
The SLam Calculus: Programming with Secrecy and Integrity

Nevin Heintze
Bell Laboratories

Lucent Technologies
700 Mountain Avenue

Murray Hill, NJ 07974 USA
nch@bell-labs.com

Jon G. Riecke
Bell Laboratories

Lucent Technologies
700 Mountain Avenue

Murray Hill, NJ 07974 USA
riecke@bell-labs.com

���������
	����

The SLam calculus is a typed λ-calculus that maintains security in-
formation as well as type information. The type system propagates
security information for each object in four forms: the object’s cre-
ators and readers, and the object’s indirect creators and readers (i.e.,
those agents who, through flow-of-control or the actions of other
agents, can influence or be influenced by the content of the object).
We prove that the type system prevents security violations and give
some examples of its power.

���� ��������������� � �

How do we build a system that manipulates and stores informa-
tion whose secrecy and integrity must be preserved? The infor-
mation might, for example, contain employee salaries, tax infor-
mation or social security numbers, or it might involve data whose
integrity is essential to global system security, such as the UNIXTM

/etc/passwd file or a database of public keys.
One solution is to provide a secure persistent store that controls

access to each location in the store, e.g., it might maintain access
control lists that specify who may read and write each location.
This only addresses part of the problem: it does not trace the secu-
rity of information through computation. For example, a privileged
user can write a program that reads a secret location and copies its
contents to a public location. Trust is central to the usability of this
system: if one user shares secrets with others, he or she must trust
their intentions. He or she must also trust their competence, since
they may release secrets accidentally as a result of a programming
error.

There is an alternative to a secure persistent store: we can as-
sociate security with data objects instead of locations, and track
security through computation at runtime. To do this, each object
must come equipped with security information that specifies ac-
cess rights, i.e., a capability. However, this is not enough. We
must also track the flow of information as we build new objects
from old. For example, if we have a secret string and concatenate it
with another string, then we must also treat the new string as secret.
Such a scheme has two problems. First, explicitly tracing security
information through computation is very expensive. Second, the
system must guarantee that security information is not forged.

We can address these two problems by annotating programs
with information flow levels, and using a static analysis system that
rejects programs that might leak information. For example, we can
view a program as a black box so that its output is at least as se-
cret as each of its inputs. Similarly, we can view program output as
having no higher integrity than each of its inputs.

This approach of tracing information flow has been thoroughly
explored in the security literature [3, 4, 6, 7, 8]. Unfortunately, in
classic information flow systems, data quickly floats to the high-
est level of security. For example, consider a program that takes
as input a string x representing a user id and another string y rep-
resenting the user’s password, and whose output is some object z
built from x and y. Then the security level of the entire object
z must be the security level appropriate for user passwords, even
though the password information may be only a small component
of z.

In this paper, we show that a programming language can pro-
vide finer grained control of security. The vehicle of study is a core
functional programming language called the Secure Lambda Cal-
culus (or SLam calculus). We focus on the role of strong static
typing. We assume that all programs are compiled with a trusted
compiler that enforces our type discipline, i.e., there are no “back-
doors” for inserting and executing unchecked code and there are
no operations for direct access and modification of raw memory
locations.

The types of the SLam calculus mingle security information
with type information. This feature allows more accurate and flex-
ible security information, in that we can attach different levels of
security to the different components of an object. For instance, in
the /etc/passwd list, password hashes might come with higher
security than other components of the records. The security in-
formation takes four forms: readers, creators, indirect readers and
indirect creators. Intuitively, an agent must be a reader of an object
in order to inspect the object’s contents. An agent is a creator of any
object it constructs. An agent is an indirect reader of an object if it
may be influenced by the object’s contents. An agent is an indirect
creator of an object if it may influence the object’s construction.
For example, consider the statement

if (x > 25) then y:=1 else y:=2

Here, partial information about x is available via variable y. If
agent A can read y but not x, then A can still find out partial infor-
mation about x and so A is an indirect reader of x. If the statement
itself were executed by agent B, then B would require read access
to x. B would also be a creator of y’s content. Moreover, if x was
created by a third agent C, then C would be an indirect creator of
y’s content.

Readers and indirect readers together specify an object’s se-
crecy (who finds out about the object), whereas creators and in-

direct creators specify integrity (who is responsible for the object).
Readers and creators together capture access control, while indirect
readers and indirect creators capture information flow. In conjunc-
tion with higher-order functions and a rich underlying type struc-
ture (e.g., records, sums), these four security forms provide a flexi-
ble basis for controlled sharing and distribution of information. For
example, higher-order functions can be used to build up complex
capabilities. In our system, the ability to read a function is the right
to apply it. By specifying the set of readers and/or indirect readers
of these functions, we can additionally restrict the capability so that
it can only be shared by a specified group of agents.

Incorporating both access control and information flow in the
type system adds flexibility. To illustrate the utility of having both,
suppose we have just two security levels, H (high security) and L
(low security), and a type called users that is a list containing
strings whose direct readers are H, and whose indirect readers are
L. If we ignore direct and indirect creators, and write direct read-
ers before indirect readers, the type definition (in a ML-style syn-
tax [11]) might look like

type users = (list (string,(H,L)),(L,L))

Now suppose we want to look up names in a value of type users,
and return true if the name is in the list. We might write the code
as follows:

fun lookup ([]:users) name =
false:(bool,(L,L))

| lookup ((x::tail):users) name =
if x = name

then true:(bool,(L,L))
else lookup tail name

Our type system guarantees that only high-security agents can write
the lookup function, or indeed any code that branches on the
values of the strings in the list. Low-security agents can call the
lookup function, but cannot get direct access to the strings held
in the list. Information flows from the strings into the boolean out-
put, but since we have labeled the indirect readers of the strings to
be low security, the program is type correct.

Direct readers determine how much of an object is revealed
to indirect readers. (Of course, no one can reveal information to
agents who are not indirect readers.) At one extreme, a direct reader
can reveal everything about an object to the indirect readers. If an
agent is an indirect reader of an object but not a direct reader, then
any information that agent finds out about that object must be via a
direct reader.

To simplify the presentation, we describe the SLam calculus
in stages. In Section 2, we define the purely functional core of the
SLam calculus, restricting the security properties to direct and indi-
rect readers. The operational semantics explicitly checks for secu-
rity errors. We prove a type soundness result: well-typed programs
never cause security errors, and hence the run-time security checks
may be omitted. We also prove a “noninterference” theorem for
indirect readers and creators. Borrowing ideas from Reynolds [18],
we prove the noninterference theorem using denotational seman-
tics and logical relations. This style of proof, while common in
the languages literature, is novel to the security world. We believe
the proof technique carries over to the extensions of the basic cal-
culus. Sections 3 and 4 extend the core calculus with assignments
(using an effects-style extension to the type system [20]), concur-
rency, and integrity. Sections 5 and 6 conclude the paper with a
discussion of other work and limitations of the system.

��������� ��� �
	 �� � � � ��� � � 	 	���� 	���� 	 	 � � 	 ���
We illustrate the core ideas of our calculus using a language with
functions, recursion, tuples, and sums, restricting the security prop-
erties to direct and indirect readers. We extend our treatment to a

language with assignment and concurrency in Section 3, and to cre-
ators and indirect creators in Section 4.

��� �������� � 	 � � � � ��� �
The types of the SLam calculus essentially comprise those of a
monomorphic type system—with products, sums, and functions—
in which each type is annotated with security properties. (We could
add other primitive types such as booleans, integers and strings—
and will do so in examples—but the essential typing properties are
already covered by sums and products.) Define security properties
κ, types t, and secure types s by the grammar

κ :: � � r� ir
t :: � unit !"� s # s $!%� s & s '!%� s (s
s :: � � t � κ

where r (readers) and ir (indirect readers) range over some collec-
tion S of basic security descriptions with ordering) , and security
properties � r� ir satisfy ir) r. In other words, r should be more
restrictive (it represents a smaller set of agents) than ir. We assume� S �*)� is a lattice (i.e., a partially ordered set with meets, joins, a
top element + and bottom element ,). Higher in the lattice means
“more secure”; + is the most secure element. Intuitively, each ele-
ment of S represents a set of agents or users; for this reason we refer
to elements of S as security groups. For example, a simple multi-
level security system might have security descriptions L (low), M
(medium) and H (high), with ordering L) M) H, where L �-,
and H �.+ . Alternatively, a UNIX-like security system could be
built from a lattice S of sets of users ordered by superset.

For the purposes of presenting our static type system, we as-
sume that S is static. This assumption is unrealistic in practice: new
users can be added to a system, or users may have their privileges
revoked. We briefly discuss this issue in Section 6.

The SLam calculus is a call-by-value language, and hence terms
contain a set of values that represent terminated computations. The
sets of basic values and values are defined by the grammar

bv :: � �/ 0!%� inji v 1!32 v� v 40!%� λx : s 5 e
v :: � bvκ

The security properties on values describe which agents may read
the object, and which agents may indirectly depend on the value.
The terms of the SLam calculus are given by the grammar

e :: � x ! v !%� inji e κ !"2 e � e 4 κ !%� e e r !"� proji e r !
� protectir e 0!%� µ f : s 5 e 1!
� case e of inj1 � x 65 e ! inj2 � x 65 e r

The term � µ f : s 5 e defines a recursive function, and � protectir e
increases the security property of a term. Bound and free variables
are defined in the usual way: variables may be bound by λ, µ, and
case.

Notice that the destructors—application, projection, and case—
come labeled with a security group r. This group represents the
security group of the programmer of that code. The annotations
appear on terms for entirely technical reasons: with the operational
semantics given in the next section, terms with mixed annotations
arise when code written by different programmers gets mixed to-
gether. For example, root can write a function

f �-� λx : � t �7�/,8�/,9 * 65 body with root annotations ;:=<�> <@?�5
that can be run by anyone; once called, the function’s body accesses
files and data structures as root, i.e., has “setuid” behavior. Any
user can write an application � f v r, because ,A) r, but the body

can access data that r cannot access. Mixed annotations arise when
such applications are reduced: when v is substituted for x in body,
the result might contain r and root annotations.

A compiler for the SLam calculus must check that the annota-
tions on programs are consistent with the programmer’s security.
For example, the compiler must prevent arbitrary users from writ-
ing programs with destructors annotated with root.

��� ��� ��� �
	 ��� � � 	 	 � � � 	 � ��� � �
The relation e (e � represents a single atomic action taken by an
agent. The definition uses structured operational semantics [16] via
evaluation contexts [9]. The set of evaluation contexts is given by

E :: � � � ��!%� E e r !3� v E r !3� proji E r !%� inji E κ !
2 E � e 4 κ !"2 v� E 4 κ !"� protectir E 0!
� case E of inj1 � x 65 e1 ! inj2 � x 65 e2 r

This defines a left-to-right, call-by-value, deterministic reduction
strategy.

The basic rules for the operational semantics appear in Table 1.
These rules reduce simple redexes. They lift to arbitrary terms via

e (e �
E � e � (E � e � �

In the rules of Table 1, we use an operation for increasing the secu-
rity properties on terms: given κ � � r� ir , the expression κ � ir � is
the security property � r � ir � � ir � ir � . Abusing notation, we extend
this operation to values: bvκ � ir denotes the value bvκ � ir .

Note that the operational semantics is essentially untyped: the
types on bound variables, upon which the type checking rules of
the next section depend, are ignored during reduction. The security
properties on values and destructors are, of course, checked during
reduction; this corresponds to checking, for instance, that the argu-
ment to a projection is a pair and not, say, a function abstraction.
To see how programs can get stuck at security errors, suppose the
security lattice has two elements L and H, with L 	 H. Let

bool � � unit �7� L � L * # � unit �7� L � L *
trueκ � � inj1 �/ : L > L ? κ : � bool � κ
falseκ � � inj2 �/ : L > L ? κ : � bool � κ

and let � if e1 then e2 else e3 r abbreviate the term

� case e1 of inj1 � x ;5 e2 ! inj2 � x 65 e3 r
where x is a variable not occurring in e2 or e3. Then the term

� if true : H >H ? then true : L > L ? else false : L > L ? L
cannot be reduced: the programmer of the if-then-else code does
not have the permissions to branch on the high-security boolean.

After a value has been destructed, the indirect readers of the
value are used to increase the secrecy of the result (via protect).
This tracks information flow from the destructed value to the result.
For instance, if L is changed to H on the if-then-else statement in
the above example, then the following reductions are permitted:

� if true : H >H ? then true : L > L ? else false : L > L ? H(� protectH true : L > L ? (true : H >H ?
This tracks the flow of information from the test to the result. We
could also change the indirect reader annotation on the boolean test:

� if true : H > L ? then true : L > L ? else false : L > L ?* H(� protectL true : L > L ? (true : L > L ?
In this case, only a high-security direct reader can test the boolean,
but information about the test is revealed to low-security agents.

����
 ������� � � ��� � �
The type system of the SLam calculus appears in Tables 2 and 3.
The system includes subtyping and the subsumption rule. The sub-
typing rules in Table 2 start from lifting the) relation on security
groups to the 	 relation on security properties. Define

� r� ir �	 � r � � ir � iff r) r � � ir) ir � 5
The subtyping rules formalize the idea that one may always in-
crease the security property of a value.

The typing rules appear in Table 3. We use Γ to denote typing
contexts, i.e., finite partial maps from variables to secure types, and
/0 to denote the empty context. Abusing notation, we write � t � κ � ir
to denote the secure type � t � κ � ir . The rules for type-checking
constructors are straightforward. For type-checking destructors, the
rules guarantee that the destructor has the permission to destruct the
value (apply a function, project from a pair, or branch on a sum).
For instance, recall the term

� if true : H >H ? then true : L > L ? else false : L > L ?� L
from the previous section which could not be reduced by the oper-
ational semantics. This term cannot be typed with our rules. The
type rules track information flow in a manner analogous to the op-
erational semantics. For instance, the type of the term

� if true : H >H ? then true : L > L ? else false : L > L ? H
from the previous section is � bool �*� H � H * .

The type system satisfies Subject Reduction and Progress (see
Appendix for proofs).

Theorem 2.1 (Subject Reduction) Suppose /0 � e : s and e (e � .
Then /0 � e � : s.

Theorem 2.2 (Progress) Suppose /0 � e : s and e is not a value.
Then there is a reduction e (e � .
These theorems show that, for well-typed, closed expressions, the
security checks in the operational semantics are redundant.

It follows from subject reduction and progress that our type sys-
tem enforces reader security. Consider an object O created with
reader annotation r. We wish to establish that, for well-typed pro-
grams, the only agents who can read this object are those specified
by r. Now, consider the operational semantics. By inspection, the
operational semantics ensures two properties of reader annotations:

� Once an object is created, the only way for its reader an-
notation to change is via protect, but this only increases
security, i.e., sets more restrictive access to the object.

� If an agent attempts to read an object and the current reader
annotation does not allow the agent to perform the read, then
the operational semantics will “get stuck.”

Hence, the operational semantics ensures that if an agent not spec-
ified by r (the initial annotation on O) ever attempts to read O, then
reduction will get stuck. But subject reduction and progress show
that well-typed programs never get stuck. It follows that our type
system enforces reader security.

A similar kind of argument could be used to show that our type
system enforces indirect reader security. Such an argument would
rely upon the following claim: if an agent not specified by ir (the
initial indirect reader annotation on O) ever attempts to find out
information about O, then reduction will get stuck. While the op-
erational semantics contains information-flow aspects, the claim is
certainly not self-evident by inspection of the reduction rules (as
was the case for (direct) readers).

Table 1: Operational Semantics.

���
λx : s � e � r� ir v � r � � �

protectir e � v � x 	
� if r � r ��
proji v1 � v2 ��� r� ir � � r � � �

protectir vi � if r � r ��
case

�
inji v � � r� ir � of inj1

�
x ��� e1 � inj2

�
x ��� e2 � r ��� �

protectir ei � v � x 	
� if r � r ��
µ f : s � e � � e � � λx : s1 � ��� µ f : s � e � x � r � � r� ir � � f 	 if s � �

s1 � s2 � � r� ir ����
protectir v � � v � ir

Table 2: Subtyping Rules for Pure Functional Language.

s1 	 s2 s2 	 s3
s1 	 s3

κ 	 κ �� unit � κ �	 � unit � κ �
κ 	 κ � s1 	 s �1 s2 	 s �2�*� s1 # s2 6� κ 	 �*� s �1 # s �2 ;� κ �

κ 	 κ � s1 	 s �1 s2 	 s �2�*� s1 & s2 6� κ 	 �*� s �1 & s �2 6� κ �
κ 	 κ � s �1 	 s1 s2 	 s �2�*� s1 (s2 6� κ 	 �*� s �1 (s �2 6� κ �

Table 3: Typing Rules for Pure Functional Language.

�Var � Γ � x : s � x : s �Unit � Γ � � κ : � unit � κ
� Sub � Γ � e : s s 	 s �

Γ � e : s � �Rec � Γ � f : s � e : s
Γ � � µ f : s 5 e : s s is a function type

� Lam � Γ � x : s1 � e : s2
Γ � � λx : s1 5 e κ : � s1 (s2 � κ �App � Γ � e : � s1 (s2 �7� r� ir * Γ � e � : s1

Γ � � e e � r � : s2 � ir
r) r �

�Pair � Γ � e1 : s1 Γ � e2 : s2
Γ � 2 e1 � e2 4 κ : � s1 & s2 � κ �Proj� Γ � e : � s1 & s2 �7� r� ir *

Γ � � proji e r � : si � ir r) r �

� Inj � Γ � e : si
Γ � � inji e κ : � s1 # s2 � κ �Protect � Γ � e : s

Γ � � protectir e : s � ir

�Case � Γ � e : � s1 # s2 �7� r� ir * Γ � x : s1 � e1 : s Γ � x : s2 � e2 : s
Γ � � case e of inj1 � x 65 e1 ! inj2 � x 65 e2 r � : s � ir r) r �

Instead, we employ a more direct argument of indirect reader
security. We show that if x is a high security variable (with respect
to indirect readers) and e is a low security expression that contains
x, then no matter what value we give to x, the resulting evaluation
of e does not change (assuming it terminates). More generally, we
show that if an expression e of low security has a high security sub-
expression, then we can arbitrarily change the high security sub-
expression without changing the value of e. This property, called
“noninterference” in the security literature, states that high security
subexpressions cannot interfere with low security contexts.

The statement of noninterference for the SLam calculus re-
quires two technical conditions, both of which arise from the fact
that the only base type in the language is the trivial type unit.
First, since the language contains function expressions—which can-
not be checked meaningfully for equality—the theorem only con-
siders terms of ground types, i.e., those types containing only
unit, sums, and products. For instance, � bool � κ is a ground
type but ��� bool � κ (� bool � κ ;� κ is not. Second, values con-
structed from unit, sums, and products may contain components
with different security annotations. For example, consider

�*� bool �7� H � H * �& � bool �7� H � H * 6�7� L � L * 65
Clearly it is acceptable for the high security components of a value
to depend on a high security variable x; however it is not accept-
able for the low security components to depend on high security
x. To simplify the statement of non-interference, we further re-
strict attention to transparent types whose security properties do
not increase as we descend into the type structure (a formal defi-
nition of transparent types appears in the Appendix). For instance,
the above type is not transparent, but the type �*� bool �7� L � L * �#� bool �7� L � L * 6�*� H � H * is transparent.

To formally state the noninterference property, we use contexts:
C � � � denotes a context (expression with a hole in it); C � e � denotes the
expression obtained by filling context C � � � with expression e. We
also define a special equivalence relation to factor out termination
issues: e � e � if whenever both expressions halt at values, the values
(when stripped of security information) are identical.

Theorem 2.3 (Noninterference) Suppose /0 � e � e � : � t �7� r� ir * and
/0 � C � e � : � t � �7� r � � ir � * , t � is a transparent ground type and ir

�) ir � .
Then C � e � � C � e � � .
For simplicity, we have restricted this theorem to closed terms e; it
can be generalized to open terms. The proof uses a denotational se-
mantics of the language and a logical-relations-style argument; the
Appendix gives a sketch. The proof is particularly simple, espe-
cially when compared with other proofs based on direct reasoning
with the operational semantics (cf. [23]). The proof method can
also be extended to more complicated type systems, including ones
with recursive types (see [15] for the necessary foundations).

Notice that Noninterference Theorem requires both expressions
to halt. This reveals a problem with the type system: it is vulnera-
ble to timing attacks, i.e., it does not protect the execution time of
computations and termination/nontermination properties. For ex-
ample, suppose we have an external observer who can simply test
whether a program has terminated. Then we could write

let fun haltIfTrue x:(bool,(H,H)) =
if x then ():(unit,(H,H))

else haltIfTrue x
in haltIfTrue secretBool;

true:(bool,(L,L))
end

(taking some liberties with syntax) and the observer could discover
partial information about the value of secretBool. The problem
is worse if the observer has a timer. For example, consider the term

let fun i = if (i = 0) then ()
else f(i-1)

in f secretValue:(int,(H,H))
end

in an extension of the SLam calculus with an integer base type. An
observer can get some information about secretValue simply
by timing the computation. If we add a getTime primitive to the
calculus, this covert channel becomes observable and usable in the
calculus; we can then write

let val t1 : (int,(L,L)) = getTime()
val tmp = if secureBool:(bool,(H,H))

then longComp
else shortComp

val t2 : (int,(L,L)) = getTime()
val insecureBool : (bool,(L,L)) =

((t2 - t1) > timeForShortComp)
in insecureBool
end

where longComp is some computation that takes longer than a
computation shortComp. Here the contents of secureBool
are leaked to insecureBool. The vulnerability here is depen-
dent on the accuracy of the getTime primitive, latency issues and
scheduling properties, and can be controlled by restricting access
to primitives such as getTime and restricting the ability of exter-
nal observers. Depending on the nature of the secret information,
however, even a very low-rate covert channel can be disastrous,
e.g., a DES key can be leaked in about a minute over a 1 bit/second
channel.

We remark that our type system could be modified to reduce
exposure to timing attacks. The critical rule is the case rule: our
current rule ensures that if the expression tested by the case state-
ment has high security, then any value produced by either arm of
the case statement must have high (indirect) security. To address
timing attacks, we need to protect not just values returned by the
arms of the case statement, but also values returned by all future
computation. One approach is to introduce a notion of “the cur-
rent security context of the computation”, and propagate this in the
rules of the type system. The type system described in the next
section employs this idea. Another approach is to force both of a
case statement to take the same time an space resources by adding
timeout mechanisms and various padding operations. Still another
approach may be found in [19, 21], which in our system would es-
sentially correspond to restricting case statements so that the test
expression of the case statement has low (,) security.

 � ����� � � � � � � 	 � � � � � � ��� � ��� � �
The calculus in the previous section is single threaded and side-
effect free. This is inadequate to model the behavior of a collection
of agents that execute concurrently and interact, e.g., via a shared
store or file system. To model such a system, we extend the basic
calculus with assignment (via ML-style reference cells), generalize
evaluation to a multi-process setting, and add a “spawn” operation
to create new processes.

The type system of a language with concurrency and side ef-
fects must be carefully designed: a naı̈ve adaptation of the purely
functional system is not sufficient. In fact, problems even arise
with side effects alone. The problem lies in the sequencing of ex-
pressions (sequencing � M;N in the calculus can be programmed
as �*� λd : s 5 N M �� , where d is a fresh “dummy” variable). Unlike
the purely functional case, where the sequencing of two expres-
sions communicates only termination behavior across the bound-
ary, the sequencing of side-effecting expressions can communicate
data. Consider, for instance, the term

Figure 1: Leakage of information in the concurrency setting.

P1: let fun loop1() =
if secretBool

orelse (!killFlag)
then ()
else loop1()

in loop1();
if not(!killFlag)

then insecureBool := true
else ();

killFlag := true
end

P2: let fun loop2() =
if not(secretBool)

orelse (!killFlag)
then ()
else loop2()

in loop2();
if not(!killFlag)

then insecureBool := false
else ();

killFlag := true
end

if secretBool:(bool,(H,H))
then insecureBool:= true:(bool,(L,L));

secretBool
else insecureBool:= false:(bool,(L,L));

secretBool

Assuming the if is of high security, the type of the expression is
a high-security boolean. Nevertheless, the side effect has leaked
out the value of secretBool. The operational semantics and the
type system must therefore track such information flow from the
destruction of values to side effects.

Concurrency raises other, more difficult issues. It is well docu-
mented that the notion of noninterference itself is problematic in a
concurrent setting (see, e.g., [10]). To recap the problem, consider
a system with three agents A, B and C, and suppose that there is
some variable x that contains information that should be kept se-
cret from agent C. The first agent, A, generates a random number,
and puts it into a variable tmp that everyone can read. Agent B
waits for some time and then copies the contents of x into tmp.
Agent C reads tmp and immediately terminates. Although C can-
not tell that it has captured the contents of x or some random value,
information about x has been leaked. If this interaction is repeated,
then C can determine x to a high degree of certainty. However, if
we use a standard set-of-behaviors semantics for this system, then
we find that the set of behaviors of C (in particular, the values C
generates) is independent of the initial value of x. Hence, if a stan-
dard concurrency semantics is employed, we might conclude that
the system is secure.

A second issue is closely related to the issue of timing attacks
discussed in the previous section. In that section, we justified ignor-
ing timing attacks by viewing them as external to the system (we
excluded getTime from that calculus). In a concurrent setting,
however, ignoring timing attacks can cause serious security holes,
because, in a calculus with concurrent communicating processes,
the ability to “time” other processes is implicit. To see this, it is
helpful to consider a version of the main example from [19]. In the
example, we run complementary versions of the looping example
from Section 2.3 in parallel, one of which loops if a secret is true,
and the other loops if the secret is false. If the first loop terminates,
the process leaks true, and if the second terminates, the process
leaks false. We can even force the entire system to terminate
by killing both processes if either loop terminates. Specifically, we
can write processes P1 and P2 in Figure 1 (using a syntax similar to
that of Standard ML [11]), where the global variable killFlag
is initially false. The value insecureBool is ready when
killFlag becomes true. To summarize, timing-style attacks in a
concurrent setting are part of the system: it does not seem reason-
able to analyze the security of a concurrent setting without taking
them into account.1

1In fact, while the attack detailed above is clearly a generalization of the notion

�� �������� � 	 � � � � ��� �
To construct the enhanced language, we first extend the definition
of basic values bv and expressions e by

bv :: � ls ! 5*5*5
e :: � � refs e κ !%� e : � e r !"� !e r !%� spawnir e κ !"5�5*5

where ls is a location (we assume an infinite sequence of locations
at each type s; whenever a new location is needed, we use the next
available location in the sequence). We modify the definition of
types t to include reference types and change arrow types so that
they carry a latent “effect” ir, representing a lower bound on the
security of cells that may be written when the function is executed:

κ :: � � r� ir
t :: � unit !%� s # s $!"� s & s $!%� s ir� (s 1!3� ref s

�� � � ��� ��	 ��� � � 	 	 � � � 	 � ��� � �
The operational semantics of the enhanced language uses the same
basic style as for the purely functional case, with rewrite rules for
redexes and evaluation contexts to denote the position of redexes.
The notion of evaluation contexts is a simple extension of the pre-
vious definition:

E :: � � refs E κ !%� E : � e r !3� v : � E r !"� !E r ! 5*5*5
The semantics must now keep track of three new pieces of in-

formation. First, since there are multiple processes and not a single
term, we must keep track of the current form of each process. Thus,
the configuration of the system contains a list of processes. Second,
each process must keep track of the security levels of previously
destructed values, so that side effects can be appropriately coerced.
For instance, in reducing the term

if secretBool:(bool,(H,H))
then insecureBool:= true:(bool,(L,L));

secretBool
else insecureBool:= false:(bool,(L,L));

secretBool

the rules will track the information flow H from secretBool to
the values stored in the reference cell insecureBool. Third, the
semantics must keep track of the values of the locations via a state,
a finite partial function from typed locations ls to values.

The basic rewrite rules for the enhanced language are found in
Table 4. Specifically, the rules defines a reduction relation

�*� ir1 � e1 6�*5*5*5��7� irn � en ;σ � �*� ir �1 � e �1 6�*5�5*5*�7� ir �n � k � e �n � k ;σ �
of timing attack in the sequential setting, it is not clear the phrase “timing attack” is
appropriate.

Table 4: Operational Semantics for Effects.

� ir � �*�*� λx : s 5 e r> ir v r � (� ir � ir � �*� protectir e � v �
x � * if r) r �� ir � �*� proji 2 v1 � v2 4 r> ir r � (� ir � ir � �*� protectir vi * if r) r �

� ir � �*� case � inji v r> ir of inj1 � x 65 e1 ! inj2 � x 65 e2 r � (� ir � ir � �*� protectir ei � v
�
x � * if r) r �� ir � �*� protectir v * (� ir � � v � ir

� ir� e @(� ir � � e � ��5*5*5*�*� ir� E � e � ;�*5*5*5 ;σ � � 5*5*5*�7� ir � � E � e � � 6�*5*5�5 ;σ
��5*5�5*�7� ir � � E � � spawnir e κ � 6�*5�5*5 ;σ � ��5*5*5��7� ir � ir � � e 6�7� ir � � E � �/ κ � 6�*5*5�5 ;σ ��5*5�5*�7� ir � � E � � refs v κ � 6�*5*5*5 ;σ � ��5*5*5��7� ir � � E � ls

κ � 6�*5*5�5 ;σ � ls �(v � ir � � if ls �� dom � σ ��5*5�5*�7� ir � � E � � ls: r> ir ? : � v r � � ;�*5*5*5 ;σ � ��5*5*5��7� ir � � E � v � 6�*5*5*5 ;σ � ls �(v � ir � � if r) r �
��5*5�5*�7� ir � � E � � !ls: r> ir ? r � � ;�*5*5*5 ;σ � ��5*5*5��7� ir � � E � σ � ls � ir � 6�*5*5�5 ;σ if r) r �

Table 5: Typing Rules for Effects.

� Sub � Γ � ir e : s s 	 s �
Γ � ir e : s �

�Var � Γ � x : s � ir x : s

�Unit � Γ � ir � κ : � unit � κ
� Lam � Γ � x : s1 � ir � e : s2

Γ � ir � λx : s1 5 e κ : � s1
ir �� (s2 � κ

�Pair � Γ � ir e1 : s1 Γ � ir e2 : s2
Γ � ir 2 e1 � e2 4 κ : � s1 & s2 � κ

� Inj � Γ � ir e : si
Γ � ir � inji e κ : � s1 # s2 � κ

�App � Γ � ir � e : � s1
ir �� (s2 �7� r� ir * Γ � ir � e � : s1

Γ � ir � � e e � r � : s2 � ir
r) r � � ir) ir �

�Proj � Γ � ir � e : � s1 & s2 �*� r� ir �
Γ � ir � � proji e r � : si � ir r) r � � ir) ir �

�Case � Γ � ir � e : � s1 # s2 �7� r� ir * Γ � x : s1 � ir � e1 : s Γ � x : s2 � ir � e2 : s
Γ � ir � � case e of inj1 � x 65 e1 ! inj2 � x 65 e2 r � : s � ir

r) r � � ir) ir �

�Protect� Γ � ir � e : s
Γ � ir � � protectir e : s � ir r) r � � ir) ir �

� Spawn � Γ � ir e : s
Γ � ir � � spawnir e κ : � unit � κ ir �) ir

� Loc � Γ � ir � ls
κ : � ref s � κ

�Ref � Γ � ir � e : s
Γ � ir � � refs e κ : � ref s � κ � s � ir � � s

�Assign � Γ � ir � e1 : � ref s �7� r� ir * Γ � ir � e2 : s
Γ � ir � � e1 : � e2 r � : s r) r � ��� s � ir � � s

�Deref � Γ � ir � e : � ref s �7� r� ir *
Γ � ir � � !e r � : s � ir r) r �

where σ � σ � are states. The first four rules define the relation (, re-
ductions for purely functional redexes. These reductions are lifted
to general configurations of the form �*� ir1 � e1 6��5*5*5*�7� irn � en ;σ with
evaluation contexts. The rules for assignments, dereferencing, and
process creation are non-local rules that are specified directly on
configurations.

��
 ������� � � ��� � �
Subtyping in the system with effects is exactly the same as before,
except that the rule for function types now becomes

κ 	 κ � s �1 	 s1 s2 	 s �2�*� s1
ir� (s2 6� κ 	 �*� s �1 ir� (s �2 6� κ �

and the rule for reference types is

κ 	 κ �� ref s � κ 	 � ref s � κ �=
Note that subtyping on reference types only affects top-level secu-
rity properties, i.e., subtyping is invariant on reference types. This
restriction follows the standard subtyping rule for references [5,
23].

Table 5 presents the typing rules for the extended calculus. This
type system is essentially the previous system with an effect system
layered over the top of it in the style of [20]. This effect system
tracks potential information leakage/dependency that may be intro-
duced by reference cells. Each context carries with it a security
group ir that is a lower bound on the security of the reference cells
that may be written in that context; as expected, this security group
is carried over onto arrow types. Only spawn terms may change
the security context, and only then by increasing the context.

Analogs of the Subject Reduction Theorem 2.1 and Progress
Theorem 2.2 can be established for this system; the proofs are quite
similar to the proofs in the Appendix.

Theorem 3.1 (Subject Reduction) Suppose σ is well-typed. Sup-
pose that for all i, /0 � iri ei : si, and

��� ir1 � e1 6�*5�5*5*�7� irn � en ;σ � �*� ir �1 � e �1 ;�*5*5*5*�*� ir �n � k � e �n � k ;σ � 65
Then

� σ � is well-typed;

� For all 1 	 i 	 n, /0 � ir �i e �i : si; and

� For all i
� � n # 1 , there is an si such that /0 � ir �i e �i : si.

Theorem 3.2 (Progress) Suppose σ is well-typed. Suppose that
for all i, /0 � iri ei : si, and �*� ir1 � e1 6�*5�5*5*�7� irn � en ;σ . If ei is not a
value, then there is a reduction

��� ir1 � e1 6�*5�5*5*�7� irn � en ;σ � �*� ir �1 � e �1 ;�*5*5*5*�*� ir �n � k � e �n � k ;σ � 65
We have not proved a noninterference theorem for the concurrent
setting because, as mentioned earlier, the notion is unclear in the
concurrency setting. Noninterference should, at the very least, guar-
antee that the set of possible values of low-security objects is inde-
pendent of the initial values of high-security objects.

We might, however, expect more from a proof of noninter-
ference. Ideally, we would like to rule out timing attacks: low-
security observers should not be able to get and use information
about the values of high-security objects through watching termi-
nation/nontermination or the timing behavior of programs. This
raises an interesting issue: what is the notion of an “observer” in
this setting? Suppose we consider observers to be internal to the

system—that is, observers are simply processes running in paral-
lel. If observers are internal, we conjecture that our system is se-
cure. Intuitively, processes may only communicate through ref-
erence cells, and all writes to reference cells are protected by the
current security context (see the operational rule for : � in Table 4
and the corresponding type rule �Assign � in Table 5). For instance,
the example of Figure 1 does not type check in our calculus. A
simpler example can be made by modifying the looping example
from the previous section:

let fun haltIfTrue x:(bool,(H,H)) =
if x then ():(unit,(H,H))

else haltIfTrue x
in haltIfTrue secretBool;

y := true
end

For this term to type check, we must use the H context (i.e., with H
on the �), and so the type of y must be (ref(bool,(H,H)),κ).
Only high-security agents may therefore branch on the value held
in y.

For external observers, i.e., those that can observe the final an-
swers of processes or simply the termination behavior of those pro-
cesses, our system is not secure. For instance, the term

let fun haltIfTrue x:(bool,(H,H)) =
if x then ():(unit,(H,H))

else haltIfTrue x
in haltIfTrue secretBool;

true:(bool,(L,L))
end

from the last section still type checks in the H context. From the
point of view of internal observers, this expression is secure, since
the value true:(bool,(L,L)) is not communicated to any
other process in the system. From the point of view of external
observers, however, the expression is not secure: we should make
the type of the expression be (bool,(H,H)). We conjecture that
the type system can be easily modified to address this issue.

The distinction between external and internal observers is fa-
miliar in the security world. The Spi calculus of [2], for instance,
assumes that observers of protocols are those processes that can be
programmed in the Spi calculus itself. Of course, this limits what
observers can do, but it also makes precise the underlying assump-
tions of the model.

� ��� � � ���
� � �
We now sketch how to add integrity to the basic calculus of Sec-
tion 2 and the extended calculus of Section 3, using the concepts
of creators and indirect creators. Recall that creators track the
agents that directly built the value, whereas indirect creators track
the agents that may have influence over the eventual choice of a
value.

Creators and indirect creators are drawn from the same under-
lying hierarchy of security groups as readers and indirect readers.
High integrity is modeled by points near the top of the hierarchy,
low integrity by points near the bottom. But there is a twist with re-
spect to subtyping. Recall that for readers, one may always restrict
access to a value, e.g., change the reader annotation to a higher
security group. For creators, it works just the opposite way: one
may always weaken the integrity of a value, e.g., change the creator
annotation to a lower security group.

Security properties now incorporate creator and indirect creator
information:

κ :: � � r� ir� c � ic 65

The variables r, ir, c and ic range over security groups; we maintain
the invariant that ic) c. Subsumption for κ becomes

� r� ir� c � ic 	 � r � � ir � � c � � ic �
iff r) r � , ir) ir � , c �) c, and ic �) ic

which formalizes the intuition that one may always weaken the in-
tegrity of a value. The definition of � must also be extended to the
new context:

� r� ir� c � ic �1� ir � � ic � ��-� r � ir � � ir � ir � � c � ic � � ic � ic � 65
We extend the operation � as well to values and types in the straight-
forward manner.

The operational semantics must now track indirect creators. For
example, the rule for case becomes

� case � inj j v r> ir> c > ic of inj1 � x 65 e1 ! inj2 � x 65 e2 r �(� protectir> ic � r � e j � v
�
x � if r) r �

Note that the protect operation must take into account indirect
creators. The rule registers the reader r � of the injected value as an
indirect creator of the result of the computation. Typing rules that
involve the � operation must be modified. For example, the case
rule becomes

Γ � e : � s1 # s2 �7� r� ir� c � ic * r) r �
Γ � x : s1 � e1 : s Γ � x : s2 � e2 : s

Γ � � case e of inj1 � x 65 e1 ! inj2 � x 65 e2 r � : s �1� ir� ic � r �
We have proven Subject Reduction and Progress Theorems analo-
gous to Theorems 2.1 and 2.2 for this system. We can also prove
a security result for indirect creators that is analogous to Theo-
rem 2.3:

Theorem 4.1 (Noninterference) Suppose /0 � e � e � : � t �7� r� ir� c � ic * .
Suppose also that /0 � C � e � : � t � �7� r � � ir � � c � � ic � * , t � is a transparent
ground type and ir

�) ir � and ic � �) ic. Then C � e � � C � e � � .
Intuitively, if the indirect creators of the subexpression e do not in-
clude that of the entire computation, then e cannot influence the
result of the computation. The proofs of these results use the tech-
niques established in the Appendix.

Creators and indirect creators can also be added to the calculus
of Section 3. Recall that in the case of readers, the type system
must guarantee that information does not leak out via side effects.
A similar property must be guaranteed in the case of creators: we
must make sure that indirect creators of the computation are carried
over onto the values written in reference cells. Therefore, judge-
ments Γ � ir e : s must be changed to Γ � ir> ic e : s, where ic is a
lower bound on the integrity of values that may be written to refer-
ence cells in the evaluation of e. As before, indirect information is
placed over (to represent the latent effects of a computation. The
type-checking rules for abstraction and application thus become

� Lam � Γ � x : s1 � ir � > ic � e : s2

Γ � ir> ic � λx : s1 5 e κ : � s1
ir � � ic �� (s2 � κ

�App �
Γ � ir � > ic � e : � s1

ir � � ic �� (s2 �*� r� ir� c � ic �
Γ � ir � > ic � e � : s1

Γ � ir � > ic � � e e � r � : s2 �1� ir� ic � r �
r) r �
ir) ir �
ic �) ic

We have proven Subject Reduction and Progress Theorems for this
system; the proofs follow the structure of the proofs in the Ap-
pendix for the pure case.

� � �
	 	 � � ��� � ���

Our work is certainly not the first to use a static system or program-
ming language framework for security. Other work addresses pure
and modified information-flow models, and type systems for other
security problems.

Work on information flow reaches back to Denning’s work [6,
7] in the mid 1970s, and has been implemented in a variety of
contexts (e.g., the interpreter for Perl 5.0 can be put into a spe-
cial dynamic “taint checking” mode which tracks information flow
and rejects programs that may reveal secret information.) More
modern treatments reformulate Denning’s system in a static type
system. For instance, Volpano, Smith and Irvine [23] provide one
such reformulation for the simple language of “while” programs,
and prove a version of the noninterference theorem. More recent
work of Volpano and Smith [22] extends the language with first-
order procedures; the types are similar to the types in Section 3,
where annotations for the latent effect of a function are part of the
type (written above the (in our types). Volpano and Smith also
consider covert flows in the language of “while” programs with ex-
ceptions [21], and explore the example of Figure 1 in the language
with nondeterminism [19]. Covert flows and the example of Fig-
ure 1 are eliminated by the same restriction: the tests and bodies
of “while” loops must be of lowest security. In both cases, they
prove the system is correct with a modification of the noninterfer-
ence theorem: if a low-security program halts, then starting it in
any state with different values for the high-security variables also
halts, and produces the same low-security outputs. Our noninterfer-
ence theorems are weaker: they say only that if both programs halt,
they produce the same low-security outputs. On the other hand, the
practicality of the restrictions on “while” loops is unclear.

Others have considered means to alleviate the problems with
information flow. Myers and Liskov [13], for instance, describe a
system which tracks information flow, but where agents may “de-
classify” information that they own. Ownership corresponds quite
closely to our notion of direct reader: only direct readers may reveal
information. In fact, one may build “declassify” operations from
the primitives of the SLam calculus relatively straightforwardly by
induction on types. Nothing seems to be known, however, about
the formal properties of the system: rough ideas of the typing rules
are given, but no correctness theorems are stated or proved.

There are other type systems for security. For example, Abadi’s
type system for the Spi calculus is used to reason about proto-
cols [1, 2]. Type systems have been also used for the related prob-
lem of reasoning about trustworthiness of data. For instance, [14]
introduces a calculus in which one can explicitly annotate expres-
sions as trusted or distrusted and check their trust/distrust status;
this system enforces consistent use of these annotations, although
one can freely coerce from trusted to distrusted and vice-versa.
Concurrency issues were first addressed by [4], although there ap-
pear to be some difficulties with that approach—see [23].

There are two main novelties of our work. First, we consider the
purely functional language in isolation, and then extend it to side
effects and concurrency. The type rules are less restrictive in the
purely functional case than in the full language, so programming
in the pure subset can lead to cleaner programs. Second, the type
system combines both access control and information flow in a lan-
guage with higher-order functions and data structures, and studies
the system formally. These elements are essential for a develop-
ment of practical languages that provide mechanisms for security,
and introduce a number of new technical issues that have not been
previously addressed.

� � � ��� ������� � �

We view the SLam calculus as a first step towards providing a lan-
guage basis for secure systems programming. It deals with the
essence of computing with secure information, but a number of im-
portant issues remain. First, as with many other security systems,
the SLam calculus relies on a TCB (trusted computer base): trusted
type-checking, compilation, and runtime infrastructure. A failure
in any of these components potentially breaks the entire security
system. It would be possible to factor out some of the critical com-
ponents by moving to a bytecode/bytecode-verifier organization (à
la Java), although the benefits of doing so are unclear.

Second, the type system we have presented is monomorphic.
Clearly this is too restrictive: we need to be able to write code that
behaves uniformly over a variety of security groups (e.g., in writing
a generic string editing/searching package). We are currently inves-
tigating two approaches to this problem: parametric security types
and a notion of “type dynamic” for security types. The former in-
volves bounded quantification, and it is not clear we can compute
concise, intuitive representations of types; the latter involves run-
time overheads.

Third, our type system is static, but security changes dynami-
cally. For instance, in a file system, the files that one can read today
will probably be different from those one can read tomorrow. How
can we accommodate new files, new objects, new cells, new agents,
and changing security groups? We plan to address these issues us-
ing a dynamically typed object manager. The basic idea is that
access to shared objects is via the object manager; although each
program is statically typed, a program’s interface to the object man-
ager is via dynamic types (at runtime, a dynamically typed object
returned from the object manager must be unpacked and its secu-
rity properties checked before the raw object it contains is passed
to the internals of the program).

Fourth, any practical language based on the SLam calculus must
provide ways to reduce the amount of type information that must
be specified by a programmer; the core SLam calculus is an explic-
itly typed calculus. Can we perform effective type reconstruction?
What kinds of language support should we provide? For example,
it would be useful to introduce a statically scoped construct that
defines a default security group for all objects created in its scope,
i.e., like UNIX’s umask.

We are investigating these and other issues in the context of an
implementation of our type system for Java. While many of the
appropriate typing rules for Java can be adapted easily from the
SLam calculus, some new issues arise from exceptions, break,
continue, return, and instanceOf. The implementation is
joint work with Philip Wickline.

It would also be interesting to investigate other static analy-
sis techniques to determine information flow. For instance, in the
language with side effects, the only time the security context may
change is in a spawn expression. This may be too restrictive in
practice: statements that are executed before, say, a secure case
statement need not restrict information flow so much. Abstract in-
terpretation or set-based analyses might prove helpful here.

Acknowledgements: We thank Kathleen Fisher, Geoffrey Smith,
Ramesh Subrahmanyam, Dennis Volpano, Philip Wickline, and the
anonymous referees for helpful comments.

� ���/� � ��� � � �
[1] M. Abadi. Secrecy by typing in security protocols. In The-

oretical Aspects of Computer Software: Third International
Symposium, volume 1281 of Lect. Notes in Computer Sci.
Springer-Verlag, 1997.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. In Proceedings of the 4th
ACM Conference on Computer and Communications Secu-
rity, pages 36–47, 1997.

[3] G. Andrews and R. Reitman. An axiomatic approach to in-
formation flow in programs. ACM Trans. Programming Lan-
guages and Systems, 2(1):56–76, 1980.

[4] J. Banâtre, C. Bryce, and D. L. Metáyer. Compile-time de-
tection of information flow in sequential programs. In Euro-
pean Symposium on Research in Computer Security, number
875 in Lect. Notes in Computer Sci., pages 55–73. Springer-
Verlag, 1994.

[5] L. Cardelli. Amber. In Combinators and functional pro-
gramming languages, Proceedings of the 13th Summer School
of the LITP, volume 242 of Lect. Notes in Computer Sci.
Springer-Verlag, 1986.

[6] D. Denning. Secure Information Flow in Computer Systems.
PhD thesis, Purdue University, 1975.

[7] D. Denning. A lattice model of secure information flow. Com-
mun. ACM, 19(5):236–242, 1976.

[8] D. Denning and P. Denning. Certification of programs for se-
cure information flow. Commun. ACM, 20(7):504–513, 1977.

[9] M. Felleisen. The theory and practice of first-class prompts.
In Conference Record of the Fifteenth Annual ACM Sympo-
sium on Principles of Programming Languages, pages 180–
190. ACM, 1988.

[10] D. McCullough. Noninterference and the composability of
security properties. In 1988 IEEE Symposium on Security and
Privacy, pages 177–186, 1988.

[11] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Defi-
nition of Standard ML (Revised). MIT Press, 1997.

[12] J. C. Mitchell. Foundations for Programming Languages.
MIT Press, 1996.

[13] A. C. Myers and B. Liskov. A decentralized model for infor-
mation flow control. In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles. ACM Press,
1997.

[14] J. Palsberg and P. Ørbæk. Trust in the λ-calculus. In Proceed-
ings of the 1995 Static Analysis Symposium, number 983 in
Lect. Notes in Computer Sci. Springer-Verlag, 1995.

[15] A. M. Pitts. Relational properties of domains. Information
and Computation, 127:66–90, 1996.

[16] G. D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Aarhus Univ., Com-
puter Science Dept., Denmark, 1981.

[17] G. D. Plotkin. (Towards a) logic for computable functions.
Unpublished manuscript, CSLI Summer School Notes, 1985.

[18] J. C. Reynolds. Types, abstraction and parametric polymor-
phism. In R. E. A. Mason, editor, Information Processing 83,
pages 513–523. North Holland, Amsterdam, 1983.

[19] G. Smith and D. Volpano. Secure information flow in a multi-
threaded imperative language. In Conference Record of the
Twenty-Fifth Annual ACM Symposium on Principles of Pro-
gramming Languages. ACM, 1998.

[20] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and
effect inference. Journal of Functional Programming, 2:245–
271, 1992.

[21] D. Volpano and G. Smith. Eliminating covert flows with mini-
mum typings. In Proceedings of the Tenth IEEE Computer Se-
curity Foundations Workshop. IEEE Computer Society, 1997.

[22] D. Volpano and G. Smith. A type-based approach to program
security. In TAPSOFT’97: Theory and Practice of Software
Development, volume 1214 of Lect. Notes in Computer Sci.
Springer-Verlag, 1997.

[23] D. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):1–
21, 1996.

� � ��� � � � � � � � ��� ��� � � ����� � � 	 	1� 	 � � ��	 � � � � � ����� � � � � �
� � �� 	 ��� � � 	�� ���
Proposition A.1 Suppose s1 	 s2 and ir1) ir2. Then s1 � ir1 	
s2 � ir2.

Proposition A.2 For any secrecy property κ and type s,

1. κ � ir � ir � � κ � ir � � ir.

2. s � ir � ir � � s � ir � � ir.

� � � � ��� ����� ��� ��� � � ��� � � 	
Lemma A.3 If Γ � v : s � and Γ � x : s � � e : s, then Γ � e � v �

x � : s.

Proof: By induction on the proof of Γ � x : s � � e : s. We consider
a few of the most representative cases and leave the others to the
reader.

1. Γ � x : s � � y : s where y
�� x. Obvious.

2. Γ � x : s � � x : s where s � s � . Since e � v �
x �
� v, we are done.

3. Γ � x : s � � � λy : s1 5 e � κ : � s1 (s2 � κ , where Γ � x : s � � y : s1 �
e � : s2 and y

�� x. By induction, Γ � y : s1 � e � � v �
x � : s2. Thus,

by rule � Lam � ,
Γ � � λy : s1 5 e � κ � v �

x � : s

as desired.

This completes the induction and hence the proof.

� �
 � ����� � ��� � � ��� � ��� � � ���
� ��� � �
Lemma A.4 Suppose /0 � ea : sa, and ea (eb. Then /0 � eb : sa.

Proof: By cases depending on the reduction rule used. We give a
few representative cases.

1. �*� λx : s1 5 e r> ir v r � (� protectir � e � v �
x � . By assumption,

/0 � ea : sa. Since ea is �*� λx : s1 5 e r> ir v r � , this derivation
must end in a (possibly empty) series of � Sub � applications
that are immediately preceded by an application of �App � .
Hence there exists some s �a 	 sa and a derivation /0 � ea : s �a
whose last rule application is �App � . By inspection of �App � ,
there exist derivations for

/0 � � λx : s1 5 e r> ir : � s �1 (s �2 � r � � � ir � �
/0 � v : s �1

where r � �) r � and s �2 � ir � � � s �a 	 sa

The derivation /0 � � λx : s1 5 e r> ir : � s �1 (s �2 � r � � � ir � � must end
in a (possibly empty) series of � Sub � applications that are im-
mediately preceded by an application of �Abs � . Hence there
exists an s3 where s3 	 � s �1 (s �2 � r � � � ir � � , and a derivation
/0 � � λx : s1 5 e r> ir : s3 whose last rule is �Abs � . By the �Abs �
rule, there is a derivation:

x : s1 � e : s2
where s3 �.� s1 (s2 � r� ir

Now, s3 �-� s1 (s2 � r� ir 	 � s �1 (s �2 � r � � � ir � � implies that:

s �1 	 s1
s2 	 s �2
ir) ir � �

Combining s �1 	 s1 with /0 � v : s �1 implies /0 � v : s1 by the
� Sub � rule. Hence we have x : s1 � e : s2 and /0 � v : s1, and so
by the Substitution Lemma,

/0 � e � v �
x � : s2 5

By the � Protect � rule, /0 � � protectir e � v �
x � : s2 � ir. Now,

s2 	 s �2 and ir) ir � � and so by Proposition A.1,

s2 � ir 	 s �2 � ir � � � s �a 	 sa

Hence, by � Sub , /0 � � protectir e � v �
x � : sa.

2. � proji 2 v1 � v2 4 : r> ir ? r � (� protectir vi , where r) r � . Be-
cause /0 � ea : sa, there must exist s �a 	 sa and a derivation
/0 � � proji 2 v1 � v2 4 : r> ir ? r � : s �a whose last rule application is
� Pro j � . By the �Pro j � rule:

/0 � 2 v1 � v2 4 : r> ir ? : � s �1 & s �2 �7� r � � � ir � � �
where s �i � ir � � � s �a 	 sa and r � �) r �

Since /0 � 2 v1 � v2 4 : r> ir ? : � s �1 & s �2 �7� r � � � ir � � * , there is a deriva-
tion of /0 � 2 v1 � v2 4 : r> ir ? : s3 ending in a use of the � Pair rule,
such that s3 	A� s �1 & s �2 �7� r � � � ir � � * . From the � Pair rule we
have derivations:

/0 � v1 : s1
/0 � v2 : s2

where s3 �-� s1 & s2 �7� r� ir *
and so by the �Protect � rule, /0 � � protectir vi : si � ir.
Since s3 �.� s1 & s2 �7� r� ir * 	 � s �1 & s �2 �7� r � � � ir � � * ,

s1 	 s �1
s2 	 s �2
ir) ir � �

Hence si � ir 	 s �i � ir � � � s �a 	 sa by Proposition A.1, and so
/0 � � protectir vi : sa by � Sub .

3. � protectir �/ κ 0(�/ κ � ir. Since /0 � ea : sa, there exists
s �a 	 sa and a derivation /0 � � protectir �/ κ : s �a whose last
rule is �Protect � . Hence, there is derivation

/0 � �/ κ : s
where s � ir � s �a 	 sa

The derivation of /0 � �/ κ : s must consist of an application of
the �Unit � rule followed by some number of applications of
� Sub � . Hence � unit � κ 	 s. Now, applying the �Unit � rule
to � κ � ir gives:

/0 � �/ κ � ir : � unit � κ � ir
Since � unit � κ � ir 1� � unit � κ � ir and � unit � κ 	 s, it
follows from Proposition A.1 that � unit � κ � ir 	 s � ir �
s �a 	 sa. Hence, /0 � �/ κ � ir : sa by � Sub � .

This concludes the case analysis and hence the proof.

Theorem 2.1 (Subject Reduction) Suppose /0 � e : s and e (e � .
Then /0 � e � : s.

Proof: Note that e � E � e1 � , where e1 (e2 via one of the rules in
Table 1, and e � � E � e2 � . A simple induction on evaluation contexts,
using Lemma A.4, completes the proof.

� � � � �
� ��� � ��� ���
� ��� � �
Theorem 2.2 (Progress) Suppose /0 � e : s and e is not a value.
Then there is a reduction e (e � .
Proof: Suppose, by way of contradiction, that there is no reduction
of e. Then it must be the case that e � E � e0 � , /0 � e0 : s0 for some
s0, and e0 has one of the following forms:

1. e0 �.� v v � r.

2. e0 �.� proji v r.

3. e0 �.� case v of inj1 � x ;5 e1 ! inj2 � x 65 e2 r.

We consider the first case and leave the others to the reader. Since
e0 is well-typed,

s �0 	 s0
/0 � � v v � r : s �0
/0 � v : � s1 (s �0 �7� r2 � ir2 *
/0 � v : s1

and r2) r. Note that v must have the form � λx : s1 5 e �0 : r1
> ir1
? , since

it has a functional type (this can be seen by an easy induction on
typing derivations).

This gives us enough room to complete the proof. By rule �Abs � ,
we know

� s1 (s0 �7� r1 � ir1 * 	 � s �1 (s �0 �7� r2 � ir2 *
/0 � ir � λx : s1 5 e �0 *: r1

> ir1
? : � s1 (s0 �7� r1 � ir1 *

x : s1 � ir � e �0 : s0

It follows that r1) r2) r, and so the application reduction rule
applies. This contradicts the initial assumption that there is no re-
duction of e, so there must be a reduction of the term.

� � � � � � � � � � � �/� � � � � �
We can assign a standard denotational semantics to the language by
adopting the partial function model of [17]. Define the meaning of
a type expression s, denoted � � s � � , by

� � � unit �7� r� ir * � � � �����
� � � s # t �7� r� ir * � � � � � � s � � # � � t � �
� � � s & t �7� r� ir * � � � � � � s � ��& � � t � �
� � � s (t �7� r� ir * � � � � � � s � � (p � � t � �

where � D (p E is the set of partial continuous functions from D
to E. Note that this semantics ignores the security properties.

The meaning of terms is a partial function. If Γ � x1 : t1 �*5 5 5 � xn :
tn is a typing context then � �Γ � ��� � � t1 � ��& 5*5�5�& � � tn � � . (The order is
not important here, as we could rely on some fixed ordering of
xi : ti pairs.) In the case that Γ is empty, � � Γ � � is the unit object
unit. For an environment η � ! � � Γ � ��! , write η � x for the projection
to the component corresponding to variable x, and η � x �(d � for the
environment in which the x component is extended (or overwritten)
to d. The definition of the meaning function on terms, like that of
types, ignores the security properties; similar definitions may be
found in, say, [17]. The model is adequate for observing the final
answers of programs:

Theorem A.5 (Plotkin) For any typing judgement /0 � M : s and
any environment η, � � /0 � M : s � � η is defined iff M (�� v for some
value v.

Our proof of noninterference uses logical relations (see [12] for
other uses of logical relations). Define R to be a family of relations
indexed by secure types and indirect readers ir where

1. If s �.� t �*� r� ir � and ir
�) ir � , then Rs

ir � ��� � d � e 0! d � e � � � s � ��� .
2. If t �.� unit �7� r� ir * and ir) ir � , then Rs

ir � ��� �����	�3
� .
3. If t �.� s1 # s2 �*� r� ir � and ir) ir � , then

Rs
ir � ��� � inji � d 6� inji � e � $!%� d � e � Rsi

ir � � i � 1 � 2 ��5
4. If s �.� s1 & s2 �*� r� ir � and ir) ir � , then

Rs
ir � ���
�*2 d1 � e1 4;�72 d2 � e2 4* 0!"� di � ei � Rsi � ir

ir � � 5
5. If s �.� s1 (s2 �7� r� ir * and ir) ir � , then

Rs
ir � ���
� f � g $! if � d � e � Rs1

ir � , then � f � d 6� g � e * � Rs2 � ir
ir � � 5

Here, � f � d 6� g � e * � Rs
ir � means that if f � d and g � e are defined,

then � f � d 6� g � e * � Rs
ir � . Intuitively, the ir � index specifies the se-

crecy group of an indirect reader of group ir � . When the secrecy
group ir � is not above the group of the type itself, the indirect
reader does not have permission to find out any information about
the value.

Proposition A.6 1. Each Rs
ir is directed complete. That is, if

�
� di � ei ! i � I �� Rs
ir is a directed set, then ��� di ��� ei � Rs

ir.

2. If s 	 s � , then Rs
ir Rs �

ir.

Proof: By induction on types.

Theorem A.7 Suppose Γ � e : s and η � η � � � � Γ � � . Suppose that for
all x : s � � Γ, � η � x 6� η � � x * � Rs �

ir � . Then � � �Γ � e : s � � η � � �Γ � e : s � � η � �

Rs
ir � .

Proof: By induction on the proof of Γ � e : s.

Suppose s is a type. Then s is transparent at security property κ
if

1. s �-� unit � κ � and κ � 	 κ;

2. s �.� s1 # s2 � κ � , κ � 	 κ, and s1 � s2 are transparent at security
property κ;

3. s �.� s1 & s2 � κ �= , κ � 	 κ, and s1 � s2 are transparent at security
property κ; or

4. s � � s1 (s2 � κ � , κ � 	 κ, and s1 � s2 are transparent at security
property κ.

s �-� t � κ is transparent if s is transparent at κ.

Lemma A.8 Suppose s � � t �7� r� ir * is a ground type, transparent
at � r � � ir � . If � f1 � f2 � Rs

ir � , then f1 � f2.

Proof: By induction on t. The base case, when t � unit, is ob-
vious. When t �.� s1 # s2 �7� r� ir * , since ir) ir � , it follows from the
definition of Rs

ir � that f j � � inji e j for some i and � e1 � e2 � Rsi
ir � .

By induction, e1 � e2. Thus, f1 � f2.
When t �.� s1 & s2 �7� r� ir * , it follows from the definition of Rs

ir �
that f j � �

d j � e j � and � d1 � d2 � Rs1 � ir
ir � and � e1 � e2 � Rs2 � ir

ir � . Note
that s1 � ir �.� t1 �7� r1 � ir1 � � ir �.� t1 �7� r1 � ir� ir1 � ir * and similarly
for s2 � ir � � t2 �7� r2 � ir2 * � ir. Since ir1) ir, � ir1 � ir � ir) ir � , and
similarly � ir2 � ir) ir � . Thus, by induction, d1 � d2 and e1 � e2,
which proves that f1 � f2 as desired.

Theorem 2.3 (Noninterference) Suppose /0 � e � e � : � t �7� r� ir * and
/0 � C � e � : � t � �7� r � � ir � * , t � is a transparent ground type and ir

�) ir � .
Then C � e � � C � e � � .
Proof: To simplify notation, let unit stand for the least secure
unit type � unit �7�/, � ,9 � (with lowest security) and �/ : unit de-
note the least secure value of type unit. Consider the open term

y : � unit (s �7� ,8� , * � C � � y �/ * < � : s �
It is easy to see that this is a well-formed typing judgement. Con-
sider any /0 � ei : s for i � 1 � 2. Let

di � � � /0 � � λx : unit 5 ei : < > <�? : � unit (s �7�/, � ,9 * � �/5
It is easy to show that � d1 � d2 � R

: unit � s > :=<�> <@? ?
ir � , since ir

�) ir � .
Let

fi � � � y : � unit (s �7�/, � ,9 * � C � � y � * < � : s � � � � x �(di �/5
By Theorem A.7,

� f1 � f2 � Rs �
ir � 5

If f1 � f2 are defined, then by Lemma A.8, f1 � f2. When fi is
defined, it is simple to show that there is a value vi such that fi �
� � /0 � vi : s � � � . Since v1

� v2, we are done.

23 October 1997

