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Abstract—Work on code smells (undesirable programming
patterns) in blocks languages has found that programmers often
duplicate blocks code rather than abstracting over common pat-
terns of computation using procedure-like features. For example,
previous analyses of over a million MIT App Inventor projects
have revealed that procedures are used surprisingly rarely in the
wild and that many users miss opportunities for using procedural
abstraction to avoid code duplication in their projects.

In this work, we use data analysis to explain how particular
features of App Inventor create barriers to abstracting over event
handlers. In many cases, duplicated code in event handlers cannot
be extracted into a procedure without using so-called generic
blocks that abstract over a particular component (e.g., a label).
Generic blocks are rarely used in practice, possibly because
programmers do not know about them or find them difficult
to use. But even proceduralization with generic blocks does not
remove the need for duplicating the event handlers themselves.

We address these issues with two enhancements to App
Inventor. First, we add generic event handlers, a new form
of abstraction that allows specifying a single handler for all
components of a particular type. Second, we add a way to
easily convert between specific and generic blocks to facilitate
genericization, that is, abstracting actions over a particular
component to apply to a group of components of that type.

We also discuss related design choices and ways to encourage
programmers to use the new features to avoid code duplication.
Our work is an example of data-informed programming language
design, in which the creation or modification of features is
informed by the analysis of large datasets of programs from
the language’s target audience.

Index Terms—blocks programming, abstraction, procedures,
code duplication, code smells, refactoring

I. INTRODUCTION

Abstraction — the notion that systems can be understood
and organized in ways that emphasize high-level processes and
structures and suppress inessential information — is a key big
idea in computer science. One form is procedural abstraction,
where common computational patterns are captured via pa-
rameterized entities like procedures, functions, and methods
whose behavior can be described by high-level specifications
that hide the low-level implementation details. Computation
can be expressed by invoking these entities on appropriate
arguments rather than by duplicating code, making programs
easier to read, write, debug, and modify.

Previous research suggest that procedural abstraction is
underutilized in blocks programming languages. Studies of

Scratch programs find that code duplication is a common
code smell (i.e., undesirable programming pattern) [1], [2].
One study [3] of 1.5M App Inventor projects made by 46K
prolific users (those with 20 or more projects) revealed that
procedures are used surprisingly rarely in the wild. A followup
study on the same dataset [4] found that over 86% of prolific
users missed an opportunity for using procedures to avoid code
duplication on certain patterns involving at least five blocks.

Code duplication is considered undesirable in most pro-
gramming contexts. Indeed, it is listed as the first “bad smell”
in Fowler’s Refactoring book that introduced the term [5]. It
can occur anywhere, but one study of student code quality in
Java suggested that it is much less common in Java than in
blocks languages [6]. Why might duplication be so common
in blocks languages? The authors of [6] hypothesize that
one reason is that these languages are targeted at a younger
audience. Another reason may be that these languages are
often used outside of traditional instructional contexts by
people with little or no programming background, so they may
not have been introduced to procedural abstraction or may not
appreciate its benefits. The lack of object-oriented features in
many popular blocks languages might affect aspects of code
duplication relative to Java. Additionally, blocks programming
environments make it very easy to copy/paste conceptual
chunks of code and edit the copies, and there may be more
(real or perceived) work to create and call procedural entities,
at least for a small number of calls.

In this work, we focus on a different reason: the language
and its environment may have specific barriers to abstracting
over particular patterns. For example, Scratch’s custom blocks
cannot specify outputs and thus do not support procedural
abstractions that return values. In App Inventor, we have
discovered that capturing common code patterns in the bodies
of event handlers often requires using so-called generic blocks
that abstract over a component type (e.g., Label). Generic
blocks are rarely used in practice, possibly because program-
mers don’t know about them or find them difficult to use. But
even using procedures with generic blocks does not remove
the need for duplicating the event handlers themselves.

In this paper, we make several contributions to lower these
barriers. First, we show that event handler duplication in App
Inventor is common in practice and often involves generic
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blocks by analyzing over 1.5M user projects.1 Second, we
extend App Inventor with generic event handlers, a new
form of abstraction that allows specifying a single handler
for all components of a particular type, and describe issues
encountered when using this feature. Third, we add a way to
easily convert between specific and generic blocks to facilitate
genericization, that is, abstracting actions on a particular
component to apply to a group of components of that type.
Finally, we describe other language design issues that still need
to be resolved in this context and how users can be encouraged
to use our extensions to avoid event handler duplication.

Our work is an example of what we call data-informed
programming language design, in which language constructs
are chosen or modified based on evidence from large datasets
of programs from users targeted by the language.

II. APP INVENTOR AND PROJECT DATASETS

MIT App Inventor is a browser-based programming envi-
ronment that democratizes the creation of mobile apps for
Android devices [7]. For each screen of an app, a user first
creates the user interface by dragging and dropping visual
components (e.g., buttons) and behavioral components (e.g., a
camera). Then the user specifies the behavior of these compo-
nents by assembling blocks for these components in a blocks
programming editor. In addition to supporting component-
specific behaviors, the App Inventor blocks language supports
traditional programming constructs like global and local vari-
ables, conditionals, loops, and procedures.

The App Inventor programming environment is provided as
a free web-based service at http://ai2.appinventor.mit.edu. Any
projects users create and modify are automatically stored in
the cloud, associated with their Google account.

Our work involves analyzing two datasets of App Inventor
projects used in several previous studies [3], [4], [8], [9]:

• 10K random user dataset: All projects of ten thousand
users randomly chosen out of all App Inventor users, as
of May 5, 2015. There are 30,983 projects in this dataset.

• 46K prolific user dataset: All projects of all App
Inventor users with at least 20 projects as of March
15, 2016. There are 46,320 such users with a total of
1,546,056 projects in this dataset. 159 of these prolific
users are also in the 10K random users.

These datasets, provided to us by the MIT App Inventor
development team, were collected from the project cloud
store. All dataset projects were deidentified, in the sense that
information about a user’s email address was removed, and
each user was subsequently identified only by a user number
(after the order of users was randomized). However, project
names and all other project information was maintained.

Each project consists of a collection of files that includes
for each screen a JSON file specifying the components and a
Blockly XML file representing the blocks program. For this

1Some results (but not the algorithm) for a similar proceduralization
analysis were previously presented in a 2-page extended abstract for a talk
at another workshop that had no proceedings [4]. In Sec. IV, we describe in
detail the algorithm and results for a slightly different analysis.

Fig. 1. The user interface for a brick breaker game for one of the prolific
users. It has 30 stationary red bricks, a black paddle, a green ball, a score
label, and a reset button. The ball bounces off the paddle, bricks and side
walls of the canvas, but a brick also disappears whenever a ball bounces off
it. The game ends when the ball hits the bottom wall of the canvas.

study, the second and third authors wrote a Python program
that converted each project to a single JSON file combining
all component and block information for all screens. This file
format, which we call JAIL (JSON App Inventor Language),
facilitates analysis of the abstract syntax trees for the blocks
programs. Conversion to JAIL format failed for a small number
of projects, so we ended up analyzing 30,851 of the 10K users,
and 1,545,284 of the 46K users.

Some results of an earlier study on App Inventor procedures
[3] are relevant here:

• Only 15% of the random user projects and 18% of
the prolific user projects contain at least one procedure
declaration. Whereas only 17.5% of random users have
some project in which a procedure is declared, 86.1% of
prolific users have such a project, indicating that prolific
users are more likely to use procedures.

• About 10% of declared procedures in both datasets are
never called, suggesting confusion on how to use them.

• 46% of declared procedures of random users and 44%
of those of prolific users are called only once, indicating
that they are often used for the purpose of organizing
code rather than to eliminate code duplication.

• 80% of procedures for random users and 71% of proce-
dures for prolific users have zero parameters, bolstering
the impression that they are not being used to capture
nontrivial computational patterns.

III. EVENT HANDLER AND PROCEDURE EXAMPLE

The program for an App Inventor screen is expressed
as a collection of event handlers along with procedure and
global variable declarations [10]. To illustrate issues with event
handler duplication, procedures, and generic blocks in App
Inventor, we present key aspects of a brick-breaker game from
the prolific dataset. Fig. 1 shows the user interface for this
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Fig. 2. A collision handler for Brick1 that specifies what happens when it
is hit by the ball. There are 30 copies of this handler (one for each red brick)
in the project, so the project has significant code duplication.

game, which has 30 red bricks. Fig. 2 shows the collision
handler for an ImageSprite component named Brick1,
There are no procedures in this project; this handler is copied
for each of the 30 bricks, causing significant code duplication.

Fig. 3 shows an alternative way to express the collision
handler for Brick1 that uses so-called generic blocks for
Brick1’s CollidedWith method call and its Enabled and
Visible property setters. In contrast with the specific blocks
for the method call and property getters used in Fig. 2 (where
a specific component is hardwired into the block), the generic
blocks allow the component to be specified as a value. Users
are unlikely to create the version of the handler in Fig. 3,
but it is an intermediate step that explains generic blocks,
motivates the proceduralization in Fig. 4, and reappears in the
later discussion of specific/generic conversion in Sec. VI.

Fig. 3. An alternative collision handler for Brick1 that uses generic blocks
for Brick1’s CollidedWith method call and its Enabled and Visible
property setters.

Fig. 4 shows how a handleBallCollisionWith pro-
cedure can abstract over the pattern of the CollidedWith

handler for all 30 bricks. Unfortunately, in the version of
App Inventor before the work reported here, there was no
way to abstract over the same kind of handler for different
components of the same type. So it would still be nec-
essary to have 30 copies of the CollidedWith handler,
one for each brick, even though the body of each is much
simpler than before (consisting of a single call block for
the handleBallCollisionWith procedure with the correct
component block). This example shows that procedures could
eliminate much, but not all, of the code duplication in the
previous version of App Inventor (before our enhancements).

Fig. 4. Yet another alternative collision handler for Brick1 that calls
a handleBallCollisionWith procedure, passing a Brick1 compo-
nent block as the actual argument value for the brick parameter of the
procedure. In the version of App Inventor before our work, the single
handleBallCollisionWith procedure could be called for all 30 bricks,
but there would still need to be 30 distinct CollidedWith handlers because
there was no way to abstract over the component for a handler. So procedures
could remove much of the code duplication, but not all of it.

IV. EVENT HANDLER DUPLICATION STUDY

How commonly do nearly duplicate copies of event handlers
(as in Sec. III) occur in practice? To answer this question,
the second and third authors developed an algorithm to find
nearly duplicate event handlers. Originally, the second author
designed an algorithm to determine which event handlers
have bodies that can be replaced by calls to an appropriate
procedure [4]. But with the advent of generic event handlers
(see Sec. V), the goal is now to find which event handlers can
be replaced by an appropriate generic event handler.

A. Event Handler Equivalence Algorithm

The key idea of the algorithm is to specify an equivalence
relation on event handlers such that two handlers are equivalent
if there is a generic event handler that abstracts over them.
Recall that an equivalence relation is one that is reflexive,
symmetric, and transitive, and it partitions the elements of a
domain into equivalence classes. Given all the event handlers
in one screen of a project, we wish to partition them into
equivalence classes such that the behavior of all the handlers
in each class with more than one handler can be described by
one generic event handler.

The equivalence relation works on the abstract syntax trees
(ASTs) of the event handlers. Each block corresponds to an
AST node. If a block B has sockets on the right, blocks
plugged into those sockets are expression nodes that are
children of B’s node (ordered from top to bottom). Blocks
that compose vertically are statement nodes, and a maximal
length vertical sequence of blocks can be viewed as a single
sequence statement node whose n children are the n individual
nodes of the sequence (again ordered from top to bottom).
Statement nodes serve as children in a few blocks, such as the
branches of conditionals and the bodies of event handlers and
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procedures. Event handlers, procedure declarations, and global
variable declarations are top-level nodes that are the roots of
distinct ASTs.

For simplicity, two event handler ASTs are considered
equivalent if and only if they have exactly the same nodes-
with-children tree structure and the corresponding nodes have
the same node type, which is defined as follows:

• Literal leaf nodes have node types like boolean,
number, string, and component block. E.g., since 17
and 42 both have node type number, they are considered
equivalent even though the values are different.

• Getter blocks for global variables all have node type
getGlobal regardless of the variable name. Simi-
larly setter blocks for global variables have node type
setGlobal. (See Fig. 10 for an example of a global
variable.) So references to global variables with different
names are equivalent. This allows abstracting over event
handlers that reference different globals in the same AST
position, a pattern that occurs commonly in practice but
requires special handling when abstracting.

• In contrast, getters and setters for local variables have the
variable names baked into their node type. For example,
the getter for the brick variable in Fig. 4 has node type
getLocal_brick. So references to local variables with
different names are not equivalent.

• Perhaps the most interesting cases involve com-
ponent event handlers, method calls, and property
getters & setters, because these node types al-
low abstracting over different component types with
generic blocks. These use the type of the compo-
nent (rather than its name) but include the name of
the property or method. So the node type of set

Brick1.Enabled is set ImageSprite.Enabled and
the node type of when Brick1.CollidedWith is
event ImageSprite.CollidedWith.

Other cases are straightforward, except that a procedure call
node type includes the procedure name, and a local variable
declaration node type includes the declared variable names.

With this notion of AST equivalence, the CollidedWith

handlers like the one in Fig. 2 for all 30 bricks in the
brick-breaker app are in the same equivalence class. Note
that equivalence would still hold if some bricks were worth
more points or updated a different label from points. This
makes sense intuitively, because a procedure whose arguments
include the brick component, the point value, and the point
label component could still abstract over all the handlers.

B. Results on App Inventor Datasets
We applied the event handler equivalence algorithm to 10K

random and 46K prolific datasets described in Sec. II. Some
key results are summarized in Tab. I, in which equivalence
classes are restricted to only nontrivial classes with more
than one handler — i.e., each such class is an opportunity
to abstract over code duplicated in multiple handlers.

A few results stand out. Event handler duplication was
common in both datasets: 28.9% of 10K programmers and

Feature 10K random 46K prolific
number of programmers 10,000 46,320
number of projects analyzed 30,851 1,545,284
number of screens analyzed 33,381 1,773,251
duplicated handler equivalence classes 12,932 558,944
median, avg, max handlers in class 3, 4.1, 88 3, 3.8, 80
median, avg, max blocks in duplicated
handler 3, 8.2, 1,811 3, 5.0, 86

pct of equiv classes with proc call body 2.7% 5.5%
pct of equiv classes requiring generics 36.0% 33.2%
pct projects with duplicated handlers 21.2% 20.2%
pct programmers with duplicated
handlers 28.9% 95.6%

TABLE I
RESULTS SUMMARY FROM EVENT DUPLICATION STUDY

95.6% of 46K programmers had a least one event handler
duplication; and 21.2% projects in the 10K dataset and 20.2%
of projects in the 46K dataset exhibited such duplication.

The number of blocks in each of the duplicated handlers
tended to be very small (median of 3 in both groups), though
there was a remarkable outlier of 1,811 blocks in the 10K
group. Moreover, the size of each equivalence class (i.e., the
number of duplicated handlers it contains) also tended to be
small. Fig. 5 shows histograms of these two statistics for
the 46K dataset (ignoring outliers), which includes only the
nontrivial equivalence classes (i.e., number of handlers � 2);
distributions for the 10K dataset were remarkably similar.

a b
Fig. 5. Distributions in the 46K dataset for (a) the number of blocks in
duplicated handlers and (b) the number of duplicated handlers in nontrivial
equivalence classes.

A different picture emerges in Fig. 6, which shows the dis-
tributions of the maximum of these statistics for the subset of
programmers having nontrivial equivalence classes (i.e., those
counted in the last row of Tab. I). Such programmers tend
to be impacted in at least one project by handler duplication
where the blocks per duplicated handler and/or equivalence
class sizes are larger than suggested by Fig. 5.

a b
Fig. 6. Distributions in the 46K dataset for programmers with at least one
duplicated handler for (a) the max number of blocks in the handlers of an
equivalence class and (b) the max number of handlers in the equivalence class.

About 2.7% of 10K and 5.5% of 46K nontrivial classes “do
the right thing” in terms of having a handler that consists only
of a call to a procedure, presumably one that abstracts over
other duplicated code for the handler, as shown in Fig. 4.

Based on the equivalence relation, abstracting over the
handlers in an equivalence class will require generic blocks

66



Percentages 10K random 46K prolific
nongeneric method, getter, & setter blocks 40.3% 44.6%
generic method, getter, & setter blocks 0.014% 0.21%
projects using generic blocks 5.0% 5.1%
programmers using generic blocks 9.2% 57.1%

TABLE II
STATISTICS INVOLVING THE USE OF GENERIC BLOCKS.

when a node has a component node type (such as set

ImageSprite.enabled) that is instantiated to different com-
ponents in different members of the equivalence class (such
as Brick1 and Brick2). A generic block is the only way to
abstract over this difference. Note that 36.0% of handlers in
the 10K dataset and 33.2% in the 46K dataset require generic
blocks. This is an important result, because generic blocks are
used relatively rarely in the wild (Tab. II). Whereas specific
component method calls and property getters & setters account
for (40.3%, 44.6%) of all blocks in the programs of (random,
prolific) users, generic versions of these blocks account for
only (0.014%, 0.21%) of all blocks, and such blocks are used
only in about 5% of projects in both groups. This may be
because programmers do not know about them (previously,
they were very poorly documented and did not appear in
standard tutorials) or find them difficult to use. So it is not
surprising that code duplication is common in situations where
generic blocks would be required to remove it. While only
9.2% of random users have some project using generic blocks,
57.1% of prolific users do, suggesting that most of them are
eventually exposed to these blocks.

The results reported here differ substantially from those
reported in an earlier version of this work [4]. The main reason
is a difference in assumptions; the earlier work assumed it was
not worthwhile to create procedures that had fewer than five
blocks in their body. In this study, it is expected that generic
event handlers will be used as the abstraction mechanism
instead of procedures, and there is a benefit for using these
even in situations where the handler body size is small.

V. GENERIC EVENT HANDLERS

A. Motivating Example

Since the launch of MIT App Inventor in December 2013,
the MIT App Inventor team was aware of the inelegance of
of abstraction pattern illustrated in Fig. 4, where a procedure
captures the body pattern of similar event handlers, but the
handler itself must be copied for each component. Also,
several users have requested a more elegant mechanism to
deal with this problem. But it wasn’t until the precursor of the
study described in Sec. IV that it became clear how pervasive
the problem was and how important it was to solve it.

The study inspired the first author to recently extend App
Inventor with generic event handlers, a new feature that
makes it possible to eliminate the cumbersome and inelegant
duplicate-handler-with-procedure-call in Fig. 4. For example,
Fig. 7 shows a single generic event handler for ImageSprite
components that handles all 30 bricks, without a procedure like
handleBallCollisionWith in Fig. 4 or distinct handlers
for each brick. When an event E occurs on a component

Fig. 7. A single ImageSprite handler that will handle all 30 bricks. The
component parameter is automatically instantiated to all ImageSprite
components, which include the 30 brick components and the paddle compo-
nent. The notAlreadyHandled parameter is a boolean value that is true
if and only if a more specific handler for the component does not exist. The
project contains a specific handler for the paddle (not shown here), so this
generic handler will not apply to the paddle.

C (e.g., Brick1), if there is a specific handler HS for
event E on C (e.g., when Brick1.CollidedWith), handler
HS’s code runs. Then, if there is a generic handler HG

for event E on the type of component C (such as when

any ImageSprite.CollidedWith), HG’s code runs. The
component parameter holds a reference to the component,
so it serves the same purpose as the brick parameter in the
handleBallCollisionWith procedure in Fig. 4.

The notAlreadyHandled parameter is a boolean value
that is true if and only if a specific handler for the event
on component does not exist. In the case of the when

any ImageSprite.CollidedWith handler, it is used in a
conditional test to control which ImageSprites are controlled
by this handler. In particular, in the brick-breaker game, the
paddle is also an ImageSprite component, but it should not
be treated like a brick; although the ball should bounce off the
paddle, that should not cause the paddle to disappear or the
score to be incremented. The specific handler in Fig. 8 causes
notAlreadyHandled to be false in the generic handler in
Fig. 7, so the brick-specific code is not executed for the paddle.

Fig. 8. The CollidedWith handler for the paddle in the
brick-breaker game. This specific CollidedWith handler causes
notAlreadyHandled to be false in the generic CollidedWith
event handler for ImageSprites in Fig. 7.

B. Associating Extra Information with Components

When the body of an event handler is proceduralized, as
in Fig. 4, in general there could be many arguments to the
procedure, which might or might not include the component.
For example, Fig. 9 shows some core blocks of a xylophone
app from an introductory App Inventor textbook [11]. Each of
eight xylophone keys is represented as a rectangular colored
button that, when pressed, both plays a note and records it for
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Fig. 9. Core blocks in a textbook xylophone app in which each key is
represented as a button that both plays a note and records it for later playback.
Only two of the eight Button.Click handlers are shown. Each just calls
the PlayNote procedure with a number for the corresponding note to be
played and recorded.

Fig. 10. One way to specify a single generic event handler to replace the
xylophone key button handlers in Fig. 9. The note number is determined
from the component by looking up its (1-based) index in a global list of
button components. Only two of the eight buttons is shown in the list.

later playback. Notes are stored in audio files named 1.wav

through 8.wav. The PlayNote procedure takes a note number
as its only argument, sets the Source property of a Sound

component to the corresponding audio file, records the note
and timing information in two global lists, and finally plays
the audio file. Each of the eight button handlers (for brevity
only two are shown in the following examples) just calls the
PlayNote procedure with an appropriate numeric argument.

There are a multitude of ways to replace the eight specific
xylophone key button handlers with a single generic handler.
All involve associating the correct note information with each
key button component in such a way that it can be determined
from the component. One approach is shown in Fig. 10, which
determines the note number for a key button by looking
up its (1-based) index in a global list noteButtons of all
the key buttons. The notAlreadyHandled conditional is
essential since the app also has playback and reset buttons
whose behavior is controlled by specific button handlers. The
PlayNote procedure is no longer really necessary; its code
blocks could be inlined within the when any Button.Click

generic handler, but we keep it for simplicity.
This approach leverages a clever choice of audio file names

involving numbers. More generally, the note files might have
names involving LowC, D, E, F, G, A, B, and HighC. In that
case, the depicted solution could be adapted to have a parallel
global list of note file names, and the key button index could

Fig. 11. This variant of Fig. 10 uses nested conditional expressions to map
each button component to its corresponding note value. The empty else
socket would be filled with more blocks to handle the rest of the buttons.

Fig. 12. This alternative to Fig. 10 uses a dictionary to map each key to its
corresponding note value.

be used to extract the corresponding note file name.
There are many other ways to associate arbitrary extra

information with components:

• Use nested conditional expressions that return the infor-
mation for each specific component based on an equality
test with the component parameter of the generic event
handler. This is illustrated in Fig. 11.

• Create a global association list of component/info pairs,
where each pair is itself a two-element list. App Inven-
tor is equipped with a look up in pairs block that
performs the desired lookup.

• App Inventor does not yet support a dictionary datatype,
but there are plans to add one [12]. Dictionaries could
model any association between a component and addi-
tional information, as shown in Fig. 12. While the version
reported in [12] was constrained to only string keys, that
restriction has been relaxed to allow components as keys.

• App Inventor can be extended so that each component
has a special Datum property that allows any piece of in-
formation to be associated with that component (Fig. 13).
Since the datum can be a list or (eventually) a dictionary,
in practice any number of pieces of information can be
associated with a component.

• A variant of associating a single Datum property with
each component is for every component to allow any
number of user specified settable and gettable properties,
in the spirit of MacLisp’s putprop and get operations
on symbols, which supported a early kind of object-based
programming. Fig. 14 shows how the semantics of custom
component properties might be realized in App Inventor.
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Fig. 13. This variant of Fig. 10 uses a datum associated with each button to
map it to its corresponding note value.

Fig. 14. This Fig. 10 variant uses custom component properties similar to
MacLisp’s get/putprop functionality to associate note values with buttons.

C. Leveraging Component Names
Naming variables based on their purpose or function is

widely considered to be best practice in software engineering
as it aids in readability and maintainability of code. Because
component names could hold useful information about the
functionality of the system, one option would be to extend
the language so that programmers could obtain the name of a
component as a string or obtain a component given its name.
Many of the examples in Section V-B include code to establish
a mapping between a component and relevant data. This
manual construction can be abstracted away in the form of
code that performs a substitution so that mapping need not be
updated as the app is extended. This approach, called coding
by convention, is used in some domain specific languages,
such as Grails (http://docs.grails.org/latest/guide/single.html#
conventionOverConfiguration). It serves as another abstraction
that users can employ to reduce code complexity through the
principle of Don’t repeat yourself (DRY).

For example, consider a version of the xylophone app in
which the buttons are named Low_C_key, D_key, etc. By
adding the ability to access the names of the components
in the language, the suffix _key can be replaced with .wav

to construct the file name of the corresponding sound file.
Adding a new sound simply requires appropriately naming a
new button. Alternatively, if a Player component is added
corresponding to each Button, one could dynamically map
Buttons to Players by making name substitutions at runtime.
Fig. 15 shows an example of repurposing the integer in a
xylophone button name to play a note.

VI. SPECIFIC/GENERIC CONVERSION

Manually converting the specific event handler in Fig. 2
to the generic event handler in Fig. 7 is a tedious process
requiring many steps. Specific component method calls and
property getters/setters must be disconnected from the event
handler, corresponding generic blocks must be selected from
a blocks menu drawer, argument block subassemblies need to

Fig. 15. A variant of Fig. 10 where data for the app logic (in this case the
note number) is extracted from the button name rather than using an explicit
mapping. App Inventor treats strings containing only digits as numbers. The
green Button.name of component block does not yet exist in App
Inventor, but is being considered.

be moved from the specific blocks to the generic blocks, the
generic blocks must be connected back to the event handler
(possibly with conditionals to distinguish subcategories of
components), and the specific blocks need to be deleted.

In a cognitive perspective on notation, cumbersome nota-
tional changes like this are said to have high viscosity [13],
[14]. Reducing viscosity is sometimes explicitly mentioned as
a design goal for editing features in blocks languages (e.g.
[15]) and closely-related structure editors, like Stride’s frame-
based editor [16].

In addition to the primary goal of supporting better event
handler abstraction, a secondary goal of our work is to
reduce the viscosity of genericization, which is the process
of converting code that uses specific component blocks into
code that uses generic blocks. Towards this end, we modified
the App Inventor environment to include block context menu
items that allow users to easily convert between specific
and generic component methods and property setters & get-
ters. For example, clicking the Make Generic context menu
option for the nongeneric blocks Brick1.CollidedWith,
set Brick1.Enabled, and set Brick1.Visible in Fig. 2
would yield the corresponding generic blocks in Fig. 3.
Similarly, clicking the Make Specific context menu option
for the three generic blocks in Fig. 3 would convert them back
to the corresponding nongeneric blocks in Fig. 2.

There is even a Make Generic context menu option for
the Brick1.CollidedWith handler block in Fig. 2 that
will automatically convert it to the blocks in Fig. 16, which
is almost the same as the blocks in Fig. 7 except for the
missing if notAlreadyHandled wrapper. Because there
can be arbitrary conditionals within a generic event handler
that depend on the desired semantics for the given project, such
conditionals must be manually inserted by the programmer
and cannot generally be automatically deduced. For a similar
reason, there is no Make Specific context menu option for
generic event handlers.

The Make Generic context menu option facilitates gener-
icization. We hypothesize that this menu option will help
users generalize handlers, procedures, and block assemblies
involving particular components to more abstract versions
that can involve some subset of (possibly all) components
of a particular type. We also hypothesize that the Make

Generic and Make Specific context menu options will
raise awareness about generic vs. nongeneric blocks, which, as
noted earlier, are rarely used in the wild. However, user studies
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Fig. 16. This handler is the same as the one in Fig. 7 except that it does
not include the if notAlreadyHandled wrapper around the remaining
body blocks of the handler. This is the result of selecting the Make Generic
option for the handler in Fig. 2.

and analyses of projects edited with the enhanced system will
need to be undertaken to evaluate these hypotheses.

VII. DISCUSSION AND FUTURE WORK

Thunkable (https://thunkable.com/) is a commercial ver-
sion of App Inventor with some advanced features not in
MIT App Inventor. The Thunkable team independently de-
veloped a version of generic handlers. They do not use a
notAlreadyHandled flag to control the application of
generic vs. specific handlers for a component. Instead, all
handlers for a component are run in parallel by interleaving
execution of the code in their bodies; within a generic handler,
conditional tests on component values can be used to control
the behavior of specific components. Thunkable also supports
custom user properties for components, which allows associ-
ating data with components along the lines shown in Fig. 14.
Thunkable does not have a feature for converting between
specific and generic blocks.

Our work has focused on a particular kind of code duplica-
tion in App Inventor: event handlers whose code bodies have
ASTs with the same shape. Anecdotally, we have observed
other kinds of code duplication we plan to investigate in the
future, including: (1) event handler bodies whose ASTs do not
have the same shape but still have large chunks of similar code
that is repeated and could be captured by procedures; (2) long
sequences of sequential code with repeated patterns than can
be captured by a combination of lists, loops, and procedures;
and (3) multiple screens that can be abstracted by a single
screen that instead reads information from files.

Other future work for this project includes educating the
community about our new generic features, studying their
use in the wild, and exploring interventions that encourage
using them to avoid code duplication. In particular, inspired
by the work of Techapalokul and Tilevich on refactoring in
Scratch [17], [18], we plan to experiment with different ap-
proaches for automatically refactoring App Inventor programs
to eliminate code duplication through a combination of generic
handlers, procedures, loops, lists, and files. For example, if

a user’s project has code duplication, the duplicates could
be highlighted, and the user could be given various options,
ranging from “Automatically remove this duplication for me”
to “Teach me the steps for removing this duplication so that
I know how to do it on my own in the future”. We also plan
to explore the detection of repeated copy/pasting of the same
code and present the option to refactor instead, for example
by using a loop over a list and/or introducing new proce-
dures. Our refactoring plans for introducing generic handlers
and procedures correspond to Extract custom block, one of
four refactoring techniques for Scratch in [18]. Because App
Inventor is not constrained by certain limitations of Scratch
(e.g., custom blocks cannot return values), we expect that this
technique will have wider applicability in App Inventor.

More broadly, users have goals beyond the pedagogical
goals of MIT App Inventor. Building complex projects with-
out good tooling can result in discouragement and project
abandonment. One example in our data set was a calendar
app with a handful of button click handlers implemented,
some in a partial state of completion, and most without any
functionality. The user went through much trouble laying out
the app interface only to hit a wall when implementing the
logic of the many buttons required to create the calendar.
Better tools might have decreased friction, increased the user’s
engagement, and encouraged them to continue the project.

VIII. CONCLUSION

Our analysis of 1.5 million App Inventor projects by prolific
users (those with 20 or more projects) shows that nearly
96% of them have at least one project containing code du-
plication in event handlers. Based on this observation, we
developed generic event handlers to allow users to handle
events occurring on any component of a given type. Further,
we added functionality to automatically convert blocks code
from specific references into the equivalent code using generic
blocks (with references to the specific component) to aid in
manual refactoring of these code blocks.

We proposed five alternative methods for associating data
that might be needed for more sophisticated refactoring–
conditionals, associative lists, dictionaries, component datum,
user props–and discussed the potential benefits and drawbacks
of each. Future work will include evaluating these different
approaches in a classroom setting with high school students.

Lastly, this data-informed programming language design
approach suggests that we can discover opportunities to im-
prove visual programming languages, such as App Inventor,
through data-driven analysis of projects to reduce the friction
encountered by users trying to accomplish their goals.
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