true”.

ifelse condition [body-1] [body-2]

If condition is true, executes body-1;
otherwise, executes body-2.

waituntil [condition]

Loops repeatedly testing condition,
continuing subsequent program
execution after it becomes true. Note that
condition must be contained in square
brackets; this is unlike the conditions for
if and ifelse, which do not use

brackets.

stop Terminates execution of procedure,

returning control to calling procedure.

output value Terminates execution of procedure,

reporting value as result.

stop! Terminates execution completely.

Recursion

LogoChip Logo supports tail recursion to create infinite loops. For example:

LogoChip Logo Language Reference - v. 2.0

page 9 Last modified on 8/10/04

to flash-forever
flash wait 1
flash-forever
end

is equivalent to

to flash-forever
loop [flash wait 1]
end

The recursive call must appear as the last line of the procedure and cannot be part of a
control structure like if. Thus the following program, which attempts to cause a

persistent flash on the indicator LED as long as pin B0 is high, is not valid:

to flash-when-b0-is-high
flash
if (testbit 0 portb) [flash-when-b0-is-high]
end

Numbers

LogoChip Logo uses 16-bit integers between -32768 and + 32767.

All arithmetic operators must be separated by a space on either side. E.g., the
expression 3+4 is not valid. Use 3 + 4.

+ Infix addition.

- Infix subtraction.

* Infix multiplication

/ Infix division.

% Infix modulus (remainder after integer

division).

and Infix logical “and” operation (bitwise

and).

or Infix logical “or” operation (bitwise or).

LogoChip Logo Language Reference - v. 2.0

page 10 Last modified on 8/10/04

xor Infix logical “xor” operation (bitwise

xor).

not Prefix logical not operation. Unlike the

and and or primitives, not is not a

bitwise operation. If num is any non-zero
integer (corresponding to a logical true)
then not num evaluates as zero (logical

false.). If num is zero then not num

evaluates as one (logical true).

random Reports a pseudo-random number from 0

to 32767.

Example: The following procedure will report a pseudo-random number between 0
and 100.

to random100
output random % 100
end

lowbyte number Reports the low order byte of a 16-bit

number.

highbyte number Reports the high order byte of a 16-bit

number.

leftshift num1 num2 reports num1 shifted by num2 bits. If

num2 > 0 then the number is shifted to
the left, if num2 < 0 then the number is
shifted to the right. Thus the result is

equal to num1 * 2num2

Example:

leftshift 9 2 reports a 36
leftshift 9 -2 reports a 2

Putting a “$” in front of a number (without a space!) causes LogoChip Logo to treat
the number as a hexadecimal value.

LogoChip Logo Language Reference - v. 2.0

page 11 Last modified on 8/10/04

Putting a “#” in front of a number (without a space!) causes LogoChip Logo to treat
the number as a binary value.

Procedures

 Inputs and outputs

Procedures can accept arguments using Logo’s colon syntax. For example,

to multi-flash :times
repeat :times [flash wait 10]
end

creates a procedure named multi-flash that takes an input which is used as the

counter in a repeat loop.

Procedures may return values using the output primitive; e.g.:

to go
repeat ntimes [setbit 0 6 wait 2 clearbit 0 6]
end

to ntimes
ifelse testbit 0 portb [output 1][output 3]
end

The go procedure will execute 1 or 3 times depending on the value of bit 0 of portb.

The startup procedure

If the LogoChip is not running a program (indicator LED is red) and if a procedure
called “startup” is contained in the most recently downloaded set of procedures, then
pressing the start/stop button will cause the startup procedure to run. This feature
enables a LogoChip to run a desired program when it is not connected to a desktop or
laptop computer.

If the LogoChip is running a program (indicator LED is green) then pressing the
start/stop button will cause the program to stop running.

The powerup procedure

If a procedure called “powerup” is contained in the most recently downloaded set of

LogoChip Logo Language Reference - v. 2.0

page 12 Last modified on 8/10/04

procedures, then turning on the LogoChip power switch will cause the powerup
procedure to run. For example the following procedure will cause all of the pins on
portb to be configured as outputs when the LogoChip is turned on.

to powerup
write portb-ddr 0
end

Global Variables and Constants

There are two built-in global variables called m and n. The commands setm and

setn are used to set the value of these variables. For example

setn 5

will “set the value of n to 5” by which we mean that n will report a value of 5.

Additional global variables are created by including the global [variable-
list] directive along with the procedures definitions. E.g.,

global [foo bar]

creates two additional globals, named foo and bar. Additionally, two global-setting

primitives are created: setfoo and setbar. Thus, after the global directive is

interpreted, one can say

setfoo 3

to set the value of foo to 3, and

setfoo foo + 1

to increment the value of foo.

Please note that the primitives used for reading and writing the contents of registers
(read, testbit, write, setbit and clearbit) are not generally used directly

with global variables. The register-oriented primitives do not act directly on their
arguments, but rather on the registers whose addresses are pointed to by the
arguments. For example the program

setfoo 255
clearbit 0 foo

LogoChip Logo Language Reference - v. 2.0

page 13 Last modified on 8/10/04

results in foo having a value of 255, not 254. The clearbit command causes the

zeroth bit of the register whose address is 255 to be zero.

There is a limit of a maximum of 111 different global variables that can be used in a
LogoChip Logo program. These variables are numbered with the variable n assigned

the number 1, the variable m assigned the number 2, and subsequent numbers assigned

to other named variables in the order in which they are listed in the global declaration.
The commands setglobal and global can be used to write and read the values of

any of the global variables:

setglobal variable-number value sets the value of a global variable number
variable-number to value

global variable-number reports the value of a global variable
number variable-number

These features can be used to implement indexed arrays. For example the following
procedures allow the user to set and read values in an array whose elements are stored
in global variables numbers 10 and above.

to setarray :index :value
setglobal :index + 10 :value
end

to array :index
output global :index + 10
end

setarray 17 4087 ; set the value of array element #17
to 4087

print array 17 ; print the value of array element
#17 in the monitor box

Constants can be declared by including the constants [constant-list]
directive along with the procedures definitions. E.g.,

constants [[num 6] [times 10]]

will cause the LogoChip Logo compiler to substitute the number 6 in place of each
use of the word num and the number 10 in place of each use of the word times
appears in a user program.

LogoChip Logo Language Reference - v. 2.0

page 14 Last modified on 8/10/04

Communication

send value transmits an 8-bit value to the desktop
computer via the serial connection.

Upon powering up, the LogoChip is in a mode where any serial communication sent
from the host computer will terminate the current program. In this mode, the

LogoChip will respond to any new command is run from the command center.3

This print procedure defined below makes use of send to prints the 16-bit value of

the monitor box on the LogoChip Logo screen.

print value prints a 16-bit value in the monitor box
on the right side of the LogoChip Logo
screen and moves cursor to the next line

prs “character-string prints the character string that follows the
quotation mark in the monitor box on the
right side of the LogoChip Logo screen
and moves cursor to the next line.

The vertical line character can be used to print strings containing spaces:

prs “|hello world|

The LogoChip monitor box responds to standard ASCII codes. Thus, for example, the
following procedure will generate a carriage return.

to cr
send 13
end

The LogoChip Tools File

Whenever a text file containing a Logo program is downloaded to the LogoChip, if
there is a file called lc-tools.txt located in the same folder then the compiler will

3 The PIC18F2320 microcontroller has a built-in UART that can be used to allow the
LogoChip to receive serial communications. See the application note entitled Using

the LogoChip’s built-in UART.

LogoChip Logo Language Reference - v. 2.0

page 15 Last modified on 8/10/04

interpret the contents of lc-tools.txt as additional Logo code to be included in the
download. This provides a way of providing all programs with access to commonly
used procedures.

LogoChip Logo Language Reference - v. 2.0

page 16 Last modified on 8/10/04

Appendix

LogoChip Hardware

A0
A1

Vp

A2
A3
A4
A5
GND
CLK
CLK
C0
C1
C2
C3 C4

C5

GND
+6V

B0
B1
B2
B3
B4
B5
B6
B7

+6V

10k

330

C7
C6

10k

1k 1k

red/green
start/stop

LED

red/green
serial
LED

6V
on/off
switch

47µF 0.1µF 0.1µF

+6V

+6V

Start/Stop
Button

connect to 9-pin
serial connector
(pins 4,6 and 8
tied together)

5

3

2

LogoChip Logo Language Reference - v. 2.0

page 17 Last modified on 8/10/04

 Register Map

Special Purpose Registers

The diagram below shows a map of the PIC18F2320 microcontroller’s byte-wide
special purpose file registers. which have addresses from $f80 through $fff

LogoChip Logo Language Reference - v. 2.0

page 18 Last modified on 8/10/04

The following special registers are used by the Logo Virtual Machine and should not

be written to:

Register Name Register Address

pir1 $f9e
txsta $fac
txreg $fad
rcreg $fae

adcon1 $fc1
adcon0 $fc2
adresl $fc3
adresh $fc4
t2con $fca
pr2 $fcb
tmr2 $fcc
status $fd8
spl $fd9
sph $fda
@sp+a $fdb
+@sp $fdc
@sp- $fdd

@sp $fdf
a0l $fe1
a0h $fe2
@a0+a $fe3
+@a0 $fe4
@a0- $fe5
@a0+ $fe6
@a0 $fe7
acc $fe8
prodl $ff3
prodh $ff4
tablat $ff5
ipl $ff6

iph $ff7
pcl $ff9
pclath $ffa
tosl $ffd

LogoChip Logo Language Reference - v. 2.0

page 19 Last modified on 8/10/04

tosh $ffe
portc $f82, bits 3 -7
portc-ddr $f94, , bits 3 -7

All other special file registers may be written to without interfering with the operation
of the LogoChip. Please see the PIC2320 data sheet published by Microchip for
information about the functionality of these registers.

General Purpose Registers (RAM)

The PIC18F2320 microcontroller has 512 bytes of general purpose memory (RAM).
A map of how this RAM is used by the Logo virtual machine is shown in the figure
below. Note that some of this memory is used by the Logo virtual machine and should
not be written to by Logo code.

RAM Address Use

$00 - $1f Used by Logo Virtual Machine - Do Not Overwrite

$20 - $ff Global variables stored here

$100 - $1bf Used by Logo Virtual Machine (for Logo stack) - Do Not
Overwrite

$1c0 -$1ff Transfer buffer used during download only

Flash Program Memory Map

The PIC18F2320 has 8k bytes EEPROM (electrically erasable programmable read
only memory.4 The addresses of these memory locations are $00-$1fff. In the

LogoChip this memory is allocated as follows:

Locations $0000 - $01ff (0-511) Boot Monitor – These locations are used for the
“monitor” which is responsible for writing to the microcontroller’s program memory.
When the LogoChip is started in “bootload mode”(by holding the start/stop button
down) the monitor is responsible for programming new assembly language programs
(such as the Logo virtual machine) into the memory space between $0200 and $0bff.
When not started in bootload mode the execution simply jumps to location $0200,
where the Logo virtual machine begins. The Logo virtual machine uses the monitor to
write new user Logo program bytes codes.

4 Microchip specifies that this memory will allow at least 100,000 erasures.

LogoChip Logo Language Reference - v. 2.0

page 20 Last modified on 8/10/04

Locations $0200 - $0bff - (512- 3071) Logo Virtual Machine – These locations are
for the LogoChip Virtual Machine. Assembly language programs can also be written
into this space, overwriting the virtual machine and allowing the user to run ordinary
PIC machine code, while still maintaining the monitor.

Locations $0c00 - $0c3f - (3072-3135) Command Center Storage - Logo byte
codes generated from programs that are run from the command center are stored here.

Locations $0c40 - $0c7f - (3136- 3199) Startup and Powerup Vectors - contains the

address of the program memory location for the Logo procedure to be run the
startup and powerup procedures.

Locations $0c80 - $0cff - (3200-3327) - are unused by the LogoChip.

Locations $d00 - $1fff (3328 - 8191) - User Logo Program Byte Codes - The Logo
programs that a user writes get translated into a series of one-byte codes, which get
stored in this section of memory during the downloading process. Because this
memory is non-volatile, user programs remain in the LogoChip when the power is
turned off. They are overwritten with each new download.

LogoChip Logo Language Reference - v. 2.0

page 21 Last modified on 8/10/04

Table of LogoChip Logo Byte-Codes

Mnemonic Byte Command

or

Reporter

Number

of Args

Comment

code-end 0 c 0 terminates code.

byte 1 r 1
immediate

byte

pushes a 16-bit number on stack. takes one
immediate byte as number in code stream
(resulting number is 16-bit representation of 0 -
255).

number 2 2 2
immediate

bytes

pushes 16-bit number on stack. takes two
immediate bytes as number in code stream.

list 3 c 0 "start of list"; opens a code block

eol 4 c 0 "end of list"; closes a code block

eolr 5 r 0 "end of list reporter"; closes a code block that
will return a value (e.g, for when, waituntil)

lthing 6 r 1 "local thing"; uses stack frame to retrieve
procedure arguments

ufun 7 n/a 2
immediate
bytes

call a user function

eval-ufun-
tail

8 c 2
immediate
bytes

tail recursively call the same procedure

stop 9 c 0 stops currently running procedure, returning
control to caller

output 10 c 1 stops currently running procedure, returning
value to caller

loop 11 c 1 indefinitely executes block

repeat 12 c 2 repeats block for specific number of times

if 13 c 2 if input expression is true, executes block

ifelse 14 c 3 if input expression is true, executes block1, else
executes block2

waituntil 15 c 1 repeatedly executes block until it evaluates to
true

+ 16 r 2 reports sum of two inputs

- 17 r 2 reports difference of two inputs

* 18 r 2 reports product of two inputs

/ 19 r 2 reports quotient of two inputs

% 20 r 2 reports remainder of quotient of two inputs

= 21 r 2 reports boolean equality of two inputs

> 22 r 2 reports boolean "greater than" of two inputs

< 23 r 2 reports boolean "less than" of two inputs

LogoChip Logo Language Reference - v. 2.0

page 22 Last modified on 8/10/04

and 24 r 2 reports bitwise/logical AND of two inputs

or 25 r 2 reports bitwise/logical OR of two inputs

xor 26 r 2 reports bitwise/logical XOR of two inputs

not 27 r 1 reports bitwise/logical NOT of two inputs

read 28 r 1 reports 8-bit value of file register at specified 8-
bit address

write 29 c 2 writes 8-bit value to file register at specified 8-
bit address

global 30 r 1 reports value of numbered global

setglobal 31 c 2 sets numbered global to value

resett 32 c 0 resets free-running timer to zero

timer 33 r 0 returns value of free-running timer

wait 34 c 1 waits for specified time period

random 35 r 0 reports pseudorandom 16 bit value

send 36 c 1 sends specified 8-bit value out LogoChip serial
port

lowbyte 37 r 1 reports low byte of input

highbyte 38 r 1 reports high byte of input

setbit 39 c 2 sets a specified bit in a specified file register

clearbit 40 c 2 clears a specified bit in a specified file register

togglebit 41 c 2 toggles a specified bit in a specified file register

testbit 42 r 2 reports the state of a specified bit in a specified
file register

leftshift 43 c 2 shifts to the left the contents of a specified
register by a specified number of spaces

read-rom 44 r 1 reports 14-bit value of program memory at
specified 16-bit address

no-op 45 c 0 does nothing (takes about 13 microseconds)

flash 46 c 0 causes a “bootflash” to occur on the indicator
LED

read-ad 47 r 1 reports the results a 10-bit analog to digital
conversion on a specified channel (0-3, 5)

print 48 c 1 prints a 16-bit value in the monitor box on the
right side of the LogoChip Logo screen and
moves cursor to the next line

prs 49 c 1 prints the character string that follows the
quotation mark in the monitor box on the right
side of the LogoChip Logo screen and moves
cursor to the next line?

mwait 50 c 1 wait for a specified number of milliseconds

stop! 51 c 0 terminates execution completely.

Notes

LogoChip Logo Language Reference - v. 2.0

page 23 Last modified on 8/10/04

* - A "command" does not return a value; a "reporter" returns a single value on the
stack.

* - Most arguments are taken from the execution stack. Exceptions are "byte" and
"number", which push constants from the bytestream onto the stack, and opcodes that
take code blocks (e.g., if, ifelse, when); code blocks are inline the code stream.

	Overview
	Reading and Writing Registers
	Timing
	Input/Output
	Control
	Numbers
	Procedures
	Inputs and outputs
	The startup procedure
	The powerup procedure

	Global Variables and Constants
	Communication
	The LogoChip Tools File
	Appendix
	LogoChip Hardware
	Register Map
	Table of LogoChip Logo Byte-Codes

