
Handy Logo By Example
__
Beeper, LCD Display, Loops, Numbers

Type the following examples into the Handy Logo Command Center. Checks (√) indicate most critical features.

√ beep The Handy Board beeps!
√ beep wait 2 beep Beeps, waits 2 tenths of a second, & beeps again. wait grabs control!
√ repeat 4 [beep wait 2] Repeats beep/wait/beep 4 times
√ loop [beep wait 2] Repeats beep/wait/beep infinitely
√ STOP press STOP button to stop loop (or any Handy Board program).

√ note 60 10 note frequency tenths; use frequencies in range 40 -- 120.
note 5 * 12 7 + 3 Can use arithmetic where numbers are expected.

√ print 5 * 12 Prints 60 on the LCD display.
print [5 * 12] Prints 5 * 12 on the LCD display.
print 2 + 3 * 4 Parsed as (2 + 3) * 4; use parentheses to override default.
print random 10 Prints psuedo-random number between 0 and 9.
print random 2 + 10 Parsed as random (2 + 10); use parentheses to override.

Common errors:
• note60 10 note60 undefined (Spaces are important!)
• note 60 Not enough inputs to note
• note 60 wait 10 wait doesn't output
• note 60 10 20 You don't say what to do with 20

√ • note 5*12 7 + 3 5*12 undefined (Spaces are important!)

Exercise: Write a command that plays a random song
__
Motors

Plug motors into motor ports A and B on the Handy Board (labelled MOTOR-0 and MOTOR-1)

√ a, on Makes a the current motor port and turns it on.
√ off Turns the current motor (a) off.
√ on wait 10 off Turns motor a on for one second.
√ onfor 10 Abbreviation for above commands; onfor grabs control!.
√ b, on wait 10 ab, toggle Turns motor b on for one second, then turns b off and a on.
√ STOP Press STOP button to stop.
√ a, repeat 6 [toggle wait 5] Turns motor a on and off 3 times for half second intervals.

√ repeat 4 [onfor 10 rd] Reverses direction of motor a every second for 4 times.
√ thisway on b, thatway on Turns a on in green direction and b on in red direction.
√ STOP onfor 10 Press STOP to stop. After STOP, a is always the current motor.

setpower 1 on Turns a on with low power; range is 0 (off) to 8 (full)
setpower 8 Sets a back to full power (This is the default after STOP.)

Exercise: Predict the state of the motors at the end of the following commands
• b, onfor 10 ab, toggle
• cd, on bc, rd c, toggle abcd, toggle

__

__
Digital Sensors (Switches)

Plug touch sensors (microswitches) into digital sensor ports 7 and 8. The following examples assume that you
press STOP after every loop example to stop the loop.

√ loop [print switch 7] Prints 1 (true) when switch 7 on, 0 (false) when off.

√ a, on waituntil [switch 7] off Turns motor a on; pressing switch 7 turns off.

loop [waituntil [switch 7] onfor 10] Turns motor a on for a second every time switch 7
is pressed. Motor stays on if switch is held down.

Type long commands like the following in the Command Center without a line return!
loop [waituntil [switch 7] a, onfor 10 Switches 7 and 8 turn on a and b in alternation.
 waituntil [switch 8] b, onfor 10] Switch ignored when (1) motor on (2) not its "turn".

loop [waituntil [switch 7] on Switch 7 turns motor a on,
 waituntil [switch 8] off] switch 8 turns it off.

The following does not toggle motor a on and off. Why?
loop [waituntil [switch 7] on
 waituntil [switch 7] off]

√ loop [waituntil [not switch 7] Switch 7 toggles motor a on and off.
 waituntil [switch 7] toggle] Example of edge-triggered action.

loop [if switch 7 [a, onfor 10] Switch 7 turns on a, switch 8 turns on b, any order.
 if switch 8 [b, onfor 10]] Switch ignored when motor on.

√ loop [ifelse switch 7 [a, on] a is on when switch 7 is pressed and off otherwise.
 [a, off]] Example of level-triggered action.

Exercise: Predict the behavior of the following commands:
• a, on if switch 7 [toggle]
• a, on waituntil [switch 7] toggle
• a, on loop [if switch 7 [toggle]]
• a, on loop [waituntil [switch 7] toggle]
• a, on loop [waituntil [not switch 7] waituntil [switch 7] toggle]

Challenges: Write commands to implement the following behaviors:
• a is on when switch 7 is pressed and off otherwise; b is on when switch 8 is pressed and off otherwise.
• Switch 7 turns a on and b off, switch 8 turns a off and b on (in any order)
• Only one of a and b is on. Which one is on changes every time switch 7 is pressed.

Note: The following cannot be accomplished without mutable variables and/or concurrency:
• Switch 7 toggles motor a, switch 8 toggles motor b (in any order).
• Switch 7 toggles motor a, switch 8 reverses its direction.
• Switch 7 turns on a for a second, switch 8 turns on b for a second. Switches active even when motors on.

__

__
Analog Sensors

Plug light sensor into analog sensor ports 0. The following examples assume that you press STOP after every loop
example to stop the loop.

√ loop [print sensor 0 wait 1] Continuously prints value of sensor 0 (0 -- 255). Typically,
low value means sense "a lot"; high value means sense "a little".

Turn menu knob past menu item (7) to see analog display mode for all 7 analog sensors.

a, on waituntil [(sensor 0) > 100] off Turns off motor when light sensor blocked.

√ a, loop [ifelse (sensor 0) < 100 [on] [off]] Motor on in light, off in dark.

Common bugs:
√ • sensor 0 < 100 ≡ sensor (0 < 100); want (sensor 0) < 100

√ • sensor 0 < sensor 1 ≡ sensor (0 < sensor 1); want (sensor 0) < (sensor 1)
__
Procedures

Type the following procedures into the procedures window. Press the Download button to tell the Handy Board
that there are new procedures.

√ to double-beep Procedure begins with to, ends with end.
 beep wait 2 beep After download, invoke via download in
end Command Center.

√ to wiggle :num :tenths Parameter declarations and uses marked by colon.
 repeat :num [a, onfor :tenths rd] Sample invocation: wiggle 4 10
end

√ to dark? :port ; analog port Comments introduced with semi-colon.
 output (sensor :port) > 100 ouptut returns a result.
end

to find-light
 forward 20 forward defined below.(order is irrelevant).
 if (or (dark? 0) (dark 1)) Handy Logo supports and, or, and not (bitwise).
 [find-light] Tail recursion is an alternative to loops.
end (Non-tail recursion limited by tiny stack size.)

to forward :tenths
 ab, onfor :tenths
end

to find-light-loop Procedure using loop to find light.
 loop [forward 20
 if (and (not (dark? 0))
 (not (dark? 1)))
 [stop]] stop exits the current procedure.
end

You can put any Handy Logo commands (including procedure invocations) into the Menu Items boxes, and then
run the Handy Board untethered from the computer. You can execute a menu item by either (1) selecting it with
the menu knob and pressing the START button or (2) pressing the menu item number on a TV remote control.

__
Variables

global [count black] Declare global variables count and black.

to initialize
 setcount 0 setblack 100 Assign to global variable X via setX newValue.
end

to test-black
 if count < 10 Reference global variable X via X.
 [forward 10
 if (sensor 0) > black
 [setcount count + 1]
 test-black]
end

to average :s :times
 let [sum 0] Declare local variable sum.
 repeat :times
 [make "sum :sum + (sensor :s)] Assign to local variable X via make "X newValue;
 output sum / :times Reference local variable X via :X.
end

__
Concurrency

Concurrency can modularize subtasks that are unnecessarily intertwined with a single thread of control.
Exercise: Based on the following, write procedures to solve problems in Note of digital sensor section.

loop [waituntil [switch 7] a, onfor 10 Switches 7 and 8 turn on a and b in alternation.
 waituntil [switch 8] b, onfor 10] Switch ignored when (1) motor on (2) not its "turn".

to enable-switches
 launch [loop [waituntil [switch 7] launch creates independent task (control thread)
. a, onfor 10]] Both switches are active even when motors are on!
 launch [loop [waituntil [switch 8]
 b, onfor 10]]
end

to wiggle-and-beep
 forever [a, onfor 2 rd] forever [...] is sugar for launch [loop [...]].
 every 10 [beep] every time [action] performs actionevery time
end tenths of a second.

to toggle-task
 a, forever Here creates a looping task with edge-triggered condition.
 [waituntil [not switch 7]
 waituntil [switch 7]
 toggle]
end

to wiggle-and-beep-when-bumped
 forever [a, onfor 2 rd]
 when [switch 7] [beep] when is sugar for looping task with edge-triggered condition.
 waituntil [switch 8]
 stoprules stoprules stops all members of a task family except
end current task. launch/START create a new family;

forever, every, when add new task to current family.

