
Calls of the Wild:
Exploring Procedural Abstraction in App Inventor

Isabelle Li, Franklyn Turbak, Eni Mustafaraj
Computer Science Department, Wellesley College

Wellesley, Massachusetts, USA
Email: {ili, fturbak, emustafa}@wellesley.edu

Abstract—One of the most important computational concepts
in any programming language is procedural abstraction. We
investigate the use of procedures in MIT App Inventor, a web-
based blocks programming environment for creating Android
mobile apps. We explore how procedures are used “in the wild”
by examining two datasets of App Inventor projects: all projects
of ten thousand randomly chosen users and all projects of all
prolific users (those users with 20 or more projects).

Our data analysis indicates that procedural abstraction is a
concept that is learned over time by some App Inventor users,
but it is used relatively infrequently, and features like parameters
and returning values are used even more rarely. Procedures
are most frequently called only once, indicating that they are
often used to organize code rather than to reuse it. Surprisingly,
10% of declared procedures are never called, suggesting that this
situation should be flagged by the environment.

I. INTRODUCTION

Blocks programming languages are a popular way to lower
barriers to programming for those with little or no pro-
gramming experience as well as for casual programmers and
even seasoned programmers using unfamiliar domain-specific
languages [1]. For example, MIT App Inventor is a web-
based blocks programming environment for democratizing the
creation of apps for Android mobile devices [2] used by over
5 million people to create over 20 million app projects.1

The open-ended nature of blocks environments like App
Inventor and Scratch (in which many projects are personally
meaningful creations as opposed to more constrained programs
specified as part of coordinated activities like courses) makes
it challenging to investigate what users are learning when
they create a sequence of projects. The long-term goal of
our research is to use learning analytics on large datasets
of projects to identify common conceptual difficulties experi-
enced by App Inventor programmers and to improve the App
Inventor programming environment and associated educational
support materials to alleviate these difficulties [3].

One of the most important computational concepts in almost
every programming language is procedural abstraction—the
notion that a computational pattern can be captured in a (possi-
bly parameterized) declaration (such as a procedure, function,
or method) and can then be used by calling the declared entity
on actual argument values that are used to fill the “holes” spec-
ified by the parameters. Procedural abstraction has numerous
aspects. From a software engineering perspective, it allows

1http://appinventor.mit.edu/ai2stats

code to be decomposed into reusable parts that can be written,
tested, and debugged independently but called multiple times.
Indeed, one App Inventor textbook [4] introduces procedures
in the context of the Don’t Repeat Yourself (DRY) mantra,
a software engineering principle popularized in [5]. From a
cognitive perspective, procedures break programs into smaller
chunks that are easier to think about, so even procedures that
are called only once can help to make programs more un-
derstandable. Procedures also establish an abstraction barrier
that separates the high-level behavior of the procedures from
its low-level implementation details, permitting clients to use
procedures based on their contracts without knowledge of their
implementations, allowing implementers to improve all calls
by changing a single declaration, and supporting the notion of
data abstraction [6].

In this paper, we study how App Inventor programmers use
procedures by using a learning analytics approach based on
two large datasets of App Inventor projects “in the wild”: all
projects of ten thousand randomly chosen users (whom we
call “random users”) and all projects of users with 20 or more
projects (whom we call “prolific users”).

This work makes several contributions to the study of App
Inventor in particular and blocks programming in general:

1) We give insight into how App Inventor programmers
use procedures, a key computational concept essential
for understanding the skill level of users and how they
learn over time.

2) We identify issues with procedure use that can be
addressed by improvements in the App Inventor envi-
ronment and educational materials.

3) The methodology we develop for studying procedures
can be used to study other key computational concepts
in App Inventor and other blocks languages.

II. APP INVENTOR PROJECTS AND PROCEDURES

We start with a concrete example: a MyMoleMash project
that is a variant of a MoleMash tutorial program commonly
used as an example of a simple game and a first program
illustrating procedures (e.g., [4, Ch. 3]).

An App Inventor program is called a project. It can have
multiple screens, each of which is specified independently.
Our example (and most App Inventor projects) have a single
screen. A screen consists of components that are chosen in
a drag-and-drop Designer window (Figure 1). Components

2017 IEEE Blocks and Beyond Workshop

978-1-5386-2480-7/17/$31.00 ©2017 IEEE 79

Fig. 1. Two panes of the Designer window for MyMoleMash.

include visible parts of the user interface. In MyMoleMash,
these are: a sprite named MoleSprite that can be moved
within the canvas MyCanvas; a text label named ScoreLabel

initialized to 0; and a button named ResetButon. A screen
can also have functional components that are not visible
but contribute to app behavior. In MyMoleMash, the only
functional component is the MoleTimer, which specifies an
action that occurs every half second. There are dozens of
other functional components that encapsulate mobile device
features, including a camera, a sound player, a text-to-speech
converter, a speech recognizer, and a GPS location sensor.

The behavior of a screen is specified in the Blocks Editor,
in which visual blocks representing program syntax nodes are
dragged out of drawers of related blocks onto a workspace,
where they are clicked together to assemble programs (Fig-
ure 2). All program behavior is initiated by event handlers
associated with components [7]. In MyMoleMash, there are
three event handlers: MoleTimer.Timer moves the mole
randomly every time it fires; when the mole is touched,
MoleSprite.Touched increments the score and moves the
mole to a random location; and ResetButton.Clicked

resets the score to 0 when the button labeled Reset is clicked.
MyMoleMash has two procedure declarations. MoveMole

is a parameterless procedure that moves MoleSprite to
a random location on the canvas; it is called twice, in
the MoleTimer.Timer and MoleSprite.Touched han-
dlers. DimensionRandom is a procedure with two parame-
ters (canvasDimension and moleDimension) that returns
a random number between 0 and (canvasDimension −
moleDimension); this is called twice in MoveMole to find
random X and Y coords for MoleSprite. App Inventor

procedure declarations can have any number of parameters,
and the corresponding argument positions on the procedure
call blocks are annotated with these parameter names.

App Inventor has two kinds of procedure declarations: (1)
fruitful procedures, like DimensionRandom, that specify a
return value through the result slot, and whose associated
call blocks are value-denoting expressions that compose hori-
zontally; and (2) nonfruitful procedures, like MoveMole, that
do not return a value, and whose whose associated call blocks
are action-performing statements that compose vertically.2

III. RELATED WORK

The work most closely related to ours is an exploratory data
analysis of 233K nonempty recently shared Scratch projects
by Aivaloglou and Hermans [8]. They studied how frequently
certain concepts and abstractions were used in these projects
as evidenced by usage of particular blocks. They found that
7.70% of these projects use custom blocks, which are Scratch’s
way of specifying nonfruitful procedural abstractions. Most
procedures (62.32%) are called exactly once, and 5.06% are
never called. A majority of procedure definitions (55.57%)
have no parameters, while 19.48% have only one. A notable
difference between their work and ours is that they study only
projects, while we study all projects of certain users.

Also closely related to our work is learning analytics
for blocks programming that focuses on how block usage
changes over time in user programs. For example, work on
skill progression in Scratch [9], [10] explores the depth of
projects (measured by total number of blocks used) vs. their
breadth (measured by the number of different blocks types
used). Another Scratch study introduces a notion of learning
trajectory based on the changing vocabulary of blocks used in
projects over time [11].

Adapting Brennan and Resnick’s computational thinking
framework [12] to App Inventor, Xie and Abelson develop
a notion of computational concept that includes six concepts:
procedure, variable, logic, loop, conditional, and list [13]. They
also adapt the Scratch skill progression and learning trajectory
work to investigate the breadth and depth of App Inventor
projects over time, using a subset of the same prolific users
dataset that we use in our work. While the blocks set they
study includes fruitful and nonfruitful procedure declarations
and calls, these are considered together with blocks for the
other computational concepts. In contrast, our work does a
deep dive into the analysis of procedure blocks only.

IV. DATASETS

The App Inventor programming environment is provided
as a web-based service at http://ai2.appinventor.mit.edu. To

2In some languages fruitful and nonfruitful procedural entities are distin-
guished by name (e.g., Pascal’s nonfruitful “procedures” vs. fruitful “func-
tions”) or by return type (e.g., Java’s nonfruitful void methods vs. non-void
fruitful methods). In many languages, such as JavaScript, Python, Scheme,
Standard ML, etc., a single term (such as “function” or “procedure”) is used
for both kinds of declarations, and nonfruitful declarations are distinguished
from fruitful ones by either omitting an explicit return statement or
returning a special or uninteresting “don’t care” value (e.g., Python’s None
value or Standard ML’s unit value).

80

Fig. 2. The Blocks Editor for MyMoleMash. The program has three event handlers (MoleTimer.Timer, MoleSprite.Touched, and
ResetButton.Clicked), the first two of which call the nonfruitful parameterless procedure MoveMole. The body of the MoveMole procedure declaration
contains two calls to the fruitful DimensionRandom procedure, which has two parameters.

use this service, a person must supply credentials for a Gmail
address, at which point they are considered to be “registered”
App Inventor users with an App Inventor account. Any projects
users create and modify are automatically stored in the cloud,
associated with their account.

In this study, we analyze two datasets that were originally
used in other App Inventor learning analytics work by Xie and
his collaborators [13], [14]:

• 10K random user dataset: All projects of ten thousand
users randomly chosen out of all App Inventor users, as
of May 5, 2015. There are 30,983 projects in this dataset.

• 46K prolific user dataset: All projects of all App
Inventor users with at least 20 projects as of March
15, 2016. There are 46,320 such users with a total of
1,546,056 projects in this dataset. 159 of these prolific
users are also in the 10K random users.

Why two datasets? Because the random user dataset was
relatively small, and we knew from a preliminary analysis
that these users had a small average number of projects, we
expected that these projects might not use many procedures.
In contrast, we expected that the prolific users would include
many students taking courses in which they would be likely
to learn about procedures and use them in their projects.

All dataset projects were deidentified, in the sense that
information about a user’s Gmail address was removed, and
each user was subsequently identified only by a user number
(after the order of users was randomized). However, project
names and all other project information was maintained.

Each project is represented by a collection of files that
includes a pair of files for each screen: one that specifies
the components of the project in JSON format, and another
that represents the blocks of the project in an XML format
determined by the Blockly framework. A project also includes
its creation and last modification times. We wrote a Python
program that summarized the component, block, and time
information of each project as a JSON file, and used these
summaries for our subsequent analyses.

Fig. 3. Distribution of the number of projects for both the 10K random
users and the 46K prolific users. The rightmost whisker represents the 95th
percentile. The maximum number of projects is 226 for the random users and
634 for the prolific users.

To give an overall sense for these datasets, we present a few
general statistics. Fig. 3 shows the distribution of the number
of projects for users in the two datasets. For the 10K random
users, the minimum number of projects is 0 (for users who
visited the App Inventor site but never created a project), the
median is 1, the average is 3.1, the 95th percentile is 11, and
the maximum is 226. For the 46K prolific users, the minimum
number of projects is 20, the median is 26, the average is 33.4,
the 95th percentile is 65, and the maximum is 634.

The number of active blocks3 per project is displayed in
Fig. 4. The number of active blocks in a project is a crude
metric for the complexity of the project. This idea is shown
through our two datasets. The distribution of number of blocks
per project is weighted more heavily to the lower numbers for
the random users than the prolific users; indeed the median
is 11 for the former and 23 for the latter. Interestingly, the
maximum number of blocks for a prolific user project is 5,248,
compared to 15,415 blocks by one of the random users. In fact,
there are seven random users with at least one project that
has a greater number of blocks than 5,248. This illustrates a
general feature of the random user dataset: it tends to exhibit
more variability than the prolific user dataset even though it
has less than one quarter of the users and only about 2% of
the number of projects as the prolific dataset.

3Active blocks excludes so-called orphan blocks that appear in the program
but can’t be executed, and so are effectively “commented out”.

81

Fig. 4. The number of active blocks per project for both datasets.

Fig. 5. Proportion of projects that contain n procedure declarations (n > 0).
This chart excludes the 85% of random projects and 82% of prolific projects
that contain no procedures.

V. ANALYSES INVOLVING PROCEDURES

A. Procedure Declarations

Procedures aren’t commonly used in App Inventor: 26,428
(85%) of random user projects and 1,267,643 (82%) of prolific
user projects do not contain any procedure declarations. Fig. 5
shows the distribution of procedure declarations in the re-
maining projects. The percentage of projects with n procedure
declarations decreases in a manner that is roughly 1/n.

User statistics involving procedure declarations differ
greatly between the two datasets. Only 1749 users (17.5%)
of random users have some project in which a procedure is
declared, but 39,873 (86.1%) of prolific users have such a
project; this validates our expectation that the two datasets
would differ in this regard. The large differences between the
(minimum, median) numbers of projects for random users (0,
1) and for prolific users (20, 27) means that prolific users have
many more opportunities to use procedures. Fig. 6 shows a
breakdown of the proportion of users in each dataset that have
n projects with at least one called procedure. As n increases,
this proportion drops fast for random users, but for prolific

Fig. 6. Proportion of users having n projects with at least one called
procedure.

Fig. 7. Project number when users first use procedures

users is flat as n ranges from 1 to 4, after which it drops in a
linear fashion.

Another analysis that distinguishes the datasets can be seen
in Fig. 7. This shows, for all users who eventually call a
procedure in at least one of their projects, the project number
(ordered by creation time) in which they first use a procedure.
For the random users, 65% use a procedure early (within
their first four projects), while this number is only 19% for
prolific users. This suggests that there is a subset of the random
users who come to App Inventor with prior programming
experience, and so start using procedures in their projects
right away. The much lower numbers for the prolific users
suggest that either they come to App Inventor without knowing
procedures (as might be the case for students taking a first
programming course using App Inventor), or, even if they
do have prior programming experience, they start their App
Inventor experience with simple projects of the sort used in
introductory tutorials (which do not include procedures). In a
typical App Inventor course, a project similar to MoleMash

(which uses zero-parameter nonfruitful procedures) would be
introduced after simple apps, perhaps explaining the jump
between projects 5 and 20 for prolific users.

82

(a) Distribution of users by the proportion of their projects with at
least one called procedure This excludes users for whom the ratio is
exactly 0.

(b) Distribution of users by the ratio of (1) the total number of called
procedures they declared (in all projects) to (2) their total number of
projects. This excludes users for whom the ratio is exactly 0. The
rightmost whisker is the 95th percentile. The max random user ratio
is 109 and the max prolific user ratio is 39.27 (omitted here).

Fig. 8. The user population for (a) and (b) is all users with at least one
project in which there is at least one called procedure (1,522 random users
and 39,226 prolific users).

Another procedure declaration analysis distinguishing the
datasets is displayed in Fig. 8, which presents box-and-whisker
plots that show two different distributions of users based
on metrics that involve their use of procedures called at
least once. In all plots, the population is the users that have
some project containing a called procedure, i.e. users who
never use a procedure are excluded. In Fig 8a, the metric
is the proportion of a user’s projects with at least one called
procedure (necessarily between 0 and 1). In Fig 8b, the metric
is the ratio of (1) the total number of called procedures they
declared (in all projects) to (2) their total number of projects.
In both metrics, the 10k random users show greater use of
procedures, again suggesting that a greater fraction of users in
this dataset have previous experience with procedures.

B. Procedure Calls

An analysis of procedures by the number of times they are
called is shown in Fig. 9. The statistics for the two datasets
are remarkably similar. The most frequent number of times a
procedure is called is one (46% for random users and 44%
for prolific users), suggesting that App Inventor procedures
are often used to organize code into more easily understand-
able conceptual chunks than to capture reusable patterns and
avoid code duplication. Although using procedures to enhance
organization is important in textual languages, it is even more
important in blocks languages because of the relatively large
size of blocks compared to their textual analogs means that
the density of code information is lower in blocks languages.

A surprising result is that about 10% of procedures in both
datasets are never called. Why? We initially hypothesized that
many users had dragged a procedure declaration block into
the workspace without understanding its purpose and left it
there. In this case, it would have an empty body. But uncalled
procedures have empty bodies for only 18% of random users
and 16% of prolific users. Fig. 10 shows the distribution of

Fig. 9. Proportion of declared procedures that are called a given number of
times.

Fig. 10. Distribution of number of blocks within the bodies of uncalled
procedure declarations. Rightmost whisker represents 95th percentile. Max
procedure body size is 1136 for random users and 168 for prolific users.

body sizes for uncalled procedures, which cover a wide range.
This suggests that other factors might be involved, such as:

• The project is incomplete. The procedure is under con-
struction, was supplied as starter code, or was copied
from another project, but has not yet been called.

• The procedure was called in a previous version of the
project, but the user removed the calls because they
were no longer necessary. They kept the procedure on
the workspace in case they needed it again. This is
equivalent to “commenting out” a might-be-used-in-the-
future procedure declaration in text-based languages.

• The user does not understand that procedures need to be
called in order to use them. The App Inventor interface
does not help with this misconception; it does not show
any procedure call blocks in the procedure drawer until
after a procedure declaration block has been dragged onto
the workspace.

Our procedure call results are similar to results reported
in a study of 1.7M projects for 540K users of App Inventor
Classic (an earlier version of App Inventor) [15]. That study
found 6% of procedures were never called and that one was
the most frequent number of calls for declared procedures.

C. Parameters

The distribution of parameters in procedure declarations
is shown in Table I. Zero-parameter procedures are very
common, accounting for 80% of procedures for random users
and 71% for prolific users, swamping the numbers for one-

83

TABLE I
FREQUENCY OF PARAMETERS IN PROCEDURE DECLARATIONS.

Number of 10K Random 46K Prolific
Parameters Users Users

0 80.0% 71.3%
1 15.1% 20.0%
2 2.6% 5.1%
3 1.7% 2.5%
4 0.5% 0.8%

5+ 0.1% 0.3%

parameter procedures (15% for random, 20% for prolific) and
all other cases (5% for random, 9% for prolific).

It might be that, in practice, zero-parameter procedures are
what’s needed to provide the appropriate level of abstraction.
But we suspect that that there are other factors involved.

One reason that parameters may be used so infrequently is
that the initial procedure block dragged from the procedures
drawer has no parameters. Parameters can be added by clicking
the gear icon in the upper left corner of the procedure block to
reveal a mini blocks editor that allows adding, removing, and
renaming parameters. But anecdotal experience suggests that
many users don’t know that the gear icon on a block allows
them to change properties of that block.

A second reason for infrequent parameters is that procedures
in online App Inventor tutorials tend to be zero-parameter. For
example, the MoleMash tutorial in [4, Ch. 3], which is used
to introduce procedures, has two zero-parameter procedures.
We modified it for this paper to include a two-parameter
procedure. Of the 62 procedures that appear in the online
tutorials at appinventor.mit.edu and appinventor.org, 40 have
zero parameters, and these appear in the earlier tutorials.

D. Fruitful vs. Nonfruitful Procedures

Table II indicates that in both datasets, nonfruitful pro-
cedure declarations and calls are much more common than
fruitful ones. Again, one reason for this might be the lack

TABLE II
STATISTICS ON FRUITFUL AND NONFRUITFUL PROCEDURE

DECLARATIONS AND CALLS.

Type Total NonFruitful Fruitful
10K Random Users 15,505 13,818 1,687

Procedure Declarations (89.1%) (10.9%)
46K Prolific Users 638,305 554,007 84,298

Procedure Declarations (86.8%) (13.2%)
10K Random Users 32,259 27,940 4,319

Procedure Calls (86.6%) (13.4%)
46K Prolific Users 1,205,737 1,067,630 138,107

Procedure Calls (88.6%) (11.4%)

of fruitful procedure examples in tutorials. Of 62 procedures
that appear in the online tutorials at appinventor.mit.edu and
appinventor.org, only 8 are fruitful, and these appear in 5
tutorials. Another reason may be that rather than returning
values via a return statement (as is commonly done in im-
perative and object-oriented languages), fruitful procedures in
App Inventor specify the return value via a result expression

(a) Results for 10K random users

(b) Results for 46K prolific users

Fig. 11. Skill progression in using procedures, as measured by the proportion
of nth user projects (ordered by creation time) that contain at least one called
procedure.

(as is done in functional languages). But when the fruitful
procedure body involves features like local variables and loops,
this can require using special-purpose blocks that allow the
result value to “flow” to the result socket in the fruitful
procedure declaration. We call this the plumbing problem,
and have found that in practice it can be a barrier even to
experienced programmers.

E. Skill Progression with Procedures

Fig. 11 shows the proportion of nth user projects (ordered
by creation time) that contain at least one called procedure.
Although prolific users necessarily have projects 1 through 20,
not all users necessarily have an nth project for a given n, so
Fig. 11 shows the proportion for all users that do have an
nth project. Both datasets show a proportion of projects with
procedures that fairly steadily grows from a small proportion
for the first project to the range of 20 to 25% for later projects.
There is more variability in the random user data because of
the smaller number of projects having a larger project index.
The growth over project index suggests that users are learning
how to use procedures over time, but the fact that the growth

84

levels off at about a quarter of the projects is worrisome. It
suggests that, after creating a substantial number of projects,
users either aren’t making projects complicated enough to
require procedures, or they’re failing to use procedures when
they should be using them.

We have also made similar charts for skill progression
involving (1) procedures with nonzero parameters that are
called at least once and (2) fruitful procedures that are called at
least once. Space does not permit the inclusion of these charts,
but they are roughly similar in shape to those in Fig. 11 except
for the final level approached (about 10% for procedues with
nonzero parameters and 4 to 6% for fruitful procedures). These
results bolster the conclusion that these two concepts are not
learned well by App Inventor users.

VI. DISCUSSION

A. Threats to Validity

Results about computational concepts from project datasets
will be most meaningful when the projects are original, i.e.,
built from scratch by users based on their own ideas and
current programming skills. However, it is likely that many
projects in our datasets are unoriginal, i.e., they are created
by following online tutorials, doing exercises in a class, or
trying out or making minor modifications to existing projects
shared by others (e.g., via App Inventor’s gallery feature).

A previous study of App Inventor estimated at least 16.4%
of projects were based on tutorials, as determined by project
names [14]. It used a small tutorial set and didn’t consider non-
English versions of the project names, so this is most likely an
underestimate. As part of this paper, we determined that 22%
of procedure names in the random user dataset matched one of
the procedure names used in tutorials at appinventor.mit.edu
and appinventor.org, suggesting that many procedures in our
datasets may be unoriginal, affecting our results.

Another source of unoriginality is that some users have
many similar versions of a project, most likely created as
checkpoints. App Inventor does not provide a mechanism
for saving and restoring an earlier project version other than
making a copy, nor did it have an undo capability until
recently. So saving many versions of a large program is a
strategy to avoid losing work. For example, we discovered
that in Fig. 5, the bump at 8 procedures in the random user
dataset was almost entirely due to one user who had 33 nearly
identical versions of a project with 8 procedure declarations.

To understand what App Inventor users are learning and
what misconceptions they have, we need to filter out unoriginal
projects and focus on original ones. Our plan for doing this is
sketched in [3]. It extends our previous work on determining
project similarity by defining distance metrics between App
Inventor projects represented as feature vectors [16].

B. Improving App Inventor

Our analyses so far suggest several ways to improve App
Inventor with regard to procedures:

• Uncalled procedure declarations are surprisingly com-
mon, so they should be highlighted in some way. App

Inventor currently puts various errors and warnings on
problematic blocks, but uncalled procedure declarations
currently carry no warning. They should, perhaps along
with an easy way to create an associated call block.

• To highlight that procedures declarations need to have
associated caller blocks, there should be additional ways
to create caller blocks for a procedure other than opening
the procedure drawer. For example, hovering over a
procedure declaration with a mouse could open a menu
option for creating a caller block in a way similar to
hovering over a variable declaration gives a menu for
creating getter and setter blocks for that variable [17].

• The procedure drawer could contain examples of decla-
rations with at least one parameter. This would make it
more obvious that App Inventor procedures have param-
eters for those not familiar with using the gear icon to
edit the parameters of a procedure.

• When a user is copying a large block of code from an
event handler or procedure to another, the App Inventor
system might suggest that the user encapsulate that code
into a procedure declaration, and could even automati-
cally generate a candidate declaration.

• Software engineering approaches for automatically de-
tecting opportunities for creating procedures to avoid
code duplication [18], [19] could be adapted to App
Inventor programs to allow an option for automatically
refactoring the blocks on a screen by introducing (pos-
sibly parameterized) procedures and replacing the dupli-
cated code by calls to these procedures.

• App Inventor would benefit from more tutorials involving
procedures (especially fruitful procedures and procedures
with parameters), as well as a help system that provides
documentation/examples for blocks in context—e.g., how
to declare and use procedure parameters and how to solve
the plumbing problem for fruitful procedure bodies.

C. Classifying Users

The App Inventor environment does not collect demo-
graphic data about users, nor does it “know” the role in
which people are using it. Some users come to App Inventor
with significant prior programming experience, while many
are programming newbies. Some users are students taking a
semester-long class and will be engaged with App Inventor for
months; others are casual programmers working on their own
projects; yet others are just trying App Inventor out, perhaps
in the context of an activity like Code.org’s Hour of Code.

A user’s skill level with procedures and other computational
concepts can help to classify them. Other user data, such as
their number of projects, the period in which they’re engaged
with App Inventor, and the overlap of the creation times of
their projects with the project of others, can help to identify
them as members of a coordinated activity, like a course or
club [3]. Some prolific App Inventor users are teachers, which
can often be deduced from the fact that they appear to have
created numerous large projects around the same time when
they upload their students’ projects to grade them.

85

Automatically classifying users in terms of their role and
expertise level could be used to customize the kinds of
suggestions, examples, documentation, etc. that are offered to
them in a more interactive version of App Inventor. Research
in intelligent tutoring systems has long used user modeling to
suggest activities for students based on their skill level [20].
More recent work has indicated that enhancing these models
with student-specific parameters that take into account the
speed of learning improves the predicting power of the models
[21]. Furthermore, data-driven learning of student parameters
can also reduce the need for embedding significant domain
knowledge [22].

VII. CONCLUSION AND FUTURE WORK

Our preliminary exploratory data analysis of procedures in
App Inventor projects indicates that procedures are a concept
that is learned over time, but they are used relatively infre-
quently, and features like parameters and returning values are
used even more rarely. Procedures are most frequently called
only once, indicating that they are often used to organize
code rather than to reuse it. Surprisingly, 10% of declared
procedures are never called, indicating conceptual confusions
and suggesting that this situation should be flagged by the
environment.

With regard to procedures, a next step is to use a feature-
vector representation of projects (1) to filter out unoriginal
procedures and repeat the analysis from this paper to see
how this affects the results and (2) to approximate missed
opportunities for proceduralization in a project.

We also plan to study other App Inventor features that
support abstraction, such as lists, loops, and generic blocks.
Preliminary investigations indicate these are also used rarely
and have associated misconceptions. We hypothesize that the
concrete nature of blocks may encourage a kind of “abstrac-
tionless programming” in which abstraction mechanisms will
be rarely used unless they are somehow taught explicitly,
possibly by interventions from the programming environment.

The similarity between our results and those in the ex-
ploratory analysis of Scratch [8] (e.g., few projects with
declared procedures, most procedures are parameterless, most
common number of times a procedure is called is one) sug-
gests further in-depth investigations involving multiple blocks
languages.

Finally, we imagine using the skill level exhibited with com-
putational concepts like procedures to classify users and enable
customized user feedback from the programming environment.

ACKNOWLEDGMENTS

This work was supported by the Wellesley College Science
Summer Research Program and an IBM Faculty Research
Fund for Science and Math. The App Inventor datasets were
provided by the MIT team’s Jeff Schiller. Our analyses use a
Python project summarization program that builds upon earlier
work by Benji Xie and Maja Svanberg. Maja’s work was
supported by a Wellesley College Faculty Grants and by the
National Science Foundation under grant DUE-1226216.

REFERENCES

[1] D. Bau, J. Gray, C. Kelleher, J. S. Sheldon, and F. Turbak, “Learnable
programming: Blocks and beyond,” Communications of the ACM, 2017,
to appear.

[2] D. Wolber, H. Abelson, and M. Friedman, “Democratizing computing
with App Inventor,” GetMobile: Mobile Computing and Communica-
tions, vol. 18, no. 4, pp. 53–58, Jan. 2015.

[3] F. Turbak, E. Mustafaraj, M. Svanberg, and M. Dawson, “Work in
progress: Identifying and analyzing original projects in an open-ended
blocks programming environment,” in Proceedings of the The 23rd In-
ternational DMS Conference on Visual Languages and Sentient Systems
(DMSVLSS 2017).

[4] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App Inventor 2:
Create your own Android Apps, 2nd ed. O’Reilly Media, Inc., 2014.

[5] A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman
to Master. Addison-Wesley, 2000.

[6] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation
of Computer Programs (2nd ed.). MIT Press, 1996.

[7] F. Turbak, M. Sherman, F. Martin, D. Wolber, and S. C. Pokress,
“Events-first programming in App Inventor,” Journal of Computing
Sciences in Colleges, Apr. 2014.

[8] E. Aivaloglou and F. Hermans, “How kids code and how we know:
An exploratory study on the Scratch repository,” in Proceedings of the
2016 ACM Conference on International Computing Education Research
(ICER ’16), 2016, pp. 53–61.

[9] C. Scaffidi and C. Chambers, “Skill progression demonstrated by users
in the Scratch animation environment.” International Journal of Human-
Computer Interaction, vol. 28, pp. 383–398, 2012.

[10] J. N. Matias, S. Dasgupta, and B. M. Hill, “Skill progression in Scratch
revisited,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16), 2016, pp. 1486–1490.

[11] S. Yang, C. Domeniconi, M. Revelle, M. Sweeney, B. U. Gelman,
C. Beckley, and A. Johri, “Uncovering trajectories of informal learning
in large online communities of creators,” in Proceedings of the Second
(2015) ACM Conference on Learning @ Scale (L@S ’15), 2015, pp.
131–140.

[12] K. Brennan and M. Resnick, “New frameworks for studying and assess-
ing the development of computational thinking,” in Annual Meeting of
the American Educational Research Association, Vancouver, CA, 2012.

[13] B. Xie and H. Abelson, “Skill progression in MIT App Inventor,” in
IEEE Symposium on Visual Languages and Human-Centric Computing,
2016, pp. 213–217.

[14] B. Xie, I. Shabir, and H. Abelson, “Measuring the usability and capabil-
ity of App Inventor to create mobile applications,” in 3rd International
Workshop on Programming for Mobile and Touch, 2015, pp. 1–8.

[15] J. Okerlund and F. Turbak, “A preliminary analysis of App In-
ventor blocks programs (showpiece/poster),” in IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC ’13),
Sep. 2013, abstract available at http://cs.wellesley.edu/∼tinkerblocks/
VLHCC13-abstract.pdf.

[16] E. Mustafaraj, F. A. Turbak, and M. Svanberg, “Identifying original
projects in App Inventor,” in Proceedings of the Thirtieth International
Florida Artificial Intelligence Research Society Conference, FLAIRS
2017., pp. 567–573.

[17] F. Turbak, D. Wolber, and P. Medlock-Walton, “The design of naming
features in App Inventor 2,” in IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC ’14), Aug. 2014.

[18] R. Komondoor and S. Horwitz, “Eliminating duplication in source code
via procedure extraction,” Dept. of Computer Sciences, University of
Wisconsin-Madison, Tech. Rep. 1461, 2002.

[19] T. J. Edler von Koch, B. Franke, P. Bhandarkar, and A. Dasgupta,
“Exploiting function similarity for code size reduction,” in Proceedings
of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems (LCTES ’14), 2014, pp. 85–94.

[20] A. T. Corbett and J. R. Anderson, “Knowledge tracing: Modeling the
acquisition of procedural knowledge,” User modeling and user-adapted
interaction, vol. 4, no. 4, pp. 253–278, 1994.

[21] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon, “Individualized
Bayesian knowledge tracing models,” in International Conference on
Artificial Intelligence in Education. Springer, 2013, pp. 171–180.

[22] S. J. Lee, Y.-E. Liu, and Z. Popovic, “Learning individual behavior in an
educational game: a data-driven approach,” in Educational Data Mining
2014, 2014.

86

