
443

©Copyright 1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) theJournal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other infor-
mation-service systems. Permission torepublish any other portion
of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 0018-8670/96/$5.00  1996 IBM RESNICK ET AL.

In this paper, we discuss the applications and
implications of the Programmable Brick—a tiny,
portable computer embedded inside a LEGO 

brick, capable of interacting with the physical
world in a large variety of ways. We describe how
Programmable Bricks make possible a wide range
of new design activities for children, and we
discuss experiences in using Programmable
Bricks in three types of applications: autonomous
creatures, active environments, and personal
science experiments.

n many educational computer projects, children
control and manipulate worlds that exist in the

computer. Using one program, children can control
the movements of Newtonian “dynaturtles” in physics
microworlds.1 Using a different program, children can
create and manipulate simulated urban worlds, con-
structing houses, roads, and factories, and setting tax
rates for the city.2

But instead of controlling and manipulatingworlds in
the computer, what if children could control and
manipulatecomputers in the world? That is, what if
children could spread computation throughout their
own personal worlds? For example, a child might
attach a tiny computer to a door, then program the
computer to make lights turn on automatically when-
ever anyone enters the room. Or the child might pro-
gram the computer to greet people as they enter the
room—or to sound an alarm if anyone enters the room
at night.

In this paper, we describe a new technology, called the
Programmable Brick (Figure 1), that makes such
activities possible, and we explore how this new tech-

nology might open new learning opportunities for
children. The Programmable Brick is a tiny, portable
computer embedded inside a pocket-sizedLEGO**
brick. The brick is capable of interacting with the
physical world in a large variety of ways (including
sensors and infrared communication). The Program-
mable Brick makes possible a wide range of new
design activities for children, encouraging children to
see themselves as designers and inventors. At the
same time, we believe that these activities could fun-
damentally change how children think about (and
relate to) computers and computational ideas.

Ubiquitous computing

Our work on the Programmable Brick fits within an
area of research sometimes known as “ubiquitous
computing.” This research aims to change the nature
of computing in very fundamental ways. As described
in one research article: “We live in a complex world,
filled with myriad objects, tools, toys, and people. Our
lives are spent in diverse interaction with this environ-
ment. Yet, for the most part, our computing takes
place sitting in front of, and staring at, a single glow-
ing screen attached to an array of buttons and a
mouse.”3 Ubiquitous computing, by contrast, aims at
“integrating computers seamlessly into the world at
large.”4 The goal is to spread computation throughout

I

Programmable Bricks:
Toys to think with

by M. Resnick
F. Martin
R. Sargent
B. Silverman

RESNICK ET AL. IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996444

the environment, embedding computation in all types
of objects and artifacts.

For example, at some laboratories, people are starting
to wear “active badges” so that the building can
“know” the location of all people in the building at all
times. At other sites, researchers are using “smart
whiteboards”5,6 or “digital desks”7 that keep track of
everything that is written on them. To some, ubiqui-
tous computing means that computation “disappears,”
becoming totally integrated into everyday objects. We
take a somewhat broader view of ubiquitous comput-
ing, including new artifacts like “personal digital
assistants” and hand-held computers that enable peo-
ple to access and exchange information wherever they
are.

Our work on the Programmable Brick is resonant with
these efforts to distribute computational power, but it
differs along several important dimensions:

• The Programmable Brick is designed for children.
Most work on ubiquitous computing is aimed at
adults, particularly adults in business settings. For
example, most personal digital assistants are
designed for tasks like keeping track of appoint-

ments and downloading stock quotes. Those activi-
ties are not of great interest to children. In
developing the Programmable Brick, we considered
how we could make ubiquitous-computing activi-
ties meaningful to the lives of children.

• The Programmable Brick gives users the power to
create and control. In many ubiquitous-computing
activities, the roles of designers and users are sepa-
rate and distinct. Designers create ubiquitous-com-
puting devices (like active badges and smart
whiteboards) and users interact with them. Our goal
is to blur this distinction, giving much greater con-
trol to users so that they can create their own ubiq-
uitous-computing activities. The Programmable
Brick is explicitly programmable so that users can
continually modify and customize its behavior. In
this way, the Programmable Brick fits clearly within
a constructionist approach to learning.8

• The Programmable Brick provides rich connections
to the world. Many ubiquitous-computing activities
focus on transfer of information (such as download-
ing airline schedules). We are more interested in
connecting computation to physical objects,
enabling people to program computers to sense the
world around them and to perform actions in
response. Toward that end, the Programmable Brick

Figure 1 The Programmable Brick

SENSOR INPUTS

ON/OFF
SWITCH

START
BUTTON

STOP
BUTTON

MOTOR OUTPUTS

SCREEN
CHOICE
KNOB

LOW-BATTERY
LED

OPERATION
LED

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 RESNICK ET AL. 445

has a rich assortment of input/output capabilities,
including ten ports for motors and sensors, and
built-in speaker and infrared communications.

LEGO/Logo

The Programmable Brick project extends our previous
work with LEGO/Logo.9,10 LEGO/Logo links the
popularLEGO construction kit with the Logo program-
ming language. In using LEGO/Logo, children start
by building machines out ofLEGO pieces, using not
only the traditionalLEGO building bricks but newer
pieces like gears, motors, and sensors. Then they con-
nect their machines to a computer and write computer
programs (using a modified version of Logo) to con-
trol the machines. For example, a child might build a
LEGO house with lights and program the lights to turn
on and off at particular times. Then, the child might
build a garage and program the garage door to open
whenever a car approaches.

Logo itself was developed in the late 1960s as a pro-
gramming language for children.11,12 In the early
years, the most popular use of Logo involved a “floor
turtle,” a simple mechanical robot connected to the
computer by a long “umbilical cord.” With the prolif-
eration of personal computers in the late 1970s, the
Logo community shifted its focus to “screen turtles.”
Screen turtles are much faster and more accurate than
floor turtles, and thus allow children to create and
investigate more complex geometric effects.

In some ways, LEGO/Logo might seem like a throw-
back to the past, since it brings the turtle off the screen
and back into the world. But LEGO/Logo differs from
the early Logo floor turtles in several important ways.
First of all, LEGO/Logo users are not given ready-
made mechanical objects; they build their own
machines before programming them. Second, chil-
dren are not restricted to turtles. Elementary-school
students have used LEGO/Logo to build and program
a wide assortment of creative machines, including a
programmable pop-up toaster, a “chocolate-carob fac-
tory” (inspired by the Willy Wonka children’s stories),
and a machine that sortsLEGO bricks according to
their lengths. TheLEGO company now sells a com-
mercial version of LEGO/Logo. It is used in more
than a dozen countries, including more than 15000
elementary and middle schools in the United States.

LEGO/Logo has some limitations. For one thing,
LEGO/Logo machines must be connected to a desk-
top computer with wires. Wires are a practical nui-

sance, particularly when children use LEGO/Logo to
create mobile “creatures.” Wires get tangled with
other objects in the environment, they get twisted in
knots as the creature rotates, and they restrict the
overall range of the creature. Wires are also a concep-
tual nuisance. It is difficult to think of a LEGO/Logo
machine as an autonomous creature as long as it is
attached by umbilical cord to a computer.

Members of our research group have tried to solve
these problems in several ways. We experimented
with various technologies for wireless communica-

tion, to get around the problem of wires. But none of
these approaches satisfied us. So we decided to make
a more serious modification: we began to build elec-
tronics inside theLEGO bricks. We have taken several
approaches. The “Braitenberg Brick” system, devel-
oped primarily by Fred Martin with inspiration from
the bookVehicles,13 is based on a set of low-level
“logic bricks” (such as and-gates, flip-flops, and tim-
ers). Children can create different behaviors by wiring
these bricks together in different ways.14,15

Programmable Bricks

The Braitenberg Bricks have dedicated functions. The
flip-flop brick, for instance, has a very specialized
function: it holds one bit of state, and it changes that
state whenever it receives a sharp transition in its
input. But why should we be restricted to dedicated
bricks? Why not put a full computer in aLEGO brick?

That is what we have done in the Programmable Brick
project. In designing the Programmable Brick, we had
several overarching goals. Each goal involved some
type of “multiplicity”:

• Multiple activities. We wanted the Programmable
Brick to support a wide variety of different activi-

It is difficult to think of
a machine as an autonomous

creature if it is attached by
umbilical cord to a computer.

RESNICK ET AL. IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996446

ties—so that it could connect to the interests and
experiences of a wide variety of people. While
some people might use the Brick to create their own
scientific instruments, others might use it to create
their own musical instruments.

• Multiple input/output modalities. We wanted the
Programmable Brick to connect to many things in
the world. To do that, the Brick needed many differ-
ent types of output devices (such as motors, lights,
beepers, infrared transmitters) and many different
types of input devices (such as touch sensors, sound
sensors, light sensors, temperature sensors, infrared
receivers). Indeed, the number of possible applica-
tions of the Brick expands greatly with each new
input or output device, since each new device can
be used in combination with all of the others.

• Multiple processes. Children working on LEGO/
Logo projects often want to control two or more
things at the same time. For example, they might
want to make a Ferris wheel and merry-go-round
turn in synchrony, while a song plays in the back-
ground and an electric eye automatically counts the
rotations of the rides. With standard programming
languages, it is very difficult to achieve this effect:
the user must explicitly interleave the multiple
threads of control. In the Programmable Brick, we
wanted to support parallel processing, so that users

could easily write programs to control multiple out-
puts and check multiple sensors all at the same
time.

• Multiple bricks. We wanted Programmable Bricks
not only to act on their own but to interact with one
another. In that way, children could program Bricks
to share sensor data with each other, or they could
create “colonies” of interacting creatures. These
types of activities would enable children to explore
the scientific ideas of emergence and self-organiza-
tion.16

Based on these goals, we developed the Programma-
ble Brick shown in Figure 1. About the size of a
child’s juice box, the Programmable Brick is based on
the Motorola 6811 processor with 32 kilobytes of
nonvolatile random access memory, and it has a wide
variety of input-output possibilities. The Brick can
control four motors or lights at a time, and it can
receive inputs from six sensors. The Brick supports
infrared communications (with a built-in infrared
receiver and an attachable transmitter). The Brick
includes a two-line liquid-crystal display, plus a knob
and two buttons for interacting directly with the
Brick. An earlier version of the Brick had many fewer
input-output features. (See References 17 and 18 for
more details.)

To program the Programmable Brick, you first write
programs on a standard personal computer (using a
special version of Logo known as Brick Logo), then
download the programs via a cable to the Programma-
ble Brick. Then you can disconnect the cable and take
the brick with you. The programs remain stored on
the brick. When you want to execute a program on the
brick, you can scroll through a menu of programs on
the two-line liquid crystal display screen (using the
knob to scroll), then press a button to run the selected
program. (For more technical information about the
Programmable Brick, see our World Wide Web site on
the Internet.19)

Experiences with the Brick

In our early experiments with the Programmable
Brick, we observed three broad categories of applica-
tions: active environments, autonomous creatures, and
personal science experiments. In this section, we dis-
cuss example projects in each category.

Active environments. One of the earliest projects
with the Programmable Brick involved two children.
Andrew and Dennis, ages 11 and 12, were intrigued

Figure 2 Fourth-grade students test the behaviors of
their Programmable Brick “creature”

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 RESNICK ET AL. 447

with the idea of making an “active environment”—
making the environment “come alive” and react to
people. After some consideration, they decided to
make a device to flip on a room’s light switch when
people entered the room, and flip it off when people
left.

At first, Andrew and Dennis studied the different pos-
sible sensors, trying to figure out which one could be
connected to the door, and how. They decided to try a
“bend” sensor to sense the opening of the door. (The
bend sensor is a plastic whisker, several inches long,
that gives a measure of how much it is bent.) They
first tried to mount the sensor to the wall approxi-
mately where the doorstop was, but then decided that
people would need to open the door very wide before
the sensor detected anything. Then, they tried mount-
ing the sensor at the door hinge in such a way that the
sensor was bent in proportion to how widely the door
was opened.

Before programming, Andrew and Dennis tested the
value of the bend sensor at different positions of the
door, to find out if they had mounted the sensor well
and if the sensor would really give them the informa-
tion they wanted. Then, they built aLEGO mechanism
to flip the light switch on the wall of the room. The
mechanism connected a motor, through a gear train, to
a lever that pushed against the light switch. They
designed their mechanism in such a way that spinning
the motor one way would turn the light on, while the
reverse direction would turn the light off.

At this point, Andrew and Dennis started focusing on
the algorithm for flipping the light switch when the
door opened. They realized there was a problem: the
door sensor indicated when the door was opened, but
it did not tell whether people were entering or exiting
the room. The children wanted some sort of sensor to
tell whether someone was entering the room (in which
case their machine should turn on the light) or leaving
the room (in which case the machine should turn off
the light).

After a little thinking, Andrew and Dennis came up
with a clever solution: they attached aLEGO bar to the
door handle on the inside of the door, and connected a
LEGO touch sensor to this bar. In this way, the Pro-
grammable Brick could tell if people were leaving (in
which case the door would be open and the touch sen-
sor in the handle would be pressed), or if people were
entering (the door would be open but no signal would
come from the touch switch).

Once the second sensor was in place and tested,
Andrew and Dennis wrote a simple program that con-
tinuously checked both sensors, and flipped the light
switch depending on the sensor values. Once they got
the project working, they ran in and out of the room
repeatedly, breaking into big smiles each time the
lights switched on and off.

Autonomous creatures. With traditional LEGO/
Logo technology andLEGO constructions tethered to
the computer, children are more likely to think of
building “machines” (like elevators and Ferris
wheels) rather than “creatures” (like robotic dino-
saurs). As noted earlier, the dangling wires are both a
practical nuisance and a conceptual nuisance. The
Programmable Brick removes these problems, freeing
children to think about new types of autonomous-
creature projects.

In the first large-scale use of Programmable Bricks
outside of a laboratory setting, a group of schools in
Rhode Island used the Bricks to create a “Robotic
Park” exhibition. Students created robotic “animals”
that participated in a type of artificial 4-H show (Fig-
ures 2 and 3). The animal theme was chosen in an
effort to make the project appealing to a broad range

Figure 3 Three sixth-grade students show off their
LEGO dinosaur, including a knapsack to carry
its Programmable Brick

RESNICK ET AL. IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996448

of students, while also connecting to important ideas
from the science curriculum. As students built and
programmed theirLEGO creatures, they studied how
“real” animals live and behave, and they applied their
findings to theirLEGO constructions.

In one fourth-grade class, students (working in teams
of three or four) built a robotic crab, a turtle, and an
alligator. In a fifth-grade class, students built an
“anchovy fish” and a dinosaur. In all cases, students
made theirLEGO creatures mimic the behaviors of
actual animals. For example, theLEGO crab had a pair
of pincers that started snapping when the crab ran into
something; theLEGO turtle’s head retracted when its
nose was bumped; theLEGO dinosaur was attracted to
flashes of light (like the dinosaur in Jurassic Park20).

Many of the creatures were equipped with five or six
different sensors. The multiprocessing capabilities of
the Programmable Brick were critical in many cases.
Students tended to write multiple “condition-action”
rules to connect sensor stimuli to behavioral reactions.
For example, one student wrote a short piece of Logo
code telling a creature to back up and turn left when
the right-hand touch sensor was pressed, and another
short piece of code telling the creature to back up and
turn right when the left-hand touch sensor was
pressed. While these rules were active, the student
added more rules telling the creature how to respond

to inputs from various light sensors. In this way, it was
easy for students to develop complex behaviors for
their creatures. (See Reference 21 for a discussion of
university-level students working on similar projects.)

Another group of students (ages 12 to 16) worked on
similar projects at a four-day workshop at the Boston
Museum of Science. One focus of this workshop was
the use of multiple processes for multiple behaviors.
The Programmable Brick’s software includes primi-
tives that allow students to turn on and off the differ-
ent processes from program control. In one project,
Darryl created two procedures: one to make the crea-
ture follow a light, the other to make the creature
avoid obstacles. Darryl made both procedures run at
the same time. The parallelism of the Programmable
Brick was very useful: the creature could check for
obstacles even as it followed the light. But when the
creature detected an obstacle, there were problems.
As the obstacle-avoidance behavior tried to guide the
creature around the obstacle, the light-following
behavior kept pointing the creature back toward the
light. Darryl solved this problem by modifying the
obstacle-avoidance behavior to temporarily turn off
the light-following behavior while the creature was
navigating around a detected obstacle.

Personal science experiments. We believe that the
Programmable Brick will make possible new types of
science experiments, in which children investigate
everyday phenomena in their lives (both in and out of
the classroom). For example, children could attach
Programmable Bricks (and related sensors) to their
own bodies to monitor and analyze how their legs
move while they are running. We believe that students
are much more likely to make deep connections to
scientific thinking and scientific ideas when they use
computation in this new way, continually designing
and redesigning their own personal investigations.

Brian Silverman and his son Eric used a Programma-
ble Brick to conduct one such investigation. Eric
attached a Programmable Brick to the handlebars of
his bicycle (Figure 4) and programmed the Brick to
collect data from a sensor on the front bicycle wheel.
After trying various sensors to measure the rotation of
the wheel, Brian and Eric settled on a magnet
mounted to the wheel, and a reed relay (mechanical
magnetic sensor) mounted next to the wheel. Once per
rotation of the wheel, the sensor would detect the
magnet. The brick was programmed to record, every
two seconds, the speed of the wheel and the number
of wheel rotations.

Figure 4 Programmable Brick attached to handlebars of
Eric’s bicycle

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 RESNICK ET AL. 449

Later, Brian attached the Brick to his own bicycle in
order to investigate the speed of his bicycle during his
daily bike trips commuting to and from work. To
graph the results, Brian and Eric wrote a special-pur-
pose program. Although the recorded data measured
speed vs time, they decided to graph speed vs distance
instead. With this graph, they could superimpose trips
taken on different days. Events at the same location
on each trip (like traffic lights or stop signs) would be
at the same place along the x-axis of the graph. The
graph is quite striking: it shows things like train tracks
(where Brian had to slow down every day) and traffic
lights (where he came to a stop only some of the
time). See Figure 5 for the graph of a single trip to
work and back.

By plotting return trips in reverse, and superimposing
them, many of the features (such as slowing down for
the train tracks) were held in common. But consistent

discrepancies (one stretch of the trip consistently
being faster in one direction than in the other) indi-
cated something was different between the trips to and
from—for example, an uphill or downhill slope.

There are already many “bike computers” on the mar-
ket to help people monitor their cycling. Why use a
Programmable Brick? The Programmable Brick
allows users much greater flexibility in collecting and
analyzing data. For example, the Programmable Brick
enabled Brian and Eric to develop a new representa-
tion (speed vs distance) that commercial bike comput-
ers would never support.

Things That Think (and make us think)

The MIT Media Laboratory recently initiated a major
new research project called “Things That Think.” The
overarching goal is to embed computational capabili-

Figure 5 Speed versus distance riding bike to and from work

A A ABBBB RC

H TO WORK
FROM WORK (PLOTTED BACKWARDS)

DISTANCE

S
P

E
E

D

POINTS OF INTEREST
A: RED TRAFFIC LIGHT GOING TO WORK, GREEN COMING HOME
B: GREEN TRAFFIC LIGHT GOING TO WORK, RED COMING HOME
C: RED TRAFFIC LIGHT BOTH DIRECTIONS
H: DOWNHILL TOWARD WORK, UPHILL BACK
R: RAILROAD TRACKS

RESNICK ET AL. IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996450

ties in everyday objects like furniture, shoes, and toys.
The Programmable Brick fits within this new initia-
tive—but with an important twist. In our work, we are
interested in things that think, not because they might
accomplish particular tasks more cheaply or easily or
intelligently, but because they might enable people to

think about things in new ways. That is, things that
think are most interesting to us when they also act as
“things to think with.” We believe that Programmable
Bricks act in just that way, enabling children to per-
form new types of explorations and experiments and
to engage in new types of thinking.

The Programmable Brick project is just beginning; we
have many ideas for future extensions. We are cur-
rently developing a new set of bricks, known as Crick-
ets, that are much smaller and lighter than the original
Programmable Bricks. Each Cricket is not much big-
ger than the 9-volt battery that powers it. A Cricket
can control two motors and receive information from
two sensors, and it comes with built-in two-way infra-
red communications capabilities for “talking” with
other Crickets and other electronic devices. The small
size of the Crickets, along with their enhanced com-
munication capabilities, opens up new possibilities for
applications. People might wear the Crickets to
exchange information with one another, as in the
Thinking Tags project (described elsewhere in this
issue22). Or children might use the Crickets to experi-
ment with decentralized and self-organizing phenom-
ena, creating a whole “colony” of ant-like mobile
robots that interact with one another.

There are still many obstacles to the widespread use
of Programmable Bricks and Crickets—especially in
school settings. The major obstacles are not techno-
logical, but in the structure and organization of
schools themselves. Most interesting Programmable
Brick projects require extended blocks of time; they
cannot be squeezed into standard 50-minute class ses-
sions or standard two-week curriculum units. More-
over, Programmable Brick projects typically cut

across disciplinary boundaries, and they often engage
students in thinking about ideas (such as feedback
loops) that are not traditionally included in precollege
curricula. As a result, educators are not quite sure
where to “fit” Programmable Brick activities. For the
Programmable Brick to become successful in school
settings, we need to work with educators to find ways
around these constraints. Indeed, one of the most
important effects of new technologies like the Pro-
grammable Brick is that they can provoke us to
rethink some of our basic assumptions about educa-
tion.

Acknowledgments

Seymour Papert, Steve Ocko, and Allan Toft have
provided encouragement, inspiration, and ideas for
the Programmable Brick project. Andrew Blumberg,
Yuying Chen, Fei Hai Chua, Dennis Evangelista,
Chris Gatta, Hanna Jang, Owen Johnson, Mark Neri,
Brian Robertson, Victor Tsou, and Elaine Yang all
contributed to the development effort. TheLEGO
Group and the National Science Foundation (Grants
9153719-MDR, 8751190-MDR, and RED-9358519)
have provided financial support. Portions of this paper
previously appeared in Reference 23.

For more information on the Programmable Brick, see
our World Wide Web site on the Internet.19

Appendix: Twenty things to do with a
Programmable Brick

More than 20 years ago, as researchers and educators
were just beginning to explore the possibilities of
computers in education, Seymour Papert and Cynthia
Solomon wrote a memo called “Twenty Things to Do
with a Computer.”24The memo described a wonderful
collection of activities, pushing computers in direc-
tions that few other people had imagined. Some of the
activities on their list eventually became common-
place; others are still visionary today. A few years
later, Danny Hillis (then an undergraduate atMIT)
wrote a memo entitled “Ten Things to Do with a Bet-
ter Computer,”25 describing a new set of activities that
would be possible if computers could execute instruc-
tions in parallel. Hillis later realized some of these
ideas in his massively parallel Connection Machine
computer.26

In the same spirit, we have compiled a new list enti-
tled “Twenty Things to Do with a Programmable
Brick.”10

“Things that think”
are more interesting
when they also act as
“things to think with.”

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 RESNICK ET AL. 451

1. Create a “haunted house.” Attach a Programma-
ble Brick to the door to make creaking sounds
whenever the door is opened. Program another
Brick to drop spiders on people when they walk
through the door. Build aLEGO platform for a
pumpkin, and program a Brick to drive the pump-
kin around the room.

2. Connect sensors to various parts of your body.
Then program a Programmable Brick to monitor
your heartbeat and breathing as you walk and run.
Or program the Brick to play different sounds
when you move different parts of your body.

3. Take a Programmable Brick with you to measure
the pH level of the water in local streams, or the
noise levels at a local construction site.

4. Create aLEGO musical instrument. The instru-
ment might have buttons like a flute, or a sliding
part like a trombone, or a completely new inter-
face that you invent. Start by writing a simple
program so that the Programmable Brick plays
different notes (or melodies) when you move dif-
ferent parts of the instrument. Then enhance the
program so that the Brick improvises on your
notes. Or program the Brick to play “rounds” (by
playing a second copy of your notes with a
delay).

5. Put a Programmable Brick and light sensor on the
door to keep track of the number of people that
enter the room. Then program the Brick to greet
people as they enter the room (with music or dig-
itized speech).

6. Set up a weather station on the roof of the build-
ing.

7. Use a Programmable Brick to find out if the light
really does go off when you shut the refrigerator
door.

8. Attach a Programmable Brick to an ashtray, and
program it to play a coughing sound whenever
anyone uses the ashtray.

9. Build a remote-controlledLEGO car. Use a stan-
dard television remote control to communicate
(via infrared transmission) with a Programmable
Brick in the car.

10. Create an “intelligent room” that automatically
turns on the lights when someone walks in the
room. (Here’s one approach. Build aLEGO
machine that turns on the light switch, and con-
nect it to a Programmable Brick. Use another
Programmable Brick to detect when anyone
enters the room. Use infrared transmission to
communicate between the two Bricks.)

11. Use a Programmable Brick to control a video-
camera (via infrared transmission). Program the

Brick to make a time-lapse video of a plant grow-
ing (taking a few frames every hour or day).

12. Use a Programmable Brick to program yourVCR.
13. Send secret messages across the room to some-

one else who also has a Programmable Brick.
14. Put a Brick on your dog’s collar and collect data

about your dog’s behavior. How much time does
your dog spend running around? Discuss whether
experimenting on your dog is ethical.

15. Use a Brick to record your dog barking. Then put
the Brick in a remote-controlledLEGO car. Play
the barking sound when theLEGO car gets near a
cat. How does the cat react?

16. Build aLEGO creature that you can interact with.
Program the creature to act in different ways
when you clap once, or clap twice, or shine a light
in its “eyes.”

17. Build aLEGO creature that explores its environ-
ment. Program the creature to find the part of the
room with the most light or the highest tempera-
ture. Next, put a plant on yourLEGO creature, so
that the plant will always move to the part of the
room with the most light (or the highest tempera-
ture). Use other sensors to monitor the growth of
the plant.

18. Build aLEGO machine that can water your plants,
then program a Brick to make the machine water
the plants every few days.

19. Create a game where each player carries a Pro-
grammable Brick. Program the Bricks so that
they give instructions to the players, and send
messages from one player to another.

20. Think up 20 more things to do with a Program-
mable Brick.

**Trademark or registered trademark of LEGO Systems, Incorpo-
rated.

Cited references

1. H. Abelson and A. diSessa,Turtle Geometry: The Computer as
a Medium for Exploring Mathematics, MIT Press, Cambridge,
MA (1980).

2. W. Wright,SimCity, Maxis, Orinda, CA (1990).
3. P. Wellner, W. Mackay, and R. Gold, “Computer Augmented

Environments: Back to the Real World,”Communications of
the ACM36, No. 7, 24–26 (July 1993).

4. M. Weiser, “The Computer for the 21st Century,”Scientific
American265, No. 3, 94–104 (September, 1991).

5. S. Elrod, R. Bruce, R. Gold, D. Goldberg, F. Halasz, W. Jans-
sen, D. Lee, K. McCall, E. Pedersen, K. Pier, J. Tang, and
B. Welch, “Liveboard: A Large Interactive Display Supporting
Group Meetings, Presentations, and Remote Collaborations,”
Proceedings, ACM Conference on Human Factors in Comput-
ing Systems, ACM Press, New York (1992), pp. 599–607.

6. M. Weiser, “Some Computer Science Issues in Ubiquitous

RESNICK ET AL. IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996452

Computing,” Communications of the ACM,36 No. 7, 25–26
(July, 1993).

7. P. Wellner, “Interacting with Paper on the Digital Desk,”Com-
munications of the ACM36, No. 7, 87–96 (July, 1993).

8. S. Papert, “Situating Constructionism,” I. Harel and S. Papert,
Editors, Constructionism, Ablex Publishing, Norwood, NJ
(1991).

9. M. Resnick, S. Ocko, and S. Papert, “LEGO, Logo, and
Design,” Children’s Environments Quarterly5, No. 4, 14–18
(1988).

10. M. Resnick, “Behavior Construction Kits,”Communications of
the ACM36, No. 7, 64–71 (July 1993).

11. S. Papert,Mindstorms: Children, Computers, and Powerful
Ideas, Basic Books, New York (1980).

12. B. Harvey,Computer Science Logo Style, MIT Press, Cam-
bridge, MA (1985).

13. V. Braitenberg,Vehicles, MIT Press, Cambridge, MA (1984).
14. N. Granott, “Puzzled Minds and Weird Creatures: Spontaneous

Inquiry and Phases in Knowledge Construction,” I. Harel and
S. Papert, Editors,Constructionism, Ablex Publishing, Nor-
wood, NJ (1991).

15. D. Hogg, F. Martin, and M. Resnick, “Braitenberg Creatures,”
Epistemology and Learning Memo 13, MIT Media Laboratory,
Cambridge, MA (1991).

16. M. Resnick,Turtles, Termites, and Traffic Jams, MIT Press,
Cambridge, MA (1994).

17. F. Martin,Children, Cybernetics, and Programmable Turtles,
master’s degree thesis, MIT Media Laboratory, Cambridge,
MA (1988).

18. M. Bourgoin, “Children Using LEGO Robots to Explore
Dynamics,” I. Harel, Editor,Constructionist Learning, MIT
Media Laboratory, Cambridge, MA (1990).

19. The World Wide Web site for the Programmable Brick is at
http://el.www.media.mit.edu/groups/el/projects/programmable
-brick/.

20. M. Crichton, Jurassic Park, Alfred A. Knopf, New York
(1990). The 1993 movie based on the book was directed by
Steven Spielberg.

21. F. Martin, Circuits to Control: Learning Engineering by
Designing LEGO Robots, Ph.D. dissertation, MIT Media Labo-
ratory, Cambridge, MA (1994).

22. R. Borovoy, M. McDonald, F. Martin, and M. Resnick, “Things
That Blink: Computationally Augmented Name Tags,”IBM
Systems Journal35, Nos. 3&4, 488–495 (1996, this issue).

23. R. Sargent, M. Resnick, F. Martin, and B. Silverman, “Building
and Learning with Programmable Bricks,” Y. Kafai and
M. Resnick, Editors,Constructionism in Practice, Lawrence
Erlbaum, Mahwah, NJ (1996).

24. S. Papert and C. Solomon, “Twenty Things to Do with a Com-
puter,” Artificial Intelligence Memo 248, MIT Artificial Intelli-
gence Laboratory, Cambridge, MA (1971).

25. W. D. Hillis, “Ten Things to Do with a Better Computer,”
unpublished memo available from MIT Artificial Intelligence
Laboratory, Cambridge, MA (1975).

26. W. D. Hillis,The Connection Machine, MIT Press, Cambridge,
MA (1985).

Accepted for publication April 4, 1996.

Mitchel Resnick MIT Media Laboratory, 20 Ames Street, Cam-
bridge, Massachusetts 02139-4307 (electronic mail: mres@
media.mit.edu). Dr. Resnick, an associate professor at the MIT
Media Laboratory, studies the role of new technological tools in
learning and education. He has helped develop a variety of “compu-
tational construction kits” (including LEGO/Logo and StarLogo),

and he cofounded the Computer Clubhouse, an afterschool learning
center for youth from under-served communities. He earned a B.A.
in physics at Princeton University, and M.S. and Ph.D. degrees in
computer science at MIT. He won a National Science Foundation
Young Investigator Award in 1993, and he is author of the book
Turtles, Termites, and Traffic Jams, published by MIT Press. Dr.
Resnick is on the Board of Overseers and is chair of the education
committee at The Computer Museum.

Fred Martin MIT Media Laboratory, 20 Ames Street, Cambridge,
Massachusetts 02139-4307 (electronic mail: fredm@media.mit.
edu). Dr. Martin earned a B.S. degree in computer science in 1986,
an M.S. in mechanical engineering in 1988, and a Ph.D. in media
arts and sciences in 1994, all from the Massachusetts Institute of
Technology. His doctoral dissertation explored learning in an inten-
sive, design-rich robot-building class he codeveloped for MIT
undergraduates. Dr. Martin’s research interests include: the role of
experiential knowledge in learning formal scientific and engineer-
ing methods; design-rich environments for learning; and robots as a
medium for exploring engineering practice. He is presently a
research scientist with the Epistemology and Learning Group at the
MIT Media Laboratory.

Randy Sargent Newton Research Labs, 14813 NE 13th Street,
Bellevue, Washington 98007 (electronic mail: rsargent@newton-
labs.com). Mr. Sargent holds a bachelor’s degree in computer
science and a master’s degree in media arts and sciences, both from
MIT. He was a founding organizer of the MIT robot design compe-
tition, and he was centrally involved in the development of the Pro-
grammable Brick. He is a cofounder of Newton Research Labs, a
software company developing products for robotics hobbyists and
researchers.

Brian Silverman Logo Computer Systems Inc., P.O. Box 162,
Highgate Springs, Vermont 05460 (electronic mail: brian@lcsi.ca).
Mr. Silverman is Director of Research at Logo Computer Systems
Inc. (LCSI) and a visiting scientist at the MIT Media Lab. He was
one of the founders of LCSI, the world’s leading developer of Logo
software. He has directed the development of more than a dozen
commercial educational software products (including LogoWriter,
MicroWorlds, and the Phantom Fishtank), many of which have won
major awards from industry groups and publications. At MIT, he
has been centrally involved in the development of StarLogo, Pro-
grammable Bricks, and Crickets.

Reprint Order No. G321-5616.

