
MIT	App	Inventor:	
Design	and	Implementa6on	of	a		
Blocks	Programming	Language	

Franklyn	Turbak	
Wellesley	College	Computer	Science	Dept.		

	
Lewis	&	Clark	College	

March	6,	2017	
	

MIT	

Olin	
College	

Wellesley	College	

Wellesley	&	MIT	

2

Talk	Road	Map	

o  Blocks	demo:	MIT	App	Inventor	(AI)	

o  DemocraOzing	programming	with	blocks	

o  Lowering	barriers	with	blocks	
•  Syntax	
•  StaOc	semanOcs	
•  Dynamic	semanOcs	
•  PragmaOcs		

o  Challenges	in	blocks	programming	
•  Usability	
•  Thinking	outside	the	blocks	
•  PercepOon:	blocks	programming	not	“real”	
	
	

3

Talk	Road	Map	

o  Blocks	demo:	MIT	App	Inventor	(AI)	

o  DemocraOzing	programming	with	blocks	

o  Lowering	barriers	with	blocks	
•  Syntax	
•  StaOc	semanOcs	
•  Dynamic	semanOcs	
•  PragmaOcs		

o  Challenges	in	blocks	programming	
•  Usability	
•  Thinking	outside	the	blocks	
•  PercepOon:	blocks	programming	not	“real”	
	
	

4

Simple	App	Inventor	Example	
Designer	Window	 Blocks	Editor	 Android	Device	

5

Example:	Raffle	App	In	App	Inventor	

Designer	Window	 Blocks	Editor	

6

To enter the raffle,
text me now with
an empty message:
339-225-0287

http://ai2.appinventor.mit.edu

Talk	Road	Map	

o  Blocks	demo:	MIT	App	Inventor	(AI)	

o  DemocraOzing	programming	with	blocks	

o  Lowering	barriers	with	blocks	
•  Syntax	
•  StaOc	semanOcs	
•  Dynamic	semanOcs	
•  PragmaOcs		

o  Challenges	in	blocks	programming	
•  Usability	
•  Thinking	outside	the	blocks	
•  PercepOon:	blocks	programming	not	“real”	
	
	

7

Papert	on	ConstrucOonism	
"The word constructionism is a mnemonic
for two aspects of the theory of science
education underlying this project … learning
is most effective when part of an activity
the learner experiences as constructing is
a meaningful product.” Constructionism: A
New Opportunity for Elementary Science
Education (bolding mine)

8

Maker	Movement	
“You can innovate as a hobby. Imagine
that: a nation of innovation hobbyists
working to make their lives more
meaningful and the world a better place.
Welcome to the maker revolution.”
― Mark Hatch, The Maker Movement
Manifesto: Rules for Innovation in the New
World of Crafters, Hackers, and Tinkerers
(bolding mine)

9

DemocraOzing	Programming	

“What	we	need	is	a	means	of	
democra6zing	programming,	of	taking	
it	out	of	the	soulless	hands	of	the	
programmers	and	puYng	it	into	the	
hands	of	a	wider	range	of	talents.”		
Chris	Crawford,		
The	Art	of	Interac4ve	Design	

10

DemocraOzing	Programming	

11
CACM, Nov. 2009

DemocraOzing	Programming	

MIT	App	Inventor	mission	statement:	
	The	MIT	App	Inventor	project	seeks	to	
democra6ze	so[ware	development	by	
empowering	all	people,	especially	
young	people,	to	transiOon	from	being	
consumers	of	technology	to	becoming	
creators	of	mobile	technology.	

12

Daniel	Finnegan,	English	Major,	developed	the	app	
in	Dave	Wolber’s	USF	course	CS017:	Compu4ng,	
Mobile	Apps,	and	the	Web	

No	TexOng	While	Driving	App	

Daniel’s code, translated into App Inventor 2:

13

App	To	Track	Feral	Hogs	

Alabama’s	Lawrence	County	High	
School	students	used	App	
Inventor	to	build	an	app	that	
tracks	feral	hogs,	which	were	
causing	economic	damage	to	
their	community.	Their	app	won	a	
prize	of	$100K	in	technology	for	
Samsung’s	2012	Solve	for	
Tomorrow	contest.		

hap://www.forbes.com/sites/samsung/2013/11/25/high-school-students-
baale-wild-hogs-with-stem-soluOons/	 14

Trash	&	GraffiO	Cleanup	App	

East	Palo	Alto	girls	created	an	app	to	tag	the	
locaOon	of	trash	and	create	an	event	for	
cleaning	it	up.	This	app	ranked	highly	in	the	
TechnovaOon	Challenge	compeOOon.		

http://appinventor.mit.edu/explore/stories/east-
palo-alto-girls-create-app-clean-graffiti-trash.html 15

Commodity	Tracker	App	for	HaiO	

hap://notes.hfoss.org/index.php/HaiO_Commodity_Collector		

Developed using App Inventor as part of Trinity College’s
Humanitarian Free and Open Source Software (HFOSS) project.

16

App	to	Destroy	Mines	Safely	

Chris	Metzger,	United	States	Marine	
Corps	Staff	Sergeant,		used	App	
Inventor	to	create	an	app	that	helps	
other	Marines	destroy	weaponry	
captured	in	the	field.	It	calculates	the	
amount	of	explosives	necessary	to	
safely	destroy	captured	ammuniOon	
and	mines.		

http://appinventor.mit.edu/explore/stories/united-
states-marines-use-app-inventor-field.html

17

Marriage	Proposal	App	

Hodgson	didn't	know	how	to	develop	an	Android	app.	…	"How	the	heck	was	I	
going	to	build	this	thing?"	he	recalls	thinking.	"I	tried	a	couple	of	other	rapid	
development	tools,	but	they	really	had	too	much	of	a	learning	curve	to	let	me	do	
it	in	the	Ome-frame	I	had	in	mind."	That	is,	unOl	a	friend	recommended	App	
Inventor,	a	tool	for	amateur	Android	devs	created	by	Google	Labs.	"It	allowed	
me,	with	no	java	knowledge,	to	quickly	get	this	thing	whipped	up,"	Hodgson	says.			

hap://www.fastcompany.com/1754193/google-love-story-man-builds-android-app-propose-girlfriend	
18

Clay	Shirky	on	Situated	So[ware	vs.	Web	School	(2004)	

hap://shirky.com/wriOngs/herecomeseverybody/situated_so[ware.html	

Target	small	populaOon	
					

•  NYU	ITP	Teachers	on	the	Run		
				vs.	RateMyProfessors.com	

•  scaling	issues	unimportant	
•  simple	hardwired	data	vs.	scalable	databases	
•  so[ware	for	your	mom	

Leverage	small	groups	
					

•  local	knowledge	
•  trust	of	other	users	
•  publicly	shame	deadbeats	in	group	purchase	apps	

19

TurtleBlocks	

cardstock

TurtleBlocks program turtle drawing

drawing boundary acrylic
20

TurtleBlocks Artifacts

21

PictureBlocks:	Sketching	&	Engraving	

user sketch PictureBlocks program resulting picture

wood engraving print from engraving
22

PictureBlocks:	Engraving	+	CuYng	

23

PictureBlocks	ArOfacts	

24

Madeup:	3D	Modeling	with	Blocks

Chris	Johnson,	University	of	Wisconsin	
Peter Bui, Notre Dame

25

multi-media programs, animations, and games

Scratch	

7.3M	registered	users	
10.5M	projects	shared	
55.5M	comments	posted	
160K	monthly	acOve	project	creators		

26

App	Inventor	Usage	is	Growing	
•  3.3 million registered users
•  185 countries
•  8.9 million mobile apps created
•  ~ 120K unique weekly users

27

Age	DistribuOon:	Scratch	vs.	App	Inventor	

28

Many	blocks-based	acOviOes.	Basis	for	early	Code.org	challenges.		
Many	other	blocks	environments,	including	App	Inventor,		
are	based	on	Blockly.		

Blockly

29

StarLogo	Nova:	mulO-agent	simulaOons	(Wendel	et	al	@	MIT)	

And	many	more	…	

Snap!:	Scratch	for	Scheme,	Beauty	and	Joy	of	Compu4ng	curriculum		
(Harvey,	Monig,	Garcia	@	Berkeley)	

BlockPy:	Blocks-based	version	of	Python	for	teaching	data	science	
(Bart,	Tilevitch,	Shaffer,	Kafura	@	Virginia	Tech)	

30

Alice:	3D	storytelling	and	gaming	environment	(CMU)	

Code.org		
Hour		
of	Code

o  Dec.	2013:		
²  26M	parOcipants	spend	an	hour	programming	in	one	of	~24	

programming	environments	
²  74%	of	these	use	one	of	the	5	blocks	languages	

•  Code.org	exercises	based	on	Blockly	
•  Scratch	
•  App	Inventor	
•  Tynker	
•  Hopscotch	

o  Dec.	2014	and	beyond:	claim	>	100M	parOcipants	total	
31

Talk	Road	Map	

o  Blocks	demo:	MIT	App	Inventor	(AI)	

o  DemocraOzing	programming	with	blocks	

o  Lowering	barriers	with	blocks	
•  Syntax	
•  StaOc	semanOcs	
•  Dynamic	semanOcs	
•  PragmaOcs		

o  Challenges	in	blocks	programming	
•  Usability	
•  Thinking	outside	the	blocks	
•  PercepOon:	blocks	programming	not	“real”	
	
	

32

Blocks	Represent	Abstract	Syntax	Trees	(ASTs)	

33

Blocks	Represent	Abstract	Syntax	Trees	(ASTs)	

plus	

varref	 intlit	

assign	

index	

index	 1	

assign	

intlit	

1	

index	

equals	

varref	

index	

length	

varref	

index	

setprop	

Picture	Image1	 listref	

varref	

pics	

varref	

index	

if	

seq	

eventHandlerDeclaraOon	

NextSlideBuaon	 Click	

test	 else	then	

stm1	 stm2	

body	
event	componen

t	

rand1	 rand2	

rand2	rand1	

lhs	 rhs	rhs	lhs	

name	

name	

name	

name	 name	

prop	

list	 index	

Blocks	Languages	in	the	Visual	Languages	Space	

35

DataFlow Languages
(LabView, ProGraph,
Show And Tell, DataVis,
VPL, VisaVis, …)

Spreadsheets

Rewrite Rule Systems
(AgentSheets, Kodu, …)

Programming
By Example

Blocks Programming Languages
(Scratch, Snap!, Blockly,
 App Inventor, PencilCode,
 StarLogo TNG/Nova,
 Alice/Looking Glass,
 Catrobat/PocketCode, …)

Visual Languages

WIMP Interfaces

Sketch-based, gestural,
and tangible user interfaces

BLOX	(Glinert,	1986)		

36

LogoBlocks	(Begel,	1996)		

37

Alice	(Pausch	et	al.,	2001)	

38

PicoBlocks	(Bonta,	Silverman,	et	al.,	2006)		

39

PicoBlocks	Passes	the	“Lucite	Test”	

40

Languages	with	Physical	Blocks	

41

Robot	Park	(Horn,	Solovey,		
&	Jacob,	2007)	

	Tangible	Kindergarten		
	(Bers	and	Horn,	2009)	

PicoBlocks	Text/Extension	Language		

42

Scratch	(Resnick	et	al.,	2007)		

43

Scratch	(Resnick	et	al.,	2007)		

44

StarLogo	TNG	(Roque,	Wendel,	et	al.,	2007)		

45

•  Different plug shapes for different expression types: number, boolean,
 string, list

•  Source of the OpenBlocks Java-based blocks framework

BYOB/Snap!	(Harvey,	Moenig,		
et	al.,	starOng	2008)	

46

BYOB/Snap!	Have	First-class	FuncOons	

47

App	Inventor	Classic	(Abelson	et	al.,	2009)	

48

App	Inventor	Classic	Blocks	

49

Blockly	(Fraser,	2012)		

50

Blockly	Mutators	

51

Back	to	AI:	AI	Syntax:	Expressions	

52

AI	Syntax:	Statements	

53

AI	Syntax:	Top	Level	DeclaraOons	

54

AI	Syntax:	Local	Variable	DeclaraOons	

55

AI	Syntax:	Performing	acOons	before	returning	value	

		 56

AI	Syntax:	All	Together	Now	

		 57

Drop-Downs Reduce Errors & Viscosity

		 58

Talk	Road	Map	

o  Blocks	demo:	MIT	App	Inventor	(AI)	

o  DemocraOzing	programming	with	blocks	

o  Lowering	barriers	with	blocks	
•  Syntax	
•  StaOc	semanOcs	
•  Dynamic	semanOcs	
•  PragmaOcs		

o  Challenges	in	blocks	programming	
•  Usability	
•  Thinking	outside	the	blocks	
•  PercepOon:	blocks	programming	not	“real”	
	
	

59

Name	Scoping	in	AI	

		

•  Globals	are	in	a	separate	namespace	
•  IndentaOon	visually	highlights	area	of	name	scope	
•  Drop-downs	list	only	names	in	scope.		
•  Inner	names	can	shadow	outer	ones	
•  Changing	declared	names	automaOcally	consistently	changes	all	references	
	

60

Handling Unbound Names

		 61

What About Types?

		

App Inventor is dynamically typed, so there’s only one plug shape:

62

Simple “Soft” Static Type Checking

		

Type errors at block connection time are prohibited by “repulsion”

Dynamic type errors can be hidden by variables:

63

Distinguishing Void and Fruitful Procedures

		

>>> def square (x):
... x * x
...
>>> square(5)
>>>

Python function gotcha

64

number

boolean

string

color

picture

Connector	Shapes	in	PictureBlocks	
(Similar	to	types-as-shapes	in	StarLogo	TNG)	
	
	

polymorphic
sockets

polymorphic
plug

Polymorphism	in	PictureBlocks	

66

pushRight:	Complete	DeclaraOon	and	Call	

67

Type Blocks

Marie Vasek ‘12
Wellesley

68

listof (string * boolean) (listof string) * boolean

boolean * (string -> listof number) (boolean * string) -> (listof number)

Type Blocks: More Examples

69

Type Blocks: Lists

Type Blocks:
ML Style Universal Polymorphism

Talk	Road	Map	

o  Blocks	demo:	MIT	App	Inventor	(AI)	

o  DemocraOzing	programming	with	blocks	

o  Lowering	barriers	with	blocks	
•  Syntax	
•  StaOc	semanOcs	
•  Dynamic	semanOcs	
•  PragmaOcs		

o  Challenges	in	blocks	programming	
•  Usability	
•  Thinking	outside	the	blocks	
•  PercepOon:	blocks	programming	not	“real”	
	
	

72

List	Mapping	

>>> nums = [5, 2, 17, 8]

>>> map(lambda x: x*2, nums)
[10, 4, 34, 16]

App Inventor doesn’t have first-class functions, but can finesse mapping:

Python:

73

Experimental	Higher-Order	
List	Operators	in	AI	

Soojin Kim ‘15
Wellesley

74

Loop-based	List	Processing	

75

List	Processing	With		
Higher-Order	Operators	

76

NondestrucOve	vs.	DestrucOve	List	Ops	In	Python	
>>> elts = [19, True, "foo", 23, "bar", 17, False]

>>> elts.sorted()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute
'sorted’

>>> sorted(elts)
[False, True, 17, 19, 23, 'bar', 'foo']

>>> elts
[19, True, 'foo', 23, 'bar', 17, False]

>>> elts.sort()

>>> elts
[False, True, 17, 19, 23, 'bar', 'foo']

77

NondestrucOve	vs.	DestrucOve		
SorOng	In	AI	

78

Other	NondestrucOve	vs.	DestrucOve		
List	Ops	In	AI	

79

Talk	Road	Map	

o  Blocks	demo:	MIT	App	Inventor	(AI)	

o  DemocraOzing	programming	with	blocks	

o  Lowering	barriers	with	blocks	
•  Syntax	
•  StaOc	semanOcs	
•  Dynamic	semanOcs	
•  PragmaOcs		

o  Challenges	in	blocks	programming	
•  Usability	
•  Thinking	outside	the	blocks	
•  PercepOon:	blocks	programming	not	“real”	
	
	

80

Stepping	in	PencilCode,	early	Scratch	

81

Variable	Display	in	Scratch	

82

App	Inventor:	DoIt	

83

Simple	form	of	interacOvity/liveness	found	in	many	blocks	environments	
(as	well	as	interpreter	text-based	languages).	

Beaer	Debugging:	Watch	

		 84

Johanna
Okerlund ‘14

Wellesley

Emery Gerndt
Otopalik ‘16

Wellesley

Better Error Handling

		

Currently, AI error window covers blocks and
does not pinpoint block causing error:

Soon, the error will appear on the block causing the error:

85

Beaer	Error	Handling	
Error messages can appear on multiple blocks until the
errors are fixed:

86

AI Live Development Architecture

87

YAIL Example

;;	Screen1	
(do-a[er-form-creaOon		
		(set-and-coerce-property!	'Screen1	'Title		
																																																		"Screen1"	'text))	
	
;;;	Canvas1	
(add-component	Screen1	Canvas	Canvas1	
		(set-and-coerce-property!	'Canvas1	'BackgroundColor		
																																																			#xFF00FFFF	'number)	
		(set-and-coerce-property!	'Canvas1	'Width	200		'number)	
		(set-and-coerce-property!	'Canvas1	'Height	300	'number))	

;;;	Ball1	
(add-component	Canvas1	Ball	Ball1	
		(set-and-coerce-property!	'Ball1	'X	46	'number)	
		(set-and-coerce-property!	'Ball1	'Y	27	'number))	
	
(define-event	Ball1	Flung		($x	$y	$speed	$heading	
																																																	$xvel	$yvel)	
		(set-this-form)	
		(set-and-coerce-property!	'Ball1	'Speed	
																																															(lexical-value	$speed)		
																																																'number)	
		(set-and-coerce-property!	'Ball1	'Heading		
																																																	(lexical-value	$heading)	
																																																	'number))	

88

Two-way WiFi communication via HTTP

App Inventor Browser
web server on

App Inventor Companion

YAIL1

OK
Run YAIL1 any values?

YAIL2

Queue YAIL2

watchval1

watchval2

errorval any values?

[watchval1]

[watchval2, screenchangeval, errorval]

screenchangeval

Run YAIL2

OK

89

Talk	Road	Map	

o  Blocks	demo:	MIT	App	Inventor	(AI)	

o  DemocraOzing	programming	with	blocks	

o  Lowering	barriers	with	blocks	
•  Syntax	
•  StaOc	semanOcs	
•  Dynamic	semanOcs	
•  PragmaOcs		

o  Challenges	in	blocks	programming	
•  Usability	
•  Thinking	outside	the	blocks	
•  PercepOon:	blocks	programming	not	“real”	
	
	

90

Usability:	Big	Programs	are	Hard	to	Understand		

91

Usability:	Searching	2D	Blocks	Workspaces	

92

Cece Tsui ’18
Wellesley

Usability:	Organizing	2D		
Blocks	Workspaces	

Folders	in	App	Inventor	(under	development)	

93

Shirley X. Lu ’15
Wellesley

Devid Farinelli ’16
U. of Bologna

Usability:	Reusing	&	Sharing	Blocks	Programs	

94

Backpack	in	Scratch	and	App	Inventor	

Usability:	Droplet’s	Isomorphic	Blocks/Text	Conversion	

95

Used	in	PencilCode	and	Code.org’s	AppLab	JavaScript	curriculum		

Experimental	Conversion	Between	Blocks	and	Text	
	

		

Karishma
Chadha ‘14
Wellesley

96

Usability: Greenfoot’s Frame-based Editing

97

Analyzing	App		
Inventor	Programs	

Eni
Mustafaraj

Maja
Svanberg ‘18

Shan Lu ‘20

98

New	Project:	CollaboraOve	Blocks	Programming	
Summer Project:
Work with HCI Lab and
MIT App Inventor group

99

Talk	Road	Map	

o  Blocks	demo:	MIT	App	Inventor	(AI)	

o  DemocraOzing	programming	with	blocks:	examples	

o  Lowering	barriers	with	blocks	
•  Syntax	
•  StaOc	semanOcs	
•  Dynamic	semanOcs	

o  Challenges	in	blocks	programming	
•  Usability	
•  Thinking	outside	the	blocks	
•  PercepOon:	blocks	programming	not	“real”	
	
	 100

Thinking	Outside	the	Blocks:	AbstracOon	

101

Thinking	Outside	the	Blocks:	AbstracOon	

What does this code do?

102

Thinking	Outside	the	Blocks:	AbstracOon	

App Lab/
Droplet

App
Inventor

103

Thinking	Outside	the	Blocks:	Community	

104

Thinking	Outside	the	Blocks:		

Browser-Based	Environments	&	Cloud	Program	Storage	

105

New	Project:	CollaboraOve	Blocks	Programming	
Summer Project:
Work with HCI Lab and
MIT App Inventor group

• Thinking	outside	the	blocks	• Thinking	outside	the	blocks	

106

Talk	Road	Map	

o  Blocks	demo:	MIT	App	Inventor	(AI)	

o  DemocraOzing	programming	with	blocks:	examples	

o  Lowering	barriers	with	blocks	
•  Syntax	
•  StaOc	semanOcs	
•  Dynamic	semanOcs	

o  Challenges	in	blocks	programming	
•  Usability	
•  Thinking	outside	the	blocks	
•  PercepOon:	blocks	programming	not	“real”	
	
	 107

Negative Responses to Blocks Languages

I have never met a student who cut their teeth in any of these languages
and did not come away profoundly damaged and unable to cope.

I mean this reads to me very similarly to teaching someone to be a carpenter
by starting them off with plastic toy tools and telling them to go sculpt sand on
the beach.

Not one thing they learn will bear any piece of resemblance to real work. All
you're doing is teaching them misimpressions of what the job is, and tricking
them out of having meaningful formative experiences.
 http://blog.acthompson.net/2012/12/programming-with-blocks.html

These are not proper programming languages, anyone with half a brain
knows that, but why deny those who can't or don't want to 'code' the
opportunity of being creative with these tools and learning some logic skills
along the way.
 http://blog.acthompson.net/2012/12/programming-with-blocks.html

Working with actual code writing instead of a drag & drop interface
prepares children better for the real world.
http://www.playcodemonkey.com/

108

Mark	Sherman’s	Response	

So they currently
 see this:

when it is really this:

Yes, it is colorful and
newfangled, but it
still gets jobs done.
Not all of them, but a
bunch of them.

Why do they see it
this way? Because
they grew up on this:

Mark	Sherman	
UMass	Lowell	

109

More	PosiOve	Feedback	

I would like to express my utmost appreciation for your product.
I'm teaching several pre-CS courses for gifted youth at Junior-
high school level (7th-9th grades) as well as CS and software
engineering at high school (10th – 12th grades) including Android
development in Java. It is really amazing that in AppInventor,
7th grade students (with about 50 hours prior experience in
Scratch) can do in 6 hours what 12th grade students take
about 200-300 hours to achieve in Java (and this is after
studying CS and Android development for about 700 hours).
AppInventor goes way beyond the 80:20 principle (80% of the
utility in 20% of the effort) – it is more like 60:5 (60% of the
functionality, for less than 5% of the effort) which makes it much
more fun, and opens up a lot of space for creativity.

Yossi Yaron, Israeli teacher

110

Some	Research	QuesOons	

		

o  2D	blocks	workspaces:	
•  What	are	good	ways	to	search,	navigate,	and	organize	them?	
•  Do	they	confer	any	advantages	over	linear	text?		

o  How	can	debugging	&	visualizaOon	of	dynamic	execuOon	for	blocks	
environments	be	improved?		

o  What	tools	can	improve	collaboraOve	development	of	blocks	programs?		

o  How	can	we	do	programming	on	the	devices	themselves?	(ExisOng	examples:		
microApps,	Pocket	Code,	Touch	Develop.)	

o  Can	any	blocks	affordances	improve	producOvity	in	mainstream	languages?		

o  What	does	big	data	analysis	say	about	learnability/usability	of	blocks	vs.	text	
notaOons	and	transiOoning	from	blocks	to	mainstream	languages?	

o  What	role	do	the	following	“nonblocks”	aspects	play	in	learnability	and	
usability	of	blocks	languages:	web-based	environments,	cloud-based	storage,	
high-level	abstracOons,	sharing/remixing	communiOes,	liveness.	

		
111

App Inventor Development Team

Franklyn
Turbak

Wellesley College

Hal
Abelson

MIT

Jeff
Schiller

MIT

Andrew
McKinney

MIT

Paul
Medlock-Walton

MIT

Jose
Dominguez

MIT

Mark
Friedman

Google

Sharon
Perl

Google

Neil
Fraser

Google (Blockly)

Liz
Looney
Google

112

Computational Thinking Through Mobile Computing

NSF Grant Team

Franklyn Turbak Eni Mustafaraj
Wellesley College

Ralph Morelli
Trinity College

Dave Wolber
U. of San Francisco

Larry Baldwin
BIRC

Hal Abelson Shay Pokress Josh Sheldon
MIT

Fred Martin Mark Sherman Karen Roehr
University of Massachusetts Lowell

Acknowledgment: This work was supported by the National Science Foundation
under Grants 1225680, 1225719, 1225745, 1225976, and 1226216.

113

Wellesley	TinkerBlocks	Students	

114

QuesOons?	

115

