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Problem with Current List
Operators



Current List Operators
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Map, Filter and Reduce

>>>(map (lambda x: x + 1) [5,3,8,10,2])
16,4,9,11,3]

>>>(filter (lambda x: x < 6) [5,3,8,10,2])
[5,3,2]

>>>(reduce (lambda x, y: x +y) [5,3,8,10,2])
28



Berry’s Lemonade

$2
Date # of lemonades sold Daily Profit
6/1/13 13 L'
6/2/13 20
6/3/13 N/A
6/4/13 18

Total Profit: ?



Old Design Using Loops

Do It Result: (13 2@ N/A 18 N/A 10 16)

initialize global fe]i%s 3=/ 8




Old Design Using Loops
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Sort: Old
Design

index get (B
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Solution: Addition of
Higher-Order Operators



Map, Filter and Reduce

|~ | make new list from
mapping each [~ ) to

| | make new filtered list from

keeping each passing
test

reduce list
starting with initialAnswer
TR TG item =1 L ranswerSoFar




Map Block

(] make new listfrom | (=) make a list

(1) (2) (3)
map(lambda item: item * 2, [5,3,8,11,2]) >

mapping each|[ - to




New Design Using Map, Filter and

Reduce Operators

@} &) getTotalProfit
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Three Sort Blocks

' = | make new sorted list from

'~ | make new sorted list from
using key called oneach [~ )

[0} make new sorted list from

where (1) precedes (=) i




Basic Sort

initialize global [

Do It Result: (false true 19 23 bunny dog (17 fish) (cat 3))

- J ' Do It Result: (23 dog true (cat 3) (17 fish) false bunny 19) =
A6 A0

I Show Warnings I




Sort with Key

Do It Result: (Zoe Sam Alex David Megan Brendan) Do It Result: (David Brendan Zoe Sam Alex Megan) ~




Sort with Comparator

Do It Result: (Zoe Sam Megan David Brendan Alex) + Do It Result: (David Brendan Zoe Sam Alex Megan)

compare texts | get (kD | 6D | | oet (i




Destructive vs.
Nondestructive Mechanism



Simulating Nondestructive Version of a
Destructive Filter Operator

BN Y nonDestructiveKeepLongWords

result | 1C| (2) inifialize local ([51¢l- ) to | copy list list | get {[/SSED
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keeping each (- | passing
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Do It Result: (kangaroo bird whale) Do It Result: (dog kangaroo bat cat bird whale) -
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Simulating Destructive Version of a
Nondestructive Filter Operator
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Destructive vs. Nondestructive
Mechanism
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Design and Results of User
Study



Design of User Study

e Short tutorial on each list operator

e Part 1: 8 tasks involving mapping, filtering,
and/or reducing

e Part 2: 6 tasks involving sorting



User Study Participants

e 18 Wellesley students who had previous
experience working with App Inventor

e 10 users (56%) knew map, filter or reduce
previously and the remaining 8 users (44%)
did not



User Study Results Part 1

Comparison of performance on mapping, filtering and
reducing tasks between students who knew at least one of
these three operators previously vs. those who did not
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Feedback

“I have worked with map, filter, and reduce a lot in different
languages, so the concepts were familiar and I was able to interpret
pretty quickly what parts the blocks should have. ”

“These blocks were fairly simple to use, but I sometimes became
frustrated because I would forget which block was useful in what
kind of scenario. Reading the english on the blocks also helped with
this though when I would get stuck.”



User Study Results Part 2

Proportion of students who completed the task correctly
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Comparison of performance on sorting tasks between students who
knew map, filter or reduce previously vs. those who did not

Element Element
itself, itself,
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One key,  One key,
ascending descending

Type of sorting task

Two keys, Two keys,
both one
ascending descending

m Did not know map, filter or reduce
previously

B Knew map, filter or reduce previously



User Study Results Part 2

Proportion of students who completed the task correctly
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The type of sort operator used for tasks with multiple solutions

Element itself, ascending
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Feedback

“I didn't like that there were three different blocks for three
different kinds of sorting...I almost think it would be easier if you
had to explicitly decide how you want a list to be sorted every time
you want to sort a list.”

“I liked that there were three options, so I could use the one I felt
most comfortable with.”

“There are multiple ways you can perform a single task, especially
with these three specific sort blocks. That made it both easier (can
use any) and more difficult (many options for how to execute) to

b

use.



Future Work

e finalizing the labels on the blocks

e additional user studies
o compare loops vs. higher order operators
o test destructive vs. nondestructive mechanism
o study wider demographic base



