
Live programming of mobile apps
in App Inventor

Jeff Schiller
Hal Abelson
Jose´ Dominguez
Andrew McKinney
MIT

Franklyn Turbak
Johanna Okerlund
Wellesley College

Mark Friedman
Google

Outline

● Goal: Be able to create fun and useful
Android apps with minimum coding.

● Demo
● What we mean by live programming
● App Inventor Architecture: YAIL, Kawa,

Forms, Companion

Demo
● Ball fling & bounce

○ Ball Flung event -- is active immediately (without a
run button!)

○ Add bounce handler -- bounces immediately, even if
stuck at edge.

○ Doit to enlarge ball radius while bouncing
○ Add timer (will reinitialize interface) to add trail.
○ Remove some parts of handler to show error.

● Dave Wolber Raffle App?

Architecture

Yail Example

;; Screen1

(do-after-form-creation

 (set-and-coerce-property! 'Screen1 'Title
 "Screen1" 'text))

;;; Canvas1

(add-component Screen1 Canvas Canvas1

 (set-and-coerce-property! 'Canvas1 'BackgroundColor

 #xFF00FFFF 'number)

 (set-and-coerce-property! 'Canvas1 'Width 200 'number)

 (set-and-coerce-property! 'Canvas1 'Height 300 'number))

;;; Ball1

(add-component Canvas1 Ball Ball1

 (set-and-coerce-property! 'Ball1 'X 46 'number)

 (set-and-coerce-property! 'Ball1 'Y 27 'number))

(define-event Ball1 Flung($x $y $speed $heading $xvel $yvel)

 (set-this-form)

 (set-and-coerce-property! 'Ball1 'Speed

 (lexical-value $speed) 'number)

 (set-and-coerce-property! 'Ball1 'Heading

 (lexical-value $heading) 'number))

Doit

(process−repl−input 186
 (set−and−coerce−property! ’Ball1 ’Radius 10 ’number))

DoIt with return value:

YAIL sent to Companion:
DoIt with ball example:

Watch

;

Multiple Screens

● Demo with multiple screens?
○ Press button in app to go to screen2; screen 2

blocks show up in browser.

Liveness and Changes in Designer

;

Browser/Device Configurations

● Connect to device via wifi
● Connect to device via USB
● Connect to emulator

Establishing WiFi communication
App Inventor Browser Rendezvous Server App Inventor Companion

6-character code

scan code

has companion answered?

has companion answered?
(hash(code), IP)

@ IP

OK

(hash(code), IP)

check hash,
get Companion IP

nope

Two-way WiFi communication via HTTP
App Inventor Browser

web server on
App Inventor Companion

YAIL1

OK
Run YAIL1any values?

YAIL2

Queue YAIL2

watchval1

watchval2

errorvalany values?

[watchval1]

[watchval2, screenchangeval, errorval]

screenchangeval

Run YAIL2

OK

Companion Security

● Companion is “safe” to have on the phone. It
will not listen to the network without user
input. Malware can start it, but cannot get it
to do anything

● App Inventor connections are not encrypted,
so there exists a risk that an intruder can
introduce commands to the phone, but only
during a live development session.

Influences on our notion of liveness

● Lisp REPL, Smalltalk
● System figures out what it has to update on

edits
● Our decision makes things easier for most

users most of the time, but not always
correct and sometimes annoying.

Future Work with AI Live Development

● Improve fidelity (handle corner cases better).
● Re-work network architecture to better

handle “networks” where two local devices
cannot talk to each other (like at a hotel).

Future Work in App Inventor

● Textual representations
○ TAIL (consistent with Live development)
○ Java Bridge (inconsistent with live development)

Demo
● Ball fling & bounce

○ Ball Flung event -- is active immediately (without a
run button!)

○ Add bounce handler -- bounces immediately, even if
stuck at edge.

○ Doit to enlarge ball radius while bouncing
○ Add timer (will reinitialize interface) to add trail.
○ Remove some parts of handler to show error.

