
page 1

Cricket Logo Language Reference
"Blue Dot" Version

Cricket Logo was designed and implemented by Brian Silverman with help from Fred Martin and
Robbie Berg. This language reference was written by Fred Martin and Robbie Berg. A less technical
introduction can be found in the document Getting Started With Crickets1. For more information about
Crickets visit the Cricket Home Page on the World Wide Web at:

http://lcs.www.media.mit.edu/people/fredm/projects/cricket/

1. Overview

Cricket Logo has the following features:

• control structures like if , repeat , wait , waituntil and loop
• motor and sensor primitives
• global and local variables
• global arrays
• procedure definition with inputs and return values
• primitives for infrared communication
• a mulitasking when primitive
• a 16-bit number system (addition, subtraction, multiplication, division, comparison);
• timing functions, a tone-playing function, and a random number function
• data recording and playback primitives

1 Crickets are part of an ongoing research project carried out by:

The Epistemology and Learning Group
MIT Media Laboratory
20 Ames Street Cambridge, MA 02139

page 2

When using Cricket Logo, user programs are entered on a desktop computer and compiled into tokens
which are beamed via infrared to the Cricket. (An “interface”, connected to the desktop computer’s
serial port, translates these tokens into infrared signals. To download programs, both the interface and
the Cricket must be turned on and their infrared ports must face each other.) Cricket Logo is a
procedural language; procedures are defined using Logo to and end syntax:

to procedure-name
procedure-body

end

When the Cricket is idle, pressing its start-stop push-button causes it to begin executing remote-start
line 1 on the Cricket Logo screen.

When the Cricket is running a program, pressing the start-stop button causes it to halt program
execution.

2. Motors

The Cricket has two motors, which are named "A" and "B". A bi-color LED indicates the state of each
motor.

Motor commands are used by first selecting the motor (using a, , b, , or ab,) and then telling it what
to do (e.g., on , off , rd , etc.).

a, Selects motor A to be controlled.

b, Selects motor B to be controlled.

ab, Selects both motors to be controlled.

on Turns the selected motors on.

off Turns the selected motors off.

brake Actively applies a brake to the selected motors.

onfor duration Turns the selected motors on for a duration of
time, where duration is given in tenths-of-
seconds. E.g., onfor 10 turns the selected motors
on for one second.

thisway Sets the selected motors to go the ``thisway''
direction, which is defined as the way that makes the indicator
LEDs light up green.

thatway Sets the selected motors to go the ``thatway'' direction,
which is defined as the way that makes the indicator
LEDs light up red.

rd Reverses the direction of the selected motors.
Whichever way they were going, they will go the

page 3

opposite way.

setpower level Sets the selected motor(s) power level. Input is in the
range of 0 (coasting with no power) to 8 (full power).

3. Timing and Sound

The timing and sound commands are useful to cause the Cricket to do something for a length of time.
For example, one might say

ab, on wait 20 off

to turn the motors on for two seconds. This is equivalent to

ab, onfor 20

Please note that there are two different reference values for timing: 0.1 second units, used in wait and
in note, and 0.001 second units, used in timer.

wait duration Delays for a duration of time, where duration is given in
 tenths-of-seconds. E.g., wait 10 inserts a delay of one second.

beep Plays a short beep

timer Reports value of free-running elapsed time device. Time units
are reported in 1 millisecond counts.

resett Resets elapsed time counter to zero.

note pitch duration Plays a note of a specified pitch and duration. Increasing values
of the pitch create lower tones (the pitch value is used as a
delay counter to generate each half of the tone's square wave).
The duration value is specified in tenths-of-seconds units. The
correspondence between the numbers to define the pitch and
the musical notes in the octave between middle c and high c is
shown in the table below

Pitch
Number

119 110 110 105 100 100 94 89 84 84 79 74 74 70 66 66 62 59

Musical
Notation

c c# db d d# eb e f f# gb g g# ab a a# bb b c2

For example,

note 119 5

will play a middle “c” for half a second. Alternatively, the musical notation can be used directly:

note c 5

does the same thing.

page 4

4. Sensors

The Cricket has two sensors, named "A" and "B".

sensora Reports the value of sensor A, as a number from 0 to 255

sensorb Reports the value of sensor B, as a number from 0 to 255.

switcha Reports “true” if the switch plugged into sensor A is pressed,
and “false” if not.

switchb Reports “true” if the switch plugged into sensor B is pressed,
and “false” if not.

5. Control

Cricket Logo supports the following control structures:

loop [body] Repetitively executes body indefinitely

repeat times [body] Executes body for times repetitions. times may be a constant or
calculated value.

if condition [body] If condition is true, executes body. Note: a condition expression
that evaluates to zero is considered “false”; all non-zero
expressions are “true”.

ifelse condition
 [body-1] [body-2] If condition is true, executes body-1; otherwise, executes

body-2.

waituntil [condition] Loops repeatedly testing condition, continuing subsequent
program execution after it becomes true. Note that condition
must be contained in square brackets; this is unlike the
conditions for if and ifelse , which do not use brackets.

stop Terminates execution of procedure, returning control to calling
procedure.

output value Terminates execution of procedure, reporting value as result.

6. Multitasking

Blue Dot Cricket Logo contains a when primitive that allows for simple multitasking:

when
 [condition] [body] Launches a parallel process that repeatedly checks condition

and executes body whenever condition changes from false to

page 5

true. The when rule is “edge-triggered” and remains in effect
until it is turned off with the whenoff primitive. Only one
when rule can be in effect at a time; if a new when rule is
executed by the program, this new rule replaces the previous
rule.

whenoff Turns off any existing when rule

For example, the following program will beep once every second, while reversing the motor direction
every tenth of a second:

to beep-and shake
resett
when [timer > 1000] [beep resett]
loop [a, onfor 1 rd]

end

7. Numbers

The "Blue Dot" version of Cricket Logo uses 16-bit integers between -32768 and + 32767

All arithmetic operators must be separated by a space on either side. E.g., the expression 3+4 is not
valid. Use 3 + 4 .

+ Infix addition.

- Infix subtraction.

* Infix multiplication

/ Infix division.

% Infix modulus (remainder after integer division).

and Infix logical “and” operation (bitwise and).

or Infix logical or operation (bitwise or).

not Prefix bitwise not operation.

random Reports pseudo-random number from 0 to 32767.

8. Global Variables

Global variables are created using the global [variable-list] directive at the beginning of the procedures
window. E.g.,

global [foo bar]

page 6

creates two globals, named foo and bar . Additionally, two global-setting primitives are created:
setfoo and setbar . Thus, after the global directive is interpreted, one can say

setfoo 3

to set the value of foo to 3, and

setfoo foo + 1

to increment the value of foo .

9. Global Arrays

Global arrays are created in the Blue Dot version of Cricket Logo using the

array [array1-name, array1-length, array2-name, array2-length, etc.]

directive at the beginning of the procedures window. E.g.,

array [foo 50 bar 25]

creates two arrays, one named foo , which can hold 50 numbers and another named bar , which can
hold 25 numbers. Elements in the array are set and read using the aset and aget primitives:

aset array-name item-number value sets the item-numberth element of
array-name to value

aget array-name item-number reports the item-numberth element of
array-name

Thus, for example

aset foo 31 1000

sets the 31st element of foo to have a value of 1000

while

send aget foo 31

causes the value of the 31st element of foo to be transmitted via infrared. There is no error-checking to
prevent arrays from overrunning their boundaries.

page 7

10. Procedure Inputs and Outputs

Procedures can accept arguments using Logo’s colon syntax. E.g.,

to wiggle :times
ab,
repeat :times [on wait 2 rd]

end

creates a procedure named wiggle that takes an input which is used as the counter in a repeat loop.

Procedures may return values using the output primitive; e.g.:

to go
ab,
repeat third [on wait 10 rd]

end

to third
if sensora < 20 [output 1]
if sensora < 50 [output 2]
output 3

end

The go procedure will execute 1, 2, or 3 times depending on the value of sensor A.

11. Data Recording and Playback

In addition to the user defined arrays mentioned above there is a single global array for storing data
which holds 1024 one-byte numbers. There is no error checking to prevent overrunning the data
buffer. The following primitives are available for data recording and playback:

setdp number Sets the value of the data pointer.

record value Records value in the data buffer and advances the data pointer.

recall value Reports the value of the current data point and advances the
data pointer.

erase Sets the value of all 1024 elements of the data array to zero and
 then sets the data pointer to zero. Because the process of
recording data is relatively slow (about 20 milliseconds per data
point) it takes about 20 seconds for the erase command to be
executed

For example the procedure take-data can be used to store data recorded by a sensor once every
second:

page 8

to take-data
erase beep
repeat 1024 [record sensora wait 10]

end

The data can be "replayed" using the following send-data procedure:

to send-data
setdp 0
repeat 1024 [send recall wait 5]

end

This causes the data to appear in the monitor box on the Cricket Logo screen on the desktop, updating
twice a second. The Cricket Logo desktop also contains built-in graphing capabilities for rapidly
uploading, graphing, and analyzing data.

12. Recursion

Cricket Logo supports tail recursion to create infinite loops. For example:

to beep-forever
beep wait 1
beep-forever

end

is equivalent to

to beep-forever
loop [beep wait 1]

end

The recursive call must appear as the last line of the procedure and cannot be part of a control structure
like if or waituntil . Thus the following is not valid:

to beep-when-pressed
beep wait 1
if switcha [beep-when-pressed]

end

13. Infrared Communication

Crickets can send infrared signals to each other using the send primitive, and receive them using the
ir primitive. The newir? primitive can be used to check if a new infrared signal has beenreceived
since the last time newir? primitive was used

send value transmits value via infrared.

ir reports the byte most recently received by the infrared detector. Note
that the Blue Dot crickets do not clear the infrared buffer. Thus the ir
primitive reports the most recent byte received.

page 9

newir? reports “true” if a new byte has been received by the infrared detector
since last time newir? was used, and “false” if not. It does not effect
the contents of the infrared buffer. For example, consider the following
use of the newir? primitive:

to thing1-or-thing2
waituntil [newir?] ;checks for new infrared byte
if ir = 1 [thing1]
if ir = 2 [thing2]

end

to thing1
 . . .
end

to thing2
 . . .
end

In this example nothing happens until a new infrared byte is received.

There are cases when you may want to use an alternate form of the thing1-or-thing2 procedure:

to thing1-or-thing2
if newir? ;checks for new infrared byte

[if ir = 1 [thing1]
if ir = 2 [thing2]
]

end

In this case we do not wish to hold everything up until a new infrared byte is received; we only want
thing1 or thing2 to happen if a new infrared byte is received.

Infrared codes in the range 128 to129 are interpreted to launch remote-start menu items 1 or 2 on the
cricket logo screen. These codes can be generated by pressing buttons #1 or #2 on the interface
respectively. Household TV/VCR remotes may be used to cause the cricket to launch its two remote-
start lines. Use a sony remote, or a universal remote set to talk to a Sony TV, and use the keys
numbered 1 and 2.

Infrared codes in the range 130 to 140 are used by the underlying cricket operating system as escape
codes for infrared program download. Therefore please restrict general purpose user broadcast of ir
codes to the ranges of 1 to 127 or 141 and above.

Received infrared values issued with the send primitive are displayed on the cricket logo screen in the
small text box next to the download button.

page 10

14. Other Details

If a Cricket is not running a program (which is indicated by the green run light being off), infrared
codes from 128 to 129 are interpreted to launch remote-start menu items 1 or 2 on the Cricket Logo
screen. These codes can be generated by pressing buttons #1 or #2 on the interface respectively.
Household TV/VCR remotes may also be used to cause the Cricket to launch its two remote-start lines.
Use a Sony remote, or a universal remote set to talk to a Sony TV, and use the keys numbered 1 and
2.

Infrared codes in the range of 130 and higher are used by the underlying Cricket operating system as
escape codes for infrared program download. Therefore please restrict general purpose user broadcast
of IR codes to the range of 1 to 127.

Received infrared values issued with the send primitive are displayed on the Cricket Logo screen in the
small text box next to the download button.

Caveats:

The maximum size of a Cricket Logo program is 768 bytes. (This number becomes smaller if arrays
are used. Each array element takes up two bytes of memory. If the record primitive is not used,
programs as long as 1792 bytes are possible.) In addition, a maximum of 16 different global variables
may be used.

When a program is downloaded, its size is displayed in the “status box” near the bottom of the Cricket
Logo procedures window.

15. Two Sample Programs

Dancing Crickets

Here's a simple program written by two 10 year old boys who had seen the "dancing Crickets" and
wanted to build their own (single Cricket) version:

to dance
cha-cha-cha
go-round
shake-it

end

to cha-cha-cha
repeat 4 [back-and-forth]
ab, off

end

to back-and-forth
ab, thisway onfor 3
beep
ab, thatway onfor 3
beep

end

to go-round

page 11

a, on thisway
b, on thatway
beep wait 1 beep wait 1 beep
wait 60
ab, off

end

to shake-it
a, thisway
b, thatway
ab,
repeat 10 [beep onfor 1 beep rd onfor 1 rd]

end

Note that these kids made their program easier to follow by nesting procedures inside of other
procedures. For example, the procedure dance calls the procedure cha-cha-cha, which in turn
calls back-and-forth .

The Wandering LEGObug

The LEGObug is a creature with two motors connected to its two rear wheels. It also has two touch
sensors connected to two "whiskers" positioned on either sides of its head and two light sensors that
serve as "eyes." Detailed plans for building the LEGObug are available at the following URL:

http://lc s.www.media.mit.edu/people/fredm/projects/legobug/

The procedure seek shown below causes the creature to be attracted to bright light. It assumes that the
light sensors are plugged into the Cricket's sensor-ports. The light sensors have the property that the
greater the amount of light that hits them, the smaller the sensor value that is produced. (In typical
indoor lighting the light sensors might give readings in the 15 - 30 range, if you shine a flashlight on
them, they will produce a reading in the 1 - 5 range. It takes almost complete darkness to produce a
reading of 255.)

to seek
loop [

ifelse (sensora < 10) or (sensorb < 10)
[go-forward]
[stop-motors]

]
end

;the motors are each hooked up so that the "thisway" ;direction
causes them to drive forward

to go-forward
ab, on thisway

end

to stop-motors
ab, off

end

page 12

As an exercise you might try making creatures that run away from the dark, or ones that turn toward a
bright light.

The procedure wander shown below causes LEGObug to drive straight until a whisker bumps into an
obstacle. (It assumes that the touch sensors are plugged into the two sensor-ports.) In an attempt to
avoid the obstacle, it the creature backs up a bit, turns a small (random) amount and continues to drive
forward.

to wander
go-forward
waituntil [touch-left? or touch-right?]
ifelse touch-left?
[back-up turn-right]
[back-up turn-left]
wander

end

to go-forward
ab, on thisway

end

;touch-left reports "true" if the sensor
;plugged into sensor-port "a" is pressed

to touch-left?
output switcha

end

;touch-left reports "true" if the sensor
;plugged into sensor-port "a" is pressed

to touch-right?
output switchb

end

;turns right for a random amount of time between 0 and 5
;seconds.
;the primitive random reports a random number between 0 and 255

to turn-right
b, off 5
a, thisway onfor (random / 5)

end

to turn-left
a, off
b, thisway onfor (random / 5)

end

to back-up
ab, thatway onfor 20
end

page 13

For more information about Crickets visit the Cricket Home Page on the World Wide Web at:

http://lcs.www.media.mit.edu/people/fredm/projects/cricket/

