Developing and Assessing New List
Operators in App Inventor

Soojin Kim
Advisor: Franklyn Turbak

Designer

J MIT App Inventor 2 P Build Help A My P Guide Galle &) .
Beta
Screen1 ~ Add Screen Remove Screen Designer § Blo
Palette Viewer Components Properties
User Interface Display hidden components in Viewer e Screenl Canvas1
Layout 4 Canvasl BackgroundColor
) D White
Media
Backgroundlmage
Drawing and Animation P Nowe
Ball
FontSize
A 140
@ ImageSprite J LineWidth
Sensors
PaintColor
Social B Biack
Storage TextAlignment
center V¥
Connectivity
Visible
LEGO® MINDSTORMS® showing ¥
Width
Automa
Height
Aut
Rename Delete

Blockly Editor

@ MIT App Inventcl)ar 12 Projects» Connect~ Build» Help~ Admin - My Projects ~ Guide Reportanissue Gallery @) test@example.com ~
eta
test | Screenl+ | AddScreen... | Remove Screen ‘ Designer f Blocks
Blocks Viewer
© Built-in
DContro
I:lLogic 12866 randominteger £ ‘
M viath — - _
- initialize global G EN LN CeE) to b (C) create empty list
Text
DLists =
— when (D Click
olors
B \arichies =14 global randominteger - BT RNBEFSRV eSS integer from |:‘” to | “
B erocedures CEl Label1 - M Text ~ IGMENC1E global randominteger
e . = = :
Screen @ LU E S TS E SIEGETE global listofRandomintegers «
=4 Canvasl i L:1¢ global randominteger -
& Button1
‘lLabell
® Any component
Ao A0
Show Warnings

Problem with Current List
Operators

Current List Operators

L | create emply list | append to list list1 §
[(©) make a list ® — ' il
- " select listitem list m
|
—
item §

| insert list item list
index

item
| list to csv table list

L isin list? thing ®
list #

_ length of list list p index

replace list item list

list from csv row text

replacement

. list from csv table text

look up in pairs key

is list empty? list
remove list item list
pick a random item list B .
index

pairs
notFound

Map, Filter and Reduce

>>>(map (lambda x: x + 1) [5,3,8,10,2])
16,4,9,11,3]

>>>(filter (lambda x: x < 6) [5,3,8,10,2])
[5,3,2]

>>>(reduce (lambda x, y: x +y) [5,3,8,10,2])
28

Berry’s Lemonade

$2
Date # of lemonades sold Daily Profit
6/1/13 13 L'
6/2/13 20
6/3/13 N/A
6/4/13 18

Total Profit: ?

Old Design Using Loops

Do It Result: (13 2@ N/A 18 N/A 10 16)

initialize global fe]i%s 3=/ 8

Old Design Using Loops

s G getTotalProfit

result (| O/ initialize local{[[C: E5 9 to | |C | create empty list
in ¢ |0 initialize local (RS GIETTGITEN to [:\;I create empty list
[0 | initialize local Q- EZ Y to |)
item 00 (=@ global originalList -
| O I is a number? | get LRI
then [ﬁi EGL NG ERGH [S e 2 filteredList |
tem | get ([N

S

for each inlist | get fICIEEAER
| 0 | add items to list list | get JEEGIEIYEEIIER
' S 2 item - JiE

-t item 1N SIBEG EE ListofDailyProfits »
-1 TotalProfit - LG SSEINEES T oo 1Profit - R - { item -

S

reslt =4 TotalProfit -

Sort: Old
Design

index get (B
set (TITCLTLIT 7S to | selectistitem st | get CACSTED
| ndex | get 1D
R SIS comparisontiode -) = - ERETNUWBER |

3 P2 giobai datarioider > - JHPSY clobal datarioder2 -

compare texts -1 global dataHolder - i > - BBl "4 global dataHolder2 -

then replace listtem kst
index
replacement
replace list tem kst
index

(24 global dataHokder - ;

http://www.imagnity.com/tutorials/app-inventor/list-sorting-on-app-inventor/

Solution: Addition of
Higher-Order Operators

Map, Filter and Reduce

|~ | make new list from
mapping each [~) to

| | make new filtered list from

keeping each passing
test

reduce list
starting with initialAnswer
TR TG item =1 L ranswerSoFar

Map Block

(] make new listfrom | (=) make a list

(1) (2) (3)
map(lambda item: item * 2, [5,3,8,11,2]) >

mapping each|[- to

New Design Using Map, Filter and

Reduce Operators

@} &) getTotalProfit

result | reduce list | make new list from | make new filtered list from =14 global originalList ~
keeping each passing

test | isanumber? [get ([E1KS

mapping each to
1 get (ETR |
starting with initialAnswer | {1}
by combining .. answerSoFar

BN e - BN answerSoFar -

Three Sort Blocks

' = | make new sorted list from

'~ | make new sorted list from
using key called oneach [~)

[0} make new sorted list from

where (1) precedes (=) i

Basic Sort

initialize global [

Do It Result: (false true 19 23 bunny dog (17 fish) (cat 3))

- J ' Do It Result: (23 dog true (cat 3) (17 fish) false bunny 19) =
A6 A0

I Show Warnings I

Sort with Key

Do It Result: (Zoe Sam Alex David Megan Brendan) Do It Result: (David Brendan Zoe Sam Alex Megan) ~

Sort with Comparator

Do It Result: (Zoe Sam Megan David Brendan Alex) + Do It Result: (David Brendan Zoe Sam Alex Megan)

compare texts | get (kD | 6D | | oet (i

Destructive vs.
Nondestructive Mechanism

Simulating Nondestructive Version of a
Destructive Filter Operator

BN Y nonDestructiveKeepLongWords

result | 1C| (2) inifialize local ([51¢l-) to | copy list list | get {[/SSED
1] filter existing list |
keeping each (- | passing
6tL | length || get (EIED

Do It Result: (kangaroo bird whale) Do It Result: (dog kangaroo bat cat bird whale) -

v v

| L 2 S V]

@2~ N nonDestructiveKeepLongWords -

T @R ¥ global listOfAnimals -

Simulating Destructive Version of a
Nondestructive Filter Operator

BN Y destructiveKeepLongWords

result | (7] 5
" do | |C| initialize local ({7 -1 (f5) to [IC| () make new filtered list from | get [T ED
keeping each passing

St | length | get (TIN) € ©)

in | foreach ("= from | length of list list | get (IEMIESED
to | 6D

by | GD
do | | C| remove list item list | get [[TSTESED
index | get [[LZ08

foreach ([) in list | get VTS
do | (C| additems tolist list | get (VA3
item | get [ELED

S

result | get

Do It Result: (kangaroo bird whale)

-

- J Do It Result: (kangarco bird whale) - J

[IS S B - @ global listOfAnimals -

Destructive vs. Nondestructive
Mechanism

o

|~ make new filtered list from |
keeping each (/) passing
fest L | length (] get (TND |EXD

74 giobal listOfAnimals -)|

&

Design and Results of User
Study

Design of User Study

e Short tutorial on each list operator

e Part 1: 8 tasks involving mapping, filtering,
and/or reducing

e Part 2: 6 tasks involving sorting

User Study Participants

e 18 Wellesley students who had previous
experience working with App Inventor

e 10 users (56%) knew map, filter or reduce
previously and the remaining 8 users (44%)
did not

User Study Results Part 1

Comparison of performance on mapping, filtering and
reducing tasks between students who knew at least one of
these three operators previously vs. those who did not

o
8 8

o
3
P

o
~
o

o
3

©
wn
o

=}
5

m Did not know map, filter or reduce
previously

o
w
o

M Knew map, filter or reduce previously

o
]
(=]

o o
8 &

Proportion of students who completed the task correctly

Map, Map, list Filter, Filter, list Reduce, Reduce, Analysis Synthesis
simple oflists simple oflists simple listof task with task with
list list list lists map, map,
filter and filter and
reduce reduce

Type of Task

Feedback

“I have worked with map, filter, and reduce a lot in different
languages, so the concepts were familiar and I was able to interpret
pretty quickly what parts the blocks should have. ”

“These blocks were fairly simple to use, but I sometimes became
frustrated because I would forget which block was useful in what
kind of scenario. Reading the english on the blocks also helped with
this though when I would get stuck.”

User Study Results Part 2

Proportion of students who completed the task correctly

8

0.90

0.80

0.70

=}
3

0.50

o
8

0.30

0.20

0.10

o
8

Comparison of performance on sorting tasks between students who
knew map, filter or reduce previously vs. those who did not

Element Element
itself, itself,
ascending descending

One key, One key,
ascending descending

Type of sorting task

Two keys, Two keys,
both one
ascending descending

m Did not know map, filter or reduce
previously

B Knew map, filter or reduce previously

User Study Results Part 2

Proportion of students who completed the task correctly

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

The type of sort operator used for tasks with multiple solutions

Element itself, ascending

T T 1
One key, ascending Two keys, both ascending

Type of sorting task

B Used basic sort and sort with key
Used sort with comparator

B Used sort with key

B Used basic sort

Feedback

“I didn't like that there were three different blocks for three
different kinds of sorting...I almost think it would be easier if you
had to explicitly decide how you want a list to be sorted every time
you want to sort a list.”

“I liked that there were three options, so I could use the one I felt
most comfortable with.”

“There are multiple ways you can perform a single task, especially
with these three specific sort blocks. That made it both easier (can
use any) and more difficult (many options for how to execute) to

b

use.

Future Work

e finalizing the labels on the blocks

e additional user studies
o compare loops vs. higher order operators
o test destructive vs. nondestructive mechanism
o study wider demographic base

