MIT App Inventor: Design and Implementation of a Blocks Programming Language

Franklyn Turbak Wellesley College Computer Science Dept.

> Lewis & Clark College March 6, 2017

Wellesley & MIT

Talk Road Map

- Blocks demo: MIT App Inventor (AI)
- Democratizing programming with blocks
- Lowering barriers with blocks
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Pragmatics
- Challenges in blocks programming
 - Usability
 - Thinking outside the blocks
 - Perception: blocks programming not "real"

Talk Road Map

- Blocks demo: MIT App Inventor (AI)
- Democratizing programming with blocks
- Lowering barriers with blocks
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Pragmatics
- Challenges in blocks programming
 - Usability
 - Thinking outside the blocks
 - Perception: blocks programming not "real"

Simple App Inventor Example

Designer Window

Screen1 🗸	Add Screen Remove Screen
Viewer	
	Display hidden components in Viewer
	⊜_{∡1}∥ № 9:48
	Screen1
	Talk
	Non-visible components
	TextToSpeech1 SpeechRecognizer1

Blocks Editor

whe	Button1Click	
do	call SpeechRecognizer1GetText	
whe	SpeechRecognizer1 - AfterGettingText	
re	ult	
do	call TextToSpeech1Speak	
	message (Fget result -	2
	set Button1 Text - to Figet result -	

Android Device

9:48 🖻 🕅
Screen Welcome to App Inventor

Example: Raffle App In App Inventor

http://ai2.appinventor.mit.edu

Designer Window Blocks Editor initialize global numbers to 📙 💿 create empty list 🗐 🗐 🗐 Screen1 when Texting1 - MessageReceived Pick Winner number messageText o add items to list list get global numbers do item get number when Button1 .Click pick a random item list 📙 🕐 get global numbers set PhoneCall1 - . PhoneNumber to do call PhoneCall1 - .MakePhoneCall To enter the raffle, text me now with an empty message: J 339-225-0287 Non-visible components PhoneCall1 Texting1

Talk Road Map

- Blocks demo: MIT App Inventor (AI)
- Democratizing programming with blocks
- Lowering barriers with blocks
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Pragmatics
- Challenges in blocks programming
 - Usability
 - Thinking outside the blocks
 - Perception: blocks programming not "real"

Papert on Constructionism

"The word **constructionism** is a mnemonic for two aspects of the theory of science education underlying this project ... **learning is most effective when part of an activity the learner experiences as constructing is a meaningful product**." *Constructionism: A New Opportunity for Elementary Science Education (bolding mine)*

Maker Movement

"You can innovate as a hobby. Imagine that: a nation of innovation hobbyists working to make their lives more meaningful and the world a better place. Welcome to the maker revolution." — Mark Hatch, The Maker Movement Manifesto: Rules for Innovation in the New World of Crafters, Hackers, and Tinkerers (bolding mine)

Democratizing Programming

"What we need is a means of democratizing programming, of taking it out of the soulless hands of the programmers and putting it into the hands of a wider range of talents." Chris Crawford, The Art of Interactive Design

Democratizing Programming

"Digital fluency" should mean designing, creating, and remixing, not just browsing, chatting, and interacting.

BY MITCHEL RESNICK, JOHN MALONEY, ANDRÉS MONROY-HERNÁNDEZ, NATALIE RUSK, EVELYN EASTMOND, KAREN BRENNAN, AMON MILLNER, ERIC ROSENBAUM, JAY SILVER, BRIAN SILVERMAN, AND YASMIN KAFAI

Scratch: Programming for All

CACM, Nov. 2009

Democratizing Programming

MIT App Inventor mission statement: The MIT App Inventor project seeks to democratize software development by empowering all people, especially young people, to transition from being consumers of technology to becoming creators of mobile technology.

No Texting While Driving App

D.			- 66	6 1	2:33 PM	
No Tex	ct While	Drivin	g			
The text texts wi	t below tile this	will be : app is r	sent in re unning.	sponse	to all	
I'm dr	I'm driving right now. I'll contact you shortly					
Modif	y Respo	nse				
q v	v e	r t	: у	u i	ор	
а	s (l f	g h	j	k I	
¢	z 🤉	с	v b	n r	n 🖾	
?123		1			ų	

Daniel Finnegan, English Major, developed the app in Dave Wolber's USF course CS017: Computing, Mobile Apps, and the Web

Daniel's code, translated into App Inventor 2:

Clive Thompson on Coding for the Masses

By Clive Thompson November 29, 2010 | 12:00 pm | Wired December 2010

How do you stop people from texting while driving? Last spring, Daniel Finnegan had an Idea. He realized that one of the reasons people type messages while they're in the car is that they don't want to be rude-they want to respond quickly so friends don't think they're being ignored.

So what if the phone knew you were driving-and responded on its own?

Normally, Finnegan wouldn't have been able to do anything with his insight. He was a creative-writing

major at the University of San Francisco, not a programmer. But he'd enrolled in a class where students were learning to use Google's App Inventor, a tool that makes it pretty easy to hack together simple applications for Android phones by fitting bits of code together like Lego bricks.

App To Track Feral Hogs

Alabama's Lawrence County High School students used App Inventor to build an app that tracks feral hogs, which were causing economic damage to their community. Their app won a prize of \$100K in technology for Samsung's 2012 Solve for Tomorrow contest.

http://www.forbes.com/sites/samsung/2013/11/25/high-school-studentsbattle-wild-hogs-with-stem-solutions/

Trash & Graffiti Cleanup App

East Palo Alto girls created an app to tag the location of trash and create an event for cleaning it up. This app ranked highly in the Technovation Challenge competition.

http://appinventor.mit.edu/explore/stories/eastpalo-alto-girls-create-app-clean-graffiti-trash.html

Commodity Tracker App for Haiti

警 🗖 😤 🎽 📫	ᡱ 📶 🖻 11:16		
Screen1			
Site:	Cayes- Jacmel		
Locale:	Locale 2		
Item:	Millet (Small)		
Price (Gds/Marmite): 2.75			
Additional Notes:			
New vendor.			
Save Data			
Show Stored Data			
"Cayes- Jacmel,","Locale 1,","Millet (Small),","2.50,", "Bought last week.","Jul 28, 2011 11:15:35 AM"			
Go Back			

Developed using App Inventor as part of Trinity College's Humanitarian Free and Open Source Software (HFOSS) project.

http://notes.hfoss.org/index.php/Haiti Commodity Collector

App to Destroy Mines Safely

Chris Metzger, United States Marine Corps Staff Sergeant, used App Inventor to create an app that helps other Marines destroy weaponry captured in the field. It calculates the amount of explosives necessary to safely destroy captured ammunition and mines.

http://appinventor.mit.edu/explore/stories/unitedstates-marines-use-app-inventor-field.html

Marriage Proposal App

Hodgson didn't know how to develop an Android app. ... "How the heck was I going to build this thing?" he recalls thinking. "I tried a couple of other rapid development tools, but they really had too much of a learning curve to let me do it in the time-frame I had in mind." That is, until a friend recommended App Inventor, a tool for amateur Android devs created by Google Labs. "It allowed me, with no java knowledge, to quickly get this thing whipped up," Hodgson says.

http://www.fastcompany.com/1754193/google-love-story-man-builds-android-app-propose-girlfriend

Clay Shirky on Situated Software vs. Web School (2004)

Target small population

- NYU ITP *Teachers on the Run* vs. RateMyProfessors.com
- scaling issues unimportant
- simple hardwired data vs. scalable databases
- software for your mom

Leverage small groups

- local knowledge
- trust of other users
- publicly shame deadbeats in group purchase apps

http://shirky.com/writings/herecomeseverybody/situated_software.html

TurtleBlocks Artifacts

PictureBlocks: Sketching & Engraving

PictureBlocks program resulting picture user sketch

print from engraving

wood engraving

PictureBlocks: Engraving + Cutting

PictureBlocks Artifacts

Madeup: 3D Modeling with Blocks

Chris Johnson, University of Wisconsin Peter Bui, Notre Dame

Scratch

multi-media programs, animations, and games

7.3M registered users10.5M projects shared55.5M comments posted160K monthly active project creators

App Inventor Usage is Growing

- 3.3 million registered users
- 185 countries
- 8.9 million mobile apps created
- ~ 120K unique weekly users

Age Distribution: Scratch vs. App Inventor

Blockly

Many blocks-based activities. Basis for early Code.org challenges. Many other blocks environments, including App Inventor, are based on Blockly.

And many more ...

Snap!: Scratch for Scheme, Beauty and Joy of Computing curriculum (Harvey, Monig, Garcia @ Berkeley)

StarLogo Nova: multi-agent simulations (Wendel et al @ MIT)

Alice: 3D storytelling and gaming environment (CMU)

BlockPy: Blocks-based version of Python for teaching data science (Bart, Tilevitch, Shaffer, Kafura @ Virginia Tech)

BlockPy		Data Explorer			
Plot the forecasted temperatures of Miami in Celsius. You'll need to use the "create empty list" and to create a new list of Celsius temperatures from the forecasted temperatures in Blacksburg, and the new temperatures against the old ones. Feedback: ✓ Success! Run I Text ••• Wide O Undo C Redo C Reset	Step: 28 of 28 (Line: Last) Image: Wight of the state				
Properties set celsius_temperatures = 1 (*) create empty list Decisions for each item (*) in list (*) get forecasted temperatures in (Miami, F) Iteration For each item (*) in list (*) get forecasted temperatures in (Miami, F) Calculation Python Output plot line Values make plot's title (*) Temperatures in Miami (*) Lists show plot canvas		28 26 - 24 - 22 - 20 - Loaded Modules: wea	ather, ma	tplotlib.pyplot	
Data - Weather		Trace Table			
Data - Stock		Property	Туре	Value	
Data - Earinguakes Data - Crime Data - Books		celsius_temperatures	List	[28, 23, 19, 28, 24, 28, 25, 28, 24, 28]	
		t	Integer	88	
		celsius	Integer	28	

Code.org Hour of Code

- **Dec. 2013:**
 - 26M participants spend an hour programming in one of ~24 programming environments
 - ♦ 74% of these use one of the 5 blocks languages
 - Code.org exercises based on Blockly
 - Scratch
 - App Inventor
 - Tynker
 - Hopscotch
- Dec. 2014 and beyond: claim > 100M participants total

Talk Road Map

- Blocks demo: MIT App Inventor (AI)
- Democratizing programming with blocks
- Lowering barriers with blocks
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Pragmatics
- Challenges in blocks programming
 - Usability
 - Thinking outside the blocks
 - Perception: blocks programming not "real"

Blocks Represent Abstract Syntax Trees (ASTs)

when NextSlideButtonClick				
do	o if	get global slideIndex - = C length of list list C get global slideList -		
	then	set global slideIndex v to [1]		
	else	set global slideIndex - to C I get global slideIndex - + C 1		
	set 🚺	mage1 Picture - to C select list item list C get global slideList - index C get global slideIndex -		

Blocks Represent Abstract Syntax Trees (ASTs)

Blocks Languages in the Visual Languages Space

BLOX (Glinert, 1986)

LogoBlocks (Begel, 1996)

Alice (Pausch et al., 2001)

PicoBlocks (Bonta, Silverman, et al., 2006)

PicoBlocks Passes the "Lucite Test"

Languages with Physical Blocks

Robot Park (Horn, Solovey, & Jacob, 2007)

Tangible Kindergarten (Bers and Horn, 2009)

PicoBlocks Text/Extension Language

Scratch (Resnick et al., 2007)

Scratch (Resnick et al., 2007)

think Resetting array for 2 secs
repeat until (length of Is_open) = 0
delete 1 of Is_open
repeat n
think Processing the doors for 2 secs
repeat D
repeat until uoor > n
replace item door of Is_open with (item door of Is_open)+ 1 mod 2
change door v by pass
think Printing results for 2 secs
repeat (n)
set door to pass
if item door of Is_open = 1
say join Door join door is open. for 2 secs
change pass by 1

StarLogo TNG (Roque, Wendel, et al., 2007)

- Different plug shapes for different expression types: number, boolean, string, list
- Source of the OpenBlocks Java-based blocks framework

BYOB/Snap! (Harvey, Moenig, et al., starting 2008)

App Inventor Classic (Abelson et al., 2009)

App Inventor Classic Blocks

Blockly (Fraser, 2012)

Blockly Mutators

Back to AI: AI Syntax: Expressions

Al Syntax: Statements

Al Syntax: Top Level Declarations

Al Syntax: Local Variable Declarations

Al Syntax: Performing actions before returning value

AI Syntax: All Together Now

Drop-Downs Reduce Errors & Viscosity

DotsCanvas -	. PaintColor -
	BackgroundColor
	BackgroundImage
	FontSize
	Height
	LineWidth
	✓ PaintColor
	Visible
	Width

Talk Road Map

- Blocks demo: MIT App Inventor (AI)
- Democratizing programming with blocks
- Lowering barriers with blocks
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Pragmatics
- Challenges in blocks programming
 - Usability
 - Thinking outside the blocks
 - Perception: blocks programming not "real"

Name Scoping in Al

- Globals are in a separate namespace
- Indentation visually highlights area of name scope
- Drop-downs list only names in scope.
- Inner names can shadow outer ones
- Changing declared names automatically consistently changes all references

Handling Unbound Names

What About Types?

App Inventor is dynamically typed, so there's only one plug shape:

Simple "Soft" Static Type Checking

Type errors at block connection time are prohibited by "repulsion"

Dynamic type errors can be hidden by variables:

Distinguishing Void and Fruitful Procedures

Connector Shapes in PictureBlocks

(Similar to types-as-shapes in StarLogo TNG)

Polymorphism in PictureBlocks

pushRight: Complete Declaration and Call

Type Blocks

Marie Vasek '12 Wellesley

- istof number) (boolean * string) -> (listof number)
- boolean * (string -> listof number)

Type Blocks: ML Style Universal Polymorphism

Talk Road Map

- Blocks demo: MIT App Inventor (AI)
- Democratizing programming with blocks
- Lowering barriers with blocks
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Pragmatics
- Challenges in blocks programming
 - Usability
 - Thinking outside the blocks
 - Perception: blocks programming not "real"
List Mapping

Python: >>> nums = [5, 2, 17, 8] >>> map(lambda x: x*2, nums) [10, 4, 34, 16]

App Inventor doesn't have first-class functions, but can finesse mapping:

Experimental Higher-Order List Operators in Al

Soojin Kim '15 Wellesley

make new sorted list from using key called on each (item)

make new sorted list from
 by comparing every [item1] and [item2]

Loop-based List Processing

List Processing With Higher-Order Operators

🔲 to 🧕	getTotalProfit				
result 🏮		reduce list	C make new list from	make new filtered list from 🌓 get	global originalList 🔹
				keeping each (item) passing	
				test 🕻 is a number? 🕻 get (item 🔹	
			mapping each (item) to		
			🗘 🔍 🕽 get (item 🔹	× (2	
		starting with initialAnswer	0	•	
	by combining	item and answerSoFar			
		t (item 🔹 + 🖒 get (ansi	werSoFar		

Nondestructive vs. Destructive List Ops In Python

```
>>> elts = [19, True, "foo", 23, "bar", 17, False]
>>> elts.sorted()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute
'sorted'
>>> sorted(elts)
[False, True, 17, 19, 23, 'bar', 'foo']
>>> elts
[19, True, 'foo', 23, 'bar', 17, False]
>>> elts.sort()
>>> elts
[False, True, 17, 19, 23, 'bar', 'foo']
```

Nondestructive vs. Destructive Sorting In Al

Other Nondestructive vs. Destructive List Ops In Al

Talk Road Map

- Blocks demo: MIT App Inventor (AI)
- Democratizing programming with blocks
- Lowering barriers with blocks
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Pragmatics
- Challenges in blocks programming
 - Usability
 - Thinking outside the blocks
 - Perception: blocks programming not "real"

Stepping in PencilCode, early Scratch

Variable Display in Scratch

App Inventor: Dolt

Simple form of interactivity/liveness found in many blocks environments (as well as interpreter text-based languages).

Better Debugging: Watch

Johanna Okerlund '14 Wellesley Emery Gerndt Otopalik '16 Wellesley

Better Error Handling

Currently, AI error window covers blocks and does not pinpoint block causing error:

Soon, the error will appear on the block causing the error:

Better Error Handling

Error messages can appear on multiple blocks until the errors are fixed:

AI Live Development Architecture

YAIL Example

;; Screen1 ;;; Ball1 (do-after-form-creation (add-component Canvas1 Ball Ball1 (set-and-coerce-property! 'Screen1 'Title (set-and-coerce-property! 'Ball1 'X 46 'number) "Screen1" 'text)) (set-and-coerce-property! 'Ball1 'Y 27 'number)) ;;; Canvas1 (define-event Ball1 Flung (\$x \$y \$speed \$heading) (add-component Screen1 Canvas Canvas1 \$xvel \$yvel) (set-and-coerce-property! 'Canvas1 'BackgroundColor (set-this-form) #xFF00FFFF 'number) (set-and-coerce-property! 'Ball1 'Speed (set-and-coerce-property! 'Canvas1 'Width 200 'number) (lexical-value \$speed) (set-and-coerce-property! 'Canvas1 'Height 300 'number)) 'number) (set-and-coerce-property! 'Ball1 'Heading

(lexical-value \$heading) 'number))

Two-way WiFi communication via HTTP

±1ខ**ព្**∞ា⊾្≊ទីឮ∓©©©ស្តែ⊑ ur IP Address is: 192.168.1.20 Version: 2 20ai2 Û ▲1 ▲0 Show Warnings YAIL1 any values? Run YAIL1 OK watchval1 [watchval1] YAIL2 watchval2 Queue YAIL2 OK screenchangeval any values? errorval Run YAIL2 [watchval2, screenchangeval, errorval] 89

web server on

App Inventor Companion

App Inventor Browser

Talk Road Map

- Blocks demo: MIT App Inventor (AI)
- Democratizing programming with blocks
- Lowering barriers with blocks
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Pragmatics
- Challenges in blocks programming
 - Usability
 - Thinking outside the blocks
 - Perception: blocks programming not "real"

Usability: Big Programs are Hard to Understand

Usability: Searching 2D Blocks Workspaces

Cece Tsui '18 Wellesley

Usability: Organizing 2D Blocks Workspaces

Shirley X. Lu '15Devid Farinelli '16WellesleyU. of Bologna

Folders in App Inventor (under development)

Usability: Reusing & Sharing Blocks Programs

Backpack in Scratch and App Inventor

Usability: Droplet's Isomorphic Blocks/Text Conversion

Used in PencilCode and Code.org's AppLab JavaScript curriculum

onEvent(* "dropdownl", * "change", function(event) (
if (getText(v "dropdownl") "Lady Gaga") (
<pre>setImageURL(v"id", v"http://code.org/images/logo.png");</pre>	
} else (
<pre>setImageURL(v "id", v "http://code.org/images/logo.png"); });</pre>	

```
1 - onEvent("dropdownl", "change", function(event) {
2 - if (getText("dropdownl")=="Lady Gaga") {
3 setImageURL("id", "http://code.org/images/logo.png");
4
5 - } else {
6 setImageURL("id", "http://code.org/images/logo.png");
7
8 }
9 });
10
```

Experimental Conversion Between Blocks and Text

Usability: Greenfoot's Frame-based Editing

Analyzing App Inventor Programs

Eni Mustafaraj Maja Shan Lu '20 Svanberg '18

New Project: Collaborative Blocks Programming

Summer Project: Work with HCI Lab and MIT App Inventor group

Talk Road Map

- Blocks demo: MIT App Inventor (AI)
- Democratizing programming with blocks: examples
- Lowering barriers with blocks
 - Syntax
 - Static semantics
 - Dynamic semantics

• Challenges in blocks programming

- Usability
- Thinking outside the blocks
- Perception: blocks programming not "real"

Thinking Outside the Blocks: Abstraction

whe	n (Ba	1	•		.E	d	ge	۶F	le	ac	hec	1				
ec	lge																
do	Ca	ıll	Ba	all1	1	-		.B	0	ur	nce)					
										ec	lge	•	1 1	get	ed	ge	Ŧ
	_																

Thinking Outside the Blocks: Abstraction

What does this code do?

Thinking Outside the Blocks: Abstraction

App Lab/

Droplet

oni	<pre>Event(▼ "myCanvas", ▼ "mousedown", setFillColor(▼ "blue");</pre>	function (event
}	circle(event.ClientX, event.Cli	ientY, 10););
onl	Event(▼"clearButton", ▼"click",	function (event)
}	<pre>clearCanvas(););</pre>	

Thinking Outside the Blocks: Community

Tap The Mole

@ 130 🖤 21

istafford

BOGOR ..

Priyo53

@ 1415 9 16

Talking Man! Have

robin vinod verahese

MLGsoundboard

Its Watson Boys

@ 1388 9 16

915 920

CREEPER.SMASH.CO

@ 877 9 20

ChessGuide

No Watson No

@ 594 9 14

Space invaders

@ 2231 9 44

MLGsoundboard

lailder

@ 25 🖤 19

sstaggs049

@ 1410 9 51

Rock_Scissors_Pape

ErJoxe

@ 447 9 20

CREEPER.SMASH.CO

Thinking Outside the Blocks: Browser-Based Environments & Cloud Program Storage

Cloud

New Project: Collaborative Blocks Programming

Summer Project: Work with HCI Lab and MIT App Inventor group

Talk Road Map

- Blocks demo: MIT App Inventor (AI)
- Democratizing programming with blocks: examples
- Lowering barriers with blocks
 - Syntax
 - Static semantics
 - Dynamic semantics

• Challenges in blocks programming

- Usability
- Thinking outside the blocks
- Perception: blocks programming not "real"

Negative Responses to Blocks Languages

I have never met a student who cut their teeth in any of these languages and did not come away profoundly damaged and unable to cope.

I mean this reads to me very similarly to teaching someone to be a carpenter by starting them off with plastic toy tools and telling them to go sculpt sand on the beach.

Not one thing they learn will bear any piece of resemblance to real work. All you're doing is teaching them misimpressions of what the job is, and tricking them out of having meaningful formative experiences.

http://blog.acthompson.net/2012/12/programming-with-blocks.html

These are not proper programming languages, anyone with half a brain knows that, but why deny those who can't or don't want to 'code' the opportunity of being creative with these tools and learning some logic skills along the way.

http://blog.acthompson.net/2012/12/programming-with-blocks.html

Working with actual code writing instead of a drag & drop interface prepares children better for the real world.

http://www.playcodemonkey.com/
Mark Sherman's Response

Mark Sherman UMass Lowell

when it is really this:

Yes, it is colorful and newfangled, but it still gets jobs done. Not all of them, but a bunch of them. Why do they see it this way? Because they grew up on this:

More Positive Feedback

I would like to express my utmost appreciation for your product. I'm teaching several pre-CS courses for gifted youth at Juniorhigh school level (7th-9th grades) as well as CS and software engineering at high school (10th – 12th grades) including Android development in Java. It is really amazing that in AppInventor, 7th grade students (with about 50 hours prior experience in Scratch) can do in 6 hours what 12th grade students take about 200-300 hours to achieve in Java (and this is after studying CS and Android development for about 700 hours). AppInventor goes way beyond the 80:20 principle (80% of the utility in 20% of the effort) – it is more like 60:5 (60% of the functionality, for less than 5% of the effort) which makes it much more fun, and opens up a lot of space for creativity.

Yossi Yaron, Israeli teacher

Some Research Questions

- 2D blocks workspaces:
 - What are good ways to search, navigate, and organize them?
 - Do they confer any advantages over linear text?
- How can debugging & visualization of dynamic execution for blocks environments be improved?
- What tools can improve collaborative development of blocks programs?
- How can we do programming on the devices themselves? (Existing examples: microApps, Pocket Code, Touch Develop.)
- Can any blocks affordances improve productivity in mainstream languages?
- What does big data analysis say about learnability/usability of blocks vs. text notations and transitioning from blocks to mainstream languages?
- What role do the following "nonblocks" aspects play in learnability and usability of blocks languages: web-based environments, cloud-based storage, high-level abstractions, sharing/remixing communities, liveness.

App Inventor Development Team

Hal Abelson MIT

Andrew McKinney MIT

Jeff Schiller MIT

Paul Medlock-Walton MIT

Jose Dominguez MIT

Mark Friedman Google

Sharon Perl Google

Liz Looney Google

Neil Fraser Google (Blockly)

Franklyn Turbak Wellesley College

Computational Thinking Through Mobile Computing NSF Grant Team

Franklyn Turbak Eni Mustafaraj Wellesley College

Ralph Morelli Trinity College

Dave Wolber U. of San Francisco

Larry Baldwin BIRC

Hal Abelson Shay Pokress Josh Sheldon MIT

Fred Martin Mark Sherman Karen Roehr University of Massachusetts Lowell

Acknowledgment: This work was supported by the National Science Foundation under Grants 1225680, 1225719, 1225745, 1225976, and 1226216.

Wellesley TinkerBlocks Students

Questions?

Here are some images from our work:

