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Abstract—In trying to understand the big picture of how users
learn to program in App Inventor, we want to be able to represent
projects in a way suitable for large scale learning analytics.
Here I present different representations of projects that could
potentially be used to identify App Inventor projects that have
structural similarities to each other, e.g., projects created by users
following tutorials. I compare the different representations based
solely on how accurately they predict the correct tutorial from
a labeled data set. The results suggest that we use both blocks
and components from a project, apply TF-IDF to the counts
of each feature, and measure distance or similarity in terms of
a generalized Jaccard distance. This work lays the foundation
for being able to find clusters of similar projects to distinguish
original from unoriginal projects and to be able to filter out
similar projects when trying to determine a user’s skill level.

I. INTRODUCTION

App Inventor is an online programming environment that
lets users build their own smart-phone apps using a blocks
programming language. Formalizing a notion of structural
similarity between projects enables us to apply large scale
learning analytics to the App Inventor environment. This
notion facilitates filtering out unoriginal [1] projects, e.g.,
projects created following tutorials, when analyzing projects
for computational thinking and promises to be more effective
than attempts (e.g., [2]) based solely on project names. A
formal definition of similarity allows performing unsupervised
machine learning algorithms and discovering linked projects,
e.g., collocated classroom activities and collaborative projects
between users [3]. Knowing which projects are unoriginal, we
may be able to filter out these to better assess a user’s skill
level for particular constructs and concepts, e.g., procedural
abstraction [4] Accurate identification of tutorials would make
it possible to revisit work on skill progression in App Inventor
([5], [6]) to determine the impact of tutorials.

II. DATA SET

I use a data set consisting of 894 projects from 16 students
who took a Fall 2015 Wellesley CSO course based on App
Inventor. Students created projects in lecture and in lab, as
well as in five assignments that involved creating original
projects. Their projects were compared to a set of 169 tutorials
used in the course, drawn from the App Inventor website,
App Inventor Maker Cards, and in-class exercises from the
Wellesley course. They were labeled by category using name,
date, and structural observations. 310 of the projects could not
be identified as any specific tutorial, and are ignored in this
study.
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III. METHOD

I set out to explore how different representations of projects
behaved when trying to establish similarity in relation to
other projects. I look at similarity measures that differ by
feature selections, normalization, and distance metrics between
vectors. I evaluate these on the data to determine which is
best, both for recall, and for having the potential to determine
where to establish a threshold for what should be considered
“the same® project.

In App Inventor, users build projects using components,
which define the user interface and functionality, and blocks,
which define the behavior of the components. The feature
selections consider which combination of blocks and com-
ponents to use, both, just components, or just blocks. While
my explorations included bigrams, consisting of a tuple of
each block and its top block, here I consider only unigrams.
For feature normalization, I consider TF-IDF (term frequency
over inverse document frequency) feature scaling [7][8], binary
values, and counts. TF-IDF is meant to give more weight
to less common blocks, whereas binary values only indicates
whether a block is present in the project. Where p and q are
vectors, and D are the dimensions, the four distance metrics I
am using, Euclidean, Cityblock, a generalized Jaccard (hereby
referred to as Jaccard*), and Cosine, are defined as:
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I measure the results in terms of recall of how many projects
were correctly classified as the right category based on a
nearest neighbor approach.
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IV. RESULTS

The differences in how the difference metrics performed
were small, but for our purposes, we can see in Figure 1 that
out of the metrics, Cosine and Jaccard* slightly outperformed
Euclidean and Cityblock. From Figure 2, it becomes clear

117



Distance metrics
1.0

_ 06 | ‘ | |
= i BN L BN
O
0]
T 04
0.2 — Closest Project
—— 2 Closest Projects
3 Closest Projects
0.0

Cosine Jaccard* CityBlockEuclidean
Fig. 1. Box plots of distance to the closest tutorial, grouped by the four
different metrics. The three subsections per metric represents closest, 2"
closest, and 3™ closest tutorial. The whiskers include all projects.
Blocks and Components

1.0

0.8 _

0.6

Recall

0.4

0.2 —— Closest Project
2 Closest Projects
3 Closest Projects

0.0

Components  Blocks Both
Fig. 2. Box plots of distance to the closest tutorial, grouped by the three
combinations of blocks and components. See Fig.1 for details.

that components on their own are not a good measurement,
and similarly adding them to representations that already
accounts for blocks does not do very much. As for feature
normalization, we can see in Figure 3 TF-IDF had the overall
strongest performance.

V. DISCUSSION AND FUTURE WORK

Not only did they perform better than their counterparts,
but Cosine and Jaccard* might be the most useful to find a
normalized notion of similarity as they normalize all distances
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Fig. 3. Box plots of distance to the closest tutorial, grouped by the three
normalizations. See Fig.1 for details.
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to a value between 1 and 0. To distinguish between the two,
we know that Jaccard* also takes into account difference in
size, and hence, we might prefer Jaccard* to Cosine. Since
components added very little to the recall, we can conclude
that most of the characteristics of a project is in the blocks
rather than the components. However, we might still want
to represent the components in our vector, as they might
distinguish the design of the screen, such as arrangements.
However, there are limitations:

1) The data set is small, and not a random subset of users.
It is yet to be determined whether the patterns of those
learning to use App Inventor in this classroom differ
from those learning it elsewhere.

2) The tutorials I am using as references are not equidistant
from each other.

3) Projects were manually labeled using a combination of
creation date, project name, and structure. However, this
might not necessarily reflect the user’s intent of trying
to follow a tutorial.

Going forward, I would like to find a “threshold” that would
serve as a cutoff for finding similar projects “in the wild”,
be they tutorials, or other unknown patterns users follow. By
finding these tutorials, we could automatically expand our
labeled data set of tutorials, which would empower us to apply
machine learning algorithms to gain more insight into user
habits.
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