Improving App Inventor Usability via Conversion between Blocks and Text

Karishma Chadha?, Franklyn Turbak®:!

SMIT Lincoln Lab, Lexington, MA 02421
bComputer Science Department, Wellesley College, Wellesley MA, USA 02481

Abstract

We have developed TAIL, a textual programming language isomorphic to the blocks language of MIT
App Inventor (AI), and have extended AI with code blocks, a novel mechanism that enables bidirectional
conversions between blocks and text fragments. TAIL improves Al’s usability by facilitating the reading,
writing, and sharing of programs, and may also ease the transition from blocks to text programming

In blocks languages, programs are constructed
by connecting visual fragments (blocks) shaped like
jigsaw puzzle pieces. MIT App Inventor (AI) [1] de-
mocratizes programming for Android mobile apps
through its easy-to-use blocks language. Several
features of Al reduce syntactic and cognitive frus-
trations experienced by novices when learning tex-
tual programming: blocks are chosen from menus
of related blocks; the shapes of plugs and sockets
suggest how the blocks fit together; and labels on
sockets document their purpose.

While simple AI blocks programs are easy to
read and write, more complex ones can become
overwhelming. Creating and navigating nontrivial
blocks programs is tedious, and AI’s inability to
copy blocks between projects inhibits reusing code
between projects and between programmers.

To address these issues, we created TAIL, a Tex-
tual App Inventor Language isomorphic to AT’s
blocks language, and provided a means for convert-
ing between them. We extended Al with code blocks
in which TAIL code for Al expressions, statements,
and top-level declarations can be entered. These
code blocks are interconvertible with the AI blocks
they represent (Fig. 1).

Ours is the first bidirectional isomorphic con-
version system between blocks and text languages.
This distinguishes it from systems that convert
blocks to text, but not vice versa (e.g., [2, 3]), and
from PicoBlocks [4], where blocks can be defined
in a text language more expressive than its blocks
language, but blocks cannot be converted to text.
Bidirectional conversions (1) increase AI’s usability

Email addresses: karishma.chadha®ll.mit.edu
(Karishma Chadha), fturbak@wellesley.edu (Franklyn
Turbak)

I This work was supported by the National Science Foun-
dation under grant DUE-1226216 and by sabbatical funding
from Wellesley College

Preprint submitted to Elsevier

when [ENEGIED Click
Y Labelt - W Text - REELD

L.

-4 global num - JiE3

o [LUE L [set Label1. Text to: {{get global num} + {1 Eii |

MWE!EEHDCER

- TN Labell ~ M Text ~ K ° ["1 global num ~ A o
. \
when [EMTITED -Click

0ol set (EIIED - (8D to
&

Figure 1: Sample TAIL < blocks conversions.

by providing an efficient means for reading, writing,
and reusing/sharing programs, and (2) may ease
the transition from blocks to text programming.

This is work in progress. The TAIL language,
code blocks, the implementation of the bidirectional
conversion between TAIL and AI blocks, and re-
lated work are described in detail in [5].

References

[1] MIT App Inventor home page, http://appinventor.
mit.edu, accessed Sep. 20, 2014.

[2] N. Fraser, Blockly code demo, https://blockly-demo.
appspot.com/static/apps/code/index.html, accessed
Sep. 20, 2014.

[3] P. Guo, Proposal to render Android App Inventor vi-
sual code blocks as pseudo-Python code, http://people.
csail.mit.edu/pgbovine/android_to_python, accessed
Sep. 20, 2014.

[4] Playful Invention Company, PicoCricket Reference
Guide, v. 1.2a, http://www.picocricket.com/pdfs/
Reference_Guide_V1_2a.pdf, accessed Sep. 20, 2014.

[5] K. Chadha, Improving the usability of App Inventor
through conversion between blocks and text, Undergrad-
uate thesis, Wellesley College, May, 2014.

October 14, 201}

TAILexp {{get global num} + {1}} |

