
Adapting Higher-order List Operators
for Blocks Programming

Soojin Kim and Franklyn Turbak
Computer Science Department

Wellesley College
Wellesley, Massachusetts, USA

Email: {skim22,fturbak}@wellesley.edu

Abstract—In MIT App Inventor (AI), puzzle-shaped blocks
are connected to program Android apps. AI has Python-like
lists typically manipulated with loops, but implementing such
loops correctly is challenging for novice AI programmers. To
simplify list processing, we extended AI with new blocks that
map, filter, reduce and sort lists. Since AI does not have first-
class functions, these pseudo-higher-order list operator (PHOLO)
blocks incorporate the parameter and body declarations of
functional arguments normally associated with these operators.
To assess the usability of these new list operators, we conducted
a user study with 18 students with AI experience. Most users
correctly completed a majority of the tasks, but many struggled
with processing lists of lists and sorting tasks involving two keys.

I. INTRODUCTION

Blocks programming languages, in which program syntax
trees are represented as compositions of visual puzzle-shaped
blocks, are increasingly used in introductory programming
environments. Tens of millions of people of all ages and
backgrounds have programmed in blocks-based environments,
which include Scratch ([1], [2]), Blockly [3], Snap! [4], Pencil
Code [5], and Code.org’s Hour of Code exercises [6]. Our
focus in this paper is MIT App Inventor (AI) [7], in which a
blocks language is used to specify the behavior of components
in a mobile app for Android devices.

AI’s only data structure is a Python-like list, an indexed
sequence of mutable slots, each of which contains an item.
AI lists are often processed using loops that iterate over the
items or indices of the list. There are three looping blocks in
AI: a for each item loop that iterates over each item in a
list (see Fig. 1); a for each number loop that iterates over
a range of numbers; and a while loop that iterates until its
test expression becomes false.

In our experience, AI beginners frequently have trouble
correctly processing lists with loops. For example, in a CS0
mobile apps course taught by Turbak using AI in Fall, 2014
[8], 9 of 20 apps for the final two projects had at least one
incorrectly defined loop. All 9 failed to properly initialize a
global variable in at least one loop. In the context of Fig. 1, this
bug would be failing to include the block that sets the global
variable filteredPhrases to the empty list at the beginning
of the Click event handler. Because this global variable is
initialized to the empty list when it is declared at top level,
the handler will work the first time the button is clicked, but
not subsequent times. There were other loop troubles as well,
such as index-out-of-bounds errors, and unnecessarily complex
loops that used a for each number loop to select list items
by their indices instead of the simpler for each item loop
to iterate over the items directly.

Can such problems be mitigated by discouraging the use of
global variables? AI programs can sometimes be restructured
to replace global variables by local ones, but the event-based
nature of AI programming forces many variables to be global
[9]. In the case of Fig. 1, if filteredPhrases is referenced
by other event handlers in the game, it must remain global.

Many AI blocks encapsulate high-level, easy-to-use ab-
stractions that hide many low-level complexities. Keeping with
this philosophy, we decided to address common problems with
loop-based list processing by providing new high-level list-
processing blocks (map, filter, reduce, and sort) that cap-
ture common looping patterns. These were inspired by similar
list operators in functional languages (e.g., Scheme/Racket,
Haskell, ML), as well as in Python and JavaScript.

Functions like map, filter, reduce, and sort are known as
higher-order list operators (which we shall abbreviate as
HOLOs) because they take functions as arguments. Since AI
does not currently support first-class function values, HOLOs
cannot be directly added to AI. We solve this problem by
creating specialized blocks we call pseudo-higher-order list
operators (PHOLOs) that have the parameters of the usual
functional arguments baked into the blocks. For example,
Fig. 2 shows how the Click handler from Fig. 1 can be
simplified with our new filter block, which, in addition
to a list argument, has an item parameter that ranges over
the list items and a boolean test expression that determines
which items are kept in the new list returned by the block.
Moreover, by avoiding directly initializing and appending to
the global filteredPhrases list and instead updating it after
the filtering process, we completely avoid the common pre-
loop global variable initialization bug described above.

In the rest of this paper, we present the design of our
PHOLO blocks and describe a study we conducted to evaluate
their usability. Our contributions are (1) developing a way to
express powerful HOLO-like operators using PHOLOs in a
blocks language that does not support first-class functions and
(2) assessing the usability of these PHOLO blocks.

II. DESIGN OF PSEUDO-HIGHER-ORDER LIST BLOCKS

A. Map, Filter, and Reduce Blocks

Fig. 3 displays our PHOLO map, filter, and reduce
blocks. Following AI’s convention, verbose labels convey the
meaning of blocks and their sockets. So what we call the
map block is actually labeled make new list from input
list socket mapping each item parameter to indented body
socket. Rather than taking a function as an argument (which is



Fig. 1. The Click handler initializes global variable filteredPhrases
to an empty list, and then the for each item loop populates it by all
strings in the global list phrases (collapsed to hide details) whose string
length is at least the number specified in the MinPhraseLength text box.
filteredPhrases is then used in a call to the updateGameInterface
procedure (whose definition is not shown). As the loop executes, the loop
variable item successively takes on the value of each list item.

Fig. 2. The Click handler with our new filter block (labeled make
new filtered list from). It declares a baked-in item parameter that
ranges over all input list items and is referenced from the test expression.

Fig. 3. The PHOLO map, filter, and reduce blocks for AI.

impossible in AI), these blocks incorporate both (1) the param-
eter(s) of that function (as the salmon-colored parameter(s) on
the block) and (2) a hole for the body of that function (the
indented expression socket below the parameter). Together,
these two parts play the same role as the usual functional
argument for the traditional HOLO versions of these blocks.
This relationship is clarified in Fig. 4, which shows a Python
map function called on an anonymous lambda incrementing
function and a list of numbers and how this is expressed with
the AI map block. Note how the item parameter of lambda is
incorporated into the map block, and the body of the lambda
is provided as a body expression (in the scope of item) that
fills the indented expression socket of the map block.

Fig. 4. The anonymous function’s item parameter is baked into the map
block, and its body fills map’s expression socket in the scope of this parameter.

Fig. 5 show a sample map execution using AI’s DoIt fea-
ture, which annotates selected expression blocks with bubbles
showing their values. We can tell from the DoIt bubble on
numberList that it denotes a list of five numbers. Similarly,
the DoIt bubble on the map block indicates that its result is a
new list of five numbers where each number is one more than
the corresponding number in the input list.

The filter block is similar to map and has already

Fig. 5. DoIt bubbles show the dynamic behavior of the map example.

been explained in the context of Fig. 2. The reduce block
(Fig. 6) combines the items of the input list into an answer
value. It begins with the input initialAnswer (the answer
when the list is empty; 0 in this example), and processes the
items left-to-right, combining the current answer (named by
answerSoFar) with the current list item (named by item) to
produce the next answer. The combination is performed by the
body expression. In the example, the input list has four strings,
and the output is the sum of the lengths of these strings.

Fig. 6. A reduce block that sums the lengths of strings in its input list.

B. Sort Blocks

AI currently does not have a list sorting operator. One
can be defined as an AI procedure, but this is beyond the
capabilities of most beginning AI programmers. We fix this
problem by providing three sort blocks (Fig. 7). The first,
sortbasic, has no baked-in parameters and uses a default
comparator. It returns a new list that is a sorted version of
the input list, where elements are sorted in ascending order
first by type and then by values within each type, using an
arbitrary ordering on types and standard orderings on values.

Fig. 7. The sortbasic, sortkey , and sortcomp blocks.

The second sort block, which we call sortkey , has a single
item parameter and a socket for a body expression. Together,
these determine a proxy value that is used to sort the item by
the default comparator of sortbasic. E.g., in Fig. 8, sortkey
sorts a list of strings in ascending order by their lengths.

Fig. 8. Using sortkey to sort strings by their lengths. The sort is stable;
items with equal proxy values keep their same relative order from the input
list to the output list. This is why Zoe appears before Sam in the output list.

The third sort block, sortcomp, has two parameters, item1
and item2, and a socket for a boolean body expression. To-
gether, these denote a less-than-or-equal-to comparison func-
tion. If the body expression evaluates to true, then item1 will
precede item2 in the output list; otherwise item2 will precede
item1. For example, in Fig. 9, the comparator specifies that
the strings should be sorted in descending lexicographic order.



Fig. 9. Using sortcomp to sort strings in descending lexicographic order.

III. USER STUDY

A. Purpose and Structure of the Study

To assess the usability of PHOLO blocks, Kim facilitated
a user study with 18 Wellesley College students familiar with
AI from a course or a project. The purpose of this study was
to determine if the new list operators are usable by AI’s target
audience — users with limited programming background. Here
we summarize key aspects of the study and its results; for
details, see Kim’s undergraduate dissertation [10].

Each user study lasted up to 90 minutes. Participants first
filled out a pre-task survey indicating age, major(s), previous
knowledge of AI and HOLOs (if any), and CS courses taken.
All were women aged 18–23. They had 7 different majors, with
11 users majoring in CS or double majoring in CS and another
subject. To control for skill level and background, we divided
them into two groups: Group 1, the 10 students (56%) who had
previously seen HOLOs in Python, OCaml, or Scheme/Racket;
and Group 2, the 8 students (44%) without such exposure.

The next step was a brief tutorial on each PHOLO block,
followed by a set of tasks that involved writing new programs
and explaining the meaning of programs that use the PHOLO
blocks. Kim took notes during each study and recorded a
screencast capturing the user’s voice and actions on the screen.

The first part of the study consisted of eight tasks involving
mapping, filtering and/or reducing over a simple list or a list of
lists. The second part of the study involved six sorting tasks
on a list of lists. Users tested their programs by connecting
the computer to an Android device and running DoIt on the
blocks. The study ended with a post-task survey where users
indicated why it was easy or difficult to use the PHOLO blocks
and shared any suggestions for improvements.

B. Results for Mapping, Filtering, and Reducing Tasks

Fig. 10 shows the successful task completion rate for the
8 tasks involving map, filter, and reduce. Group 1 had
an average success rate of 98% on these tasks, compared to
67% for Group 2. All Group 1 users correctly completed at
least 7 of the 8 tasks. Two could not explain the meaning
of a program that filtered, mapped and then reduced over a
list of lists. But all Group 1 users correctly completed the
synthesis task using a a combination of these blocks. In Group
2, all users successfully mapped and filtered over a simple list.
But many struggled with the concept of reduction, with using
any of these operators on a list of lists, and with using these
operators in combination with one another.

Something not reflected in Fig. 10 is that many users
who eventually correctly completed a task encountered some
problems along the way. They often referred back to tutorial
examples to figure out how to use the blocks correctly, es-
pecially when they encountered an error. Overall, students in

Fig. 10. Comparison of performance on the map, filter, and reduce
portion of the study between Group 1 (ten users with previous HOLO
exposure, in red) and Group 2 (eight users without HOLO exposure, in blue).

Group 1 were better at such debugging than those in Group 2,
a key factor in their better performance.

Users in both groups faced two common problems. First,
6 users (60%) in Group 1 and 8 users (100%) in Group 2
had trouble selecting the correct item of each sublist when
mapping, filtering, or reducing over a list of lists. In these
situations, the PHOLO block implicitly selects elements from
the outer list, but the user must explicitly select an element
from the inner list that is bound to the block’s item parameter.
The second most common mistake (made by 6 users in each of
Groups 1 and 2) was concatenating strings in the wrong order
using reduce. The reduce block tutorial did not emphasize
that items are processed left-to-right. This was potentially con-
fusing to Group 1 students familiar with the right-to-left nature
of OCaml’s foldr function from Wellesley’s Programming
Languages class. Also, during the study, we realized that the
parameter order (item before answerSoFar) may encourage
a right-to-left interpretation and is the opposite order of the
combiner function parameters for Python’s reduce operator,
which some students might have known. For these reasons, we
plan to swap the order of these parameters in the future.

In the post-task survey, many users commented that the
brief tutorial and simple examples of each block were helpful.
Group 1 students said they felt comfortable using the PHOLO
blocks because of their previous HOLO experience. For Group
2 students, a key source of difficulty was keeping track of
the functionality of each PHOLO block and the differences
between them. However, they found the labels on the blocks
helpful for remembering how these block should be used.

C. Results for Sorting Tasks

For the six sorting tasks, Fig. 11 shows that Group 1 again
performed just as well or better than Group 2 on all the tasks.

Overall, the results show that a large majority of users in
both groups were able to sort the given list in ascending or
descending order by the element itself or by one key. However,
sorting with two keys proved particularly challenging. This
was in part due to flaws in the study involving unexplained
subtleties of the stability of the sorting algorithm as well as
the particular list being sorted; see [10] for details.

There were two common problems encountered during the
sorting tasks. First, when using sortcomp, a total of nine users



Fig. 11. Comparison of Group 1 and Group 2 on the sorting tasks.

(50%) tried to use the boolean test item1 > item2 to sort
the list in increasing order or the test item1 < item2 to
sort the list in decreasing order. Six users (60%) in Group
1 and three users (38%) in Group 2 made this mistake. We
thought that the English phrasing “where item1 precedes
item2 if” on the sortcomp block would strongly suggest the
correct interpretation, but the results say otherwise. The second
confusion was experienced by three users in each of Group 1
and Group 2: trying to use sortkey (which sorts in increasing
order only) for tasks that required sorting in decreasing order.
These problems indicate that the sort blocks need to be better
explained in documentation and tutorials.

In the post-task survey, most users indicated that they found
sortbasic and sortcomp intuitive to use. Several, however,
said they did not understand how and when to use sortkey
and asked for more examples involving keys. Others did not
like having to choose between sortkey and sortcomp. Since
sortcomp can do everything that sortkey does (and more),
we plan to eliminate sortkey going forward.

IV. RELATED WORK

Like AI, several other blocks languages with list or array-
like data structures, including Scratch [1] and StarLogo Nova
[11], do not have HOLOs, so users use loops with list indexing
to iterate through list elements. A notable exception is Snap!
[4], a blocks language based on Scratch that supports Scheme-
like higher-order functions (HOFs), including list mapping,
filtering, and reducing blocks. In the Snap! mapping example
in Fig. 12, the multiplication block with an empty input
surrounded by a gray ring denotes a one-argument doubling
function. The gray ring wrapper is a concise visual notation
for declaring an anonymous function [12].

The Droplet editor ([13], [14]) for Pencil Code [5] and
Code.org’s App Lab supports isomorphic conversions between
the textual notations of existing languages and a blocks nota-
tion. When it is used for languages with anonymous first-class
function declarations, like dialects of JavaScript, the shapes of
the resulting function blocks resemble gerrymandered districts
(Fig. 13). Just as AI avoids the complexity of first-class
function callbacks in programs like Fig. 13 with its top-level
parameterized event handlers [9], PHOLO blocks similarly
avoid the complexity of blocks for functional arguments.

Fig. 12. Mapping example in Snap!

Fig. 13. The green block is a function declaration block in the Droplet editor
for Code.org’s App Lab.

A key advantage of PHOLOs vs. HOLOs is that PHOLOs
avoid conceptual difficulties with HOFs observed in [15], [16].
For many years, Turbak has introduced map, filter, and
reduce in courses via examples with explicit anonymous
function (as opposed to named function) arguments so that
the function parameter names are explicit. PHOLO blocks are
a visual embodiment of this pedagogical strategy.

Numerous older visual languages support higher-order op-
erators on lists and arrays. Most of these are dataflow lan-
guages. In Show and Tell [17], iteration boxes with so-called
parallel ports allow processing of individual array elements.
LabView’s tunneling and auto-indexing features similarly al-
low processing array elements in loops [18]. Both Extended
Show And Tell [19] and DataVis [20] extend Show and Tell
with means of passing and applying HOFs. Prograph’s list
annotations enable specifying code that is run on each element
of a list, and its inject feature allows specifying a function ar-
gument by name [21]. VPL [22] and VisaVis [23] are dataflow
systems for functional programming with an emphasis on
HOFs. Tonic [24] uses a dataflow visualization with support for
HOFs to specify reactive web-based multi-user applications.
One non-dataflow language in this category is CUBE ([25],
[26]) a three-dimensional visual logic programming language
that can express HOLOs like filter. We know of no studies
evaluating the usability of HOLO features in these languages.

V. CONCLUSION AND FUTURE WORK

We have implemented our PHOLO blocks in an experi-
mental version of AI, and it is being reviewed for integration
into the master version. Although beginners can use them in
some situations, our user study indicates that more work needs
to be done to make these operators less confusing to those
who have not previously seen similar operators. In addition to
improving documentation and tutorials, we need to carefully
finalize the labels and parameter names on PHOLO blocks.
We have recently learned about the syntactic choices made in
the evidence-based programming language Quorum ([27]) and
wonder if a similar methodology could be applied here.

In our user study, we only tested the usability of PHOLO
blocks and did not test whether list processing with these
blocks is easier or harder than with loops. We plan to conduct
a user study to investigate this, and aim for this study to
have a wider demographic base (in terms of age, gender, and
background) than the one reported here.

ACKNOWLEDGMENTS

This work was supported by Wellesley College Faculty
Grants, by sabbatical funding from Wellesley College, and by
the National Science Foundation under grant DUE-1226216.



REFERENCES

[1] Scratch project, MIT Lifelong Kindergarten Group, http://scratch.mit.
edu/, accessed Sep. 4, 2015.

[2] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” ACM Transactions
on Computing Education, vol. 10, no. 4, Nov. 2010.

[3] Neil Fraser, Blockly website, https://developers.google.com/blockly/,
accessed Sep. 4, 2015.

[4] B. Harvey and J. Mönig, “SNAP! 4.0 reference manual,” https://snap.
berkeley.edu/SnapManual.pdf, accessed Sep. 4, 2015.

[5] D. Bau, D. A. Bau, M. Dawson, and C. S. Pickens, “Pencil Code:
Block code for a text world,” in Proceedings of the 14th International
Conference on Interaction Design and Children, ser. IDC ’15, 2015,
pp. 445–448.

[6] Code.org, Hour of Code website, http://code.org/learn, accessed Sep. 4,
2015.

[7] MIT Center for Mobile Learning, MIT App Inventor website, http://
appinventor.mit.edu, accessed Sep. 4, 2015.

[8] F. Turbak, “CS117: Inventing Mobile Apps,” Wellesley College
course, Fall 2014 semester. Course website: https://sites.google.com/
a/wellesley.edu/wellesley-cs117-fall14, accessed Sep. 4, 2015.

[9] F. Turbak, M. Sherman, F. Martin, D. Wolber, and S. C. Pokress,
“Events-first programming in App Inventor,” Journal of Computing
Sciences in Colleges, Apr. 2014.

[10] S. Kim, “Developing and assessing new list operators in App Inventor,”
undergraduate thesis, Wellesley College, May, 2015. Available at http:
//repository.wellesley.edu/thesiscollection/247.

[11] StarLogo Nova project, MIT Scheller Teacher Education Program, http:
//www.slnova.org, accessed Sep. 4, 2015.

[12] B. Harvey and J. Mönig, “Lambda in blocks languages: Lessons
learned,” in IEEE Blocks and Beyond Workshop, 2015, to appear.

[13] D. A. Bau, “Droplet, a blocks-based editor for text code,” Journal of
Computing Sciences in Colleges, vol. 30, no. 6, pp. 138–144, Jun. 2015.

[14] ——, “Integrating droplet into Applab — improving the usability of a
blocks-based text editor,” in IEEE Blocks and Beyond Workshop, 2015,
to appear.

[15] M. Eisenberg, M. Resnick, and F. Turbak, “Understanding procedures as
objects,” in Empirical Study of Programmers: Second Workshop, G. M.
Olson, S. Sheppard, and E. Soloway, Eds. Ablex, 1987, pp. 14–32.

[16] J. DiBiase, “Challenging students’ misconceptions of higher-order
mathematics: Visualizing functions as data objects,” Institute of Cogni-
tive Science, Department of Computer Science, University of Colorado,
Tech. Rep. TR 95-07, Jul. 1995.

[17] T. D. Kimura, J. W. Choi, and J. M. Mack, “A visual language
for keyboardless programming,” Department of Computer Science,
Washington University, St. Louis, Tech. Rep. TR WUCS-86-6, Jun.
1986.

[18] R. Bitter, T. Mohiuddin, and M. Nawrocki, LabView: Advanced Pro-
gramming Techniques (2nd ed.). CRC Press, 2006.

[19] M. A. Najork and E. Golin, “Enhancing Show-and-Tell with a poly-
morphic type system and higher-order functions,” in IEEE Workshop
on Visual Languages, 1990, pp. 215–220.

[20] D. D. Hils, “DataVis: A visual programming language for scientific
visualization,” in Proceedings of the 19th Annual Conference on Com-
puter Science (CSC ’91), 1991, pp. 439–448.

[21] “Prograph CPX – A Tutorial,” MacTech, vol. 10, no. 11, 1994.
[22] D. Lau-Kee, A. Billyard, R. Faichney, Y. Kozato, P. Otto, M. Smith, and

I. Wilkinson, “VPL: an active, declarative visual programming system,”
in IEEE Workshop on Visual Languages, 1991.

[23] J. Poswig, G. Vrankar, and C. Moraga, “VisaVis: a higher-order
functional visual programming language,” Journal of Visual Languages
and Computing, vol. 5, pp. 83–111, Mar. 1994.

[24] J. Stutterheim, R. Plasmeijer, and P. Achten, “Tonic: An infrastructure
to graphically represent the definition and behaviour of tasks,” in Trends
in Functional Programming: 15th International Symposium, TFP 2014,
Revised Selected Papers (LNCS 8843). Springer, 2015, pp. 122–141.

[25] M. A. Najork and S. M. Kaplan, “The CUBE language,” in 7th IEEE
Workshop on Visual Languages, 1991.

[26] M.-A. Najork, “Programming in three dimensions,” Ph.D. dissertation,
University of Illinois, Urbana-Champaign, 1994.

[27] A. Stefik, S. Siebert, M. Stefik, and K. Slattery, “An empirical com-
parison of the accuracy rates of novices using the quorum, perl, and
randomo programming languages,” in Proceedings of the 3rd ACM
SIGPLAN Workshop on Evaluation and Usability of Programming
Languages and Tools, ser. PLATEAU ’11, 2011, pp. 3–8.


