
Identifying original projects in App Inventor

Eni Mustafaraj and Franklyn Turbak and Maja Svanberg
Department of Computer Science
Wellesley College, Wellesley, MA

emustafa, fturbak, msvanberg@wellesley.edu

Abstract

Millions of users use online, open-ended blocks pro-
gramming environments like App Inventor to learn how
to program and to build personally meaningful pro-
grams and apps. As part of understanding the compu-
tational thinking concepts being learned by these users,
we want to distinguish original projects that they create
from unoriginal ones that arise from learning activities
like tutorials and exercises. Given all the projects of stu-
dents taking an App Inventor course, we describe how
to automatically classify them as original vs. unoriginal
using a hierarchical clustering technique. Although our
current analysis focuses only on a small group of users
(16 students taking a course in our institution) and their
902 projects, our findings establish a foundation for ex-
tending this analysis to larger groups of users.

Introduction: Distinguishing Original and
Unoriginal Blocks Programs

Blocks programming environments, in which programs are
constructed by connecting fragments shaped like puzzle
pieces, are increasingly becoming a way that beginners are
exposed to programming and that hobbyists, scientists, and
other “casual” programmers write programs. Examples of
these environments include App Inventor, Scratch, Blockly,
Snap!, Pencil Code, and Alice. Through courses and ex-
tracurricular activities like Code.org’s Hour of Code, blocks
programming environments have become a popular way to
introduce programming and computational thinking to tens
of millions of people of all ages and backgrounds.

By lowering various barriers, blocks environments facili-
tate “making stuff” involving computation, without starting
with traditional text-based languages (Bau et al. 2017). For
example, Scratch enables computational newbies to create
animations and games (Resnick et al. 2009), and App Inven-
tor empowers beginners to create their own mobile apps for
Android devices (Wolber, Abelson, and Friedman 2015).

The first two authors have used App Inventor to teach app
development, computational thinking, and introductory pro-
gramming since 2009 in the context of classes at our in-
stitution and a variety of workshops for both faculty and

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

students. App Inventor has powerful programming mecha-
nisms (e.g., event handlers, lists, loops, and procedures) for
controlling key features of mobile devices (camera, location
sensor, speech recognizer, voice recorder, local and web-
based databases, etc.). But in our experience, users often
have trouble making apps that work as desired. Their apps
contain many bugs, and even aspects that work are some-
times implemented in overly complex and roundabout ways.

We are currently analyzing large datasets of App Inventor
projects to see which anecdotal observations are borne out in
the data. Our long-term goal is to use learning analytics to
identify difficulties encountered by blocks programmers and
to alleviate these difficulties by improving the programming
environments and their associated pedagogies.

The open-ended nature of App Inventor and lack of infor-
mation about its users presents many challenges for our re-
search. App Inventor collects no demographic data on users
other than what is provided in an optional survey completed
by only a small percentage of users. For most users, we have
no information on their gender, age, geographic location,
programming background, etc. We also don’t know whether
any of their projects were created in collaboration with oth-
ers, or as part of a class or other coordinated activity.

One of the thorniest problems we have encountered is dis-
tinguishing original from unoriginal projects. While learn-
ing App Inventor, users often create (or simply upload) many
projects that are nearly identical to global tutorials from a
few popular App Inventor websites or what we will call lo-
cal examples = tutorials, exercises, and other constrained ac-
tivities done in the context of classes, MOOCs, hackathons,
etc. We consider these projects to be unoriginal because
users are either following detailed instructions or solving
problems in highly constrained contexts, neither of which
illustrates what users can design and build on their own or
in groups. In contrast, original projects are those in which
users develop an app based on their own ideas and current
programming skills. If we want to understand what App In-
ventor users are learning about programming and what mis-
conceptions they have, we need to focus on their original
projects and filter out the unoriginal ones.

We have tried out various techniques to identify which
projects are minor variations of global tutorials found on
App Inventor websites. Our preliminary results indicate that
attempting to identify tutorials by project names is inaccu-



rate; instead, structural comparisons with known tutorials
based on project content is needed.

The problem of how to detect local examples is more vex-
ing since they are, by definition, local to a class, and at the
very least require knowing which students are taking a class
together. As described later, we have developed a way to au-
tomatically discover in our dataset collections of users who
appear to be groups of students taking the same class.

In this paper, we investigate this research question: given
a collection of all App Inventor projects from students in
a class, can we automatically classify such projects as ei-
ther being unoriginal (i.e., based on global tutorials or lo-
cal examples) or original (i.e., projects that students cre-
ated on their own or in small groups)?

We studied this problem using the 902 projects created by
all 16 students in a CS0 App Inventor course taught by the
second author at our institution in Fall, 2015. We manually
labeled the 902 projects as being global tutorials, local ex-
amples, or original projects. We then developed an algorithm
that (1) represents App Inventor projects as feature vectors
and (2) uses hierarchical clustering based on similarities be-
tween feature vectors to automatically classify projects as
unoriginal or original. The classification determined by our
algorithm matches our ground truth labels to a high degree
of accuracy, and the clusters found by the algorithm align
well with particular global tutorials and local examples.

Related Work
The work most closely related to ours is the automated anal-
ysis of App Inventor projects by (Xie, Shabir, and Abel-
son 2015; Xie and Abelson 2016). They automatically ex-
tract project summaries including types of components and
blocks from project datasets to deduce skills and concepts
users are learning over time. In (Xie, Shabir, and Abelson
2015), they filter out projects classified as tutorials, but this
is determined only by the names of the projects, not their
contents. This work inspired us to find more accurate ways
to identify unoriginal projects.

Classifying students or their programs is a topic that has
interested the research community for years, although not
with the same goals as our current research. Recently, Piech
et al. used clustering of snapshots from the same assignment
to build a model that captured the different stages a student
goes through while learning to program (Piech et al. 2012).
Their analysis used a fine-grained data collection process
that currently doesn’t exist in App Inventor, but might be-
come a reality in a near future (Sherman and Martin 2015).

App Inventor: An Overview
MIT App Inventor is a browser-based blocks programming
environment for creating mobile apps for Android devices.
It is popular: over 4.5 million registered users have created
nearly 17 million app projects, and there are over 340 thou-
sand active monthly users. It has a broader age distribution
of users than Scratch, and the range of compelling mobile
apps is so large that everyone can find classes of apps to
be passionate about. Some users are drawn to App Inven-
tor by the desire to learn programming or the lure of en-

trepreneurship (App Inventor apps can be sold in the Google
Play Store). But many just want to make an app for them-
selves, their family and friends, or their community.

One of the first apps created by many App Inventor users
is TalkToMe (Figure 1), the subject of the first two video
tutorials for beginners at the MIT App Inventor website1.
This app has two behaviors: (1) when a button is pressed, it
will speak aloud whatever text has been entered into a text
box; and (2) when the the device is shaken, it will speak the
phrase “Stop Shaking me!”

The app is specified in two parts within an App Inventor
browser window. In the Designer window (part of which is
shown in Figure 1(a)), the user drags and drops the compo-
nents of an app from a palette into the representation of the
screen. Components include visible user interface elements,
such as (in this case): a TextBox1 component entering the
text to be spoken and a Button1 component that causes
the text to be spoken when pressed. Components can also
be object-like entities that add functionality to the app, in
this case: (1) a TextToSpeech1 component that “speaks”
a string; and (2) an AccelerometerSensor1 component
that can detect when the device is being shaken.

The behavior of an app is specified in the Blocks Ed-
itor (Figure 1(b)). In this window, the user drags blocks
from a blocks palette organized by functionality into a
2D workspace and connects them. Some blocks (such as
when Button1.Click) are event handlers that are trig-
gered by an event involving the component. Other blocks
include methods that operate on a component (such as
call TextToSpeech1.Speak), component property get-
ters (such as TextBox1.Text) and setters, and built-in
blocks like the string block for “Stop Shaking me!”.

The capabilities of App Inventor go far beyond this sim-
ple example. For example, App Inventor apps can take and
display pictures and videos, record and play sounds, send
and receive text messages, make phone calls, scan barcodes,
use GPS location data, and access, store, and process infor-
mation saved persistently on the device or on the web.

App Inventor project source code files are automatically
saved in the cloud, but can be exported as .aia files. Each
of these is a zipped collection of files that includes a project
property file, media files used by the app, and, for each
screen in the app, a JSON representation of its components
and an XML representation of its blocks.

Data and Labeling
Our project dataset is 902 App Inventor .aia project source
files created by all 16 students taking the second author’s
Wellesley course CS117 Inventing Mobile Apps in Fall
2015. These files, provided to us by the MIT App In-
ventor team (with consent of the students) include addi-
tional timestamp information indicating (1) when the project
was created and (2) when it was last modified. During the
course students worked in pairs on various pair program-
ming projects, and sometimes created new gmail accounts
for this work; unfortunately, we do not not have access to
the projects created in these other accounts. On average, the

1http:appinventor.mit.edu



(a) Designer (b) Blocks Editor

Figure 1: App Inventor TalkToMe tutorial app

students created 56.4 projects (min=41, max=72, std=8.2),
within the time period August 31 to December 23, 2015.

Our goal was to classify the student projects as being uno-
riginal (closely related to global tutorials or local examples)
or original (all other projects, including nontrivial extensions
to global tutorials or local examples).

We began by collecting a set of 80 global tutorial apps
from pedagogical websites for App Inventor. This includes
video and written tutorials from appinventor.mit.edu
and appinventor.org, including a set of 14 so-called
Maker Cards from appinventor.mit.edu that were dis-
tributed to students in the course. For each tutorial, we
downloaded or created an App Inventor project file. In
some cases, where a tutorial had multiple parts or sug-
gested extensions, we created a separate project file for
each such part/extension. For example, the TalkToMe tu-
torial has two videos, and the second video has two ex-
tensions to the app created in the first video, so we named
these projects TalkToMePart1, TalkToMePart2a, and
TalkToMePart2b.

We also collected projects for all the tutorials, exercises,
and example App Inventor programs that were presented in
the CS117 class. These are the local example apps; there
were 46 of them.

Since the second author was familiar with all course ma-
terials and student work, he manually examined all 902
projects, comparing them to the global tutorial and local
example apps. Each student project that closely matched a
global tutorial or local example was labeled GLOBAL or LO-
CAL along with which tutorial/example project it matched.
All 46 local tutorials appeared in the student dataset, but
only 40 of the 80 global tutorials appeared. In some cases, a
student project was deemed to be a nontrivial extension to a
tutorial or example, and was labeled BEYOND a particular tu-
torial or example. A few (26) of the projects contained zero
blocks (they only had the layout of the app, not its behav-
ior); these were labeled EMPTY and removed from further
consideration.

Most remaining projects were related to one of five cre-
ative projects students were assigned. These increased in

complexity from the first assignment, in which students built
a very simple app using a few randomly dealt components,
to the open-ended final assignment, in which students de-
signed and built from scratch an app of their choosing that
had to incorporate a web database. These projects were la-
beled COURSE PROJECT n, with n in the range 1 to 5.

Finally, the small number of remaining projects were la-
beled as TESTING projects, because they tended to test cer-
tain components, often ones not covered in class.

In terms of originality, we consider projects labeled
GLOBAL or LOCAL to be UNORIGINAL and those labeled
CLASS PROJECT, TESTING, or BEYOND to be ORIGINAL.
Of the 876 nonempty projects in the dataset, only 280 (32%)
were labeled as ORIGINAL; the remaining 596 (68%) were
UNORIGINAL. The fact that a large majority of projects in
the dataset were UNORIGINAL underscores the need to fil-
ter them out when analyzing student work for understanding,
misconceptions, etc.

Feature Representation and Distance
We developed a Python program to summarize each .aia
source file as a JSON file containing, for each screen in the
app, the types and frequencies of the components and blocks
used in the screen. As shown in Figure 1(b), the behavior
of an app is specified by blocks. For blocks that operate
on a component (e.g., event handlers, methods, and compo-
nent property getters and setters), we only distinguish blocks
by the type of the component and not the particular com-
ponent name. For example, an app with a .Click handler
for a StartButton and StopButton is considered to have
two occurrences of the Button.Click block. But the prop-
erty getter that extracts the current string contents of a label
(Label.Text) is considered different from the one that re-
turns the string in a text box (TextBox.Text). Blocks that
specify values like numbers or strings are distinguished only
by their types and not their values. While there are more
than one thousand distinct block types in App Inventor, our
dataset of 902 student projects, 40 global tutorials, and 46
local examples uses only 347 different block types.

In a program, the order and nested organization of blocks



(a) (b)
Figure 2: Distribution of distances using 1-NN classification of student projects relative to (a) both global tutorials and local
examples and (b) only global tutorials. Without knowledge of local examples, many unoriginal projects would appear to be
original based just on their 1-NN distance.

matters, just like the order of words gives meaning to a
document. However, relying on the successful bag-of-words
model that discards order to focus on presence and fre-
quency of words in a document, we experimented with a un-
igram model in which all block types are independent. Our
experiments with various combinations of features for de-
termining similarity between App Inventor projects showed
that representing a project as a vector of the 347 block type
frequencies (disregarding components) was adequate for our
needs. Because of this decision, two projects with the same
blocks that differ only in details of their user interface are
considered the same. Intuitively, the originality of a project
is captured by the kind and number of blocks that are not
common in unoriginal projects.

Our sample of 988 projects (902 from students, 40 global
tutorials, and 46 local examples) has an average of 65.9 total
blocks per project (median=49, std=68.2, min=0, max=557).
For unique block types, the statistics are: 20.3 unique blocks
in average (median=19, std=13.2, min=0, max=71). So, on
average, 20 of the 347 slots in a project feature vector are
non-zero.

To determine distance between project feature vectors, we
experimented with various metrics, including Euclidean and
Jaccard. Jaccard similarity determines the ratio of the inter-
section of features divided by the union of features. Jac-
card distance is 1 minus the similarity. So entities that are
the same have a Jaccard distance of 0, while those with
nothing in common have Jaccard distance of 1. We found
that the Jaccard distance metric worked well on projects,
and it worked best when the block type feature vector
used frequency counts rather than binary values (where
a 1 indicates at least one block of a given type). How-
ever, the jaccard option in the Python scipy library
spatial.distance.pdist did not correctly handle fre-
quency counts, so we had to supply a function for correctly
computing it.

In our following presentation, it is assumed that projects
are represented as feature vectors based on block types with

counts, and distances are calculated via the Jaccard metric.

Classification, Clustering, or Both?
Our first approach for distinguishing between original and
unoriginal projects was to apply the k-NN classification al-
gorithm with k=1. Given that the set of tutorials is known,
we can calculate the distance of every project to these known
tutorials and then assign the label of the closest tutorial to
a project. The problem with this approach is that by hav-
ing only one labeled example per class, it’s very difficult to
establish the hyperspace boundaries between the different
classes (with each tutorial being a class on its own). It also
depends on the set of known tutorials.

For most App Inventor users, we know only the global
tutorials. For our particular experiment, we also happen to
know the 46 example projects that were local to the class.
This knowledge makes a huge difference. For our dataset
with 86 known tutorials (40 global and 46 local), the distri-
butions of distances for original and unoriginal projects to
the closet tutorials are mostly distinct, as shown by the his-
togram in Figure 2(a). However, if we repeat the same 1-NN
classification, but only using the set of the known global tu-
torials, the two classes of original and unoriginal projects are
all in the same space, making it hard to distinguish between
the two categories (Figure 2(b)).

When classifying student projects by distance between
known tutorials, we miss an important source of informa-
tion: the similarity of projects to other projects. Even if we
don’t have a priori knowledge of the local examples used
in class, when many projects belonging to different students
are close together, this strongly suggests that they are uno-
riginal near-copies of global tutorials or local examples.

This can be revealed through clustering. Consider the den-
drogram in Figure 3 generated by applying hierarchical clus-
tering to a subset of (1) 58 projects chosen because their
names resembled the names of some global tutorials and
(2) 7 of the actual tutorials. In this case, hierarchical clus-



Figure 3: Annotated dendrogram showing the clustering of
58 student projects and 7 known tutorial projects.

tering does a remarkable job of clustering projects that we
had labeled in the same way. We have annotated the diagram
with clusters A through I for expository purposes. Each such
annotated cluster corresponds to a labeling for a particular
global tutorial or local example. For example, cluster I corre-
sponds to the Maker Card Stopwatch tutorial, and even in-
cludes the TalkToMe project of user 10363, which is poorly
named and is in fact really a stopwatch project. Cluster H
corresponds to the Maker Card Counter tutorial, which has
a subset of blocks in the Stopwatch tutorial. Cluster C cor-
responds to the tutorial for a much more accurate local stop-
watch tutorial presented to students when they were working
on their final projects. Cluster E corresponds to the starter
and solution files for a local GPS path tracking tutorial pre-
sented in class. Clusters F and G are, respectively, many ver-
sions of the global DigitalDoodle and TalkToMe tutori-
als. The two leftmost projects in cluster F were labeled as
nontrivial extensions to DigitalDoodle, so it makes sense
that they join the cluster as singletons high in the tree.

Each of the non-singleton annotated clusters contains
projects from several students in the class, making the clus-
ters reveal their nature as a learning activity as opposed to
an original individual or pair project.

From observing the clustering of student projects labeled
as ORIGINAL (see dendrogram in Figure 4), we can gain
more intuition about how a hybrid process of classification
and clustering could work. We have annotated the dendro-
gram with lettered clusters for the sake of exposition. Clus-
ters A, B, and K correspond to different versions of the same
original game project done by a pair of students. Clusters C,
E, F, G, H, I, J, and L correspond to different individual and
pair projects. Cluster F has 13 projects created by students
05278 and 39972, but there is also one copy of their project
in the folder of student 43502 that apparently was shared
with this other student. The student partners have a balanced
number of iterative versions of the projects (7 and 6). Mean-
while, Cluster H has 14 projects created mostly by the two
students 11991 and 32045, with one interjection by student
30045. Differently from Cluster F, one of the students in this

Figure 4: Annotated dendrogram showing the clustering of
77 student projects labeled as ORIGINAL.

cluster has generated more versions (9 versus 4). These ex-
amples suggest that clusters of many similar projects created
mostly by a small number of users can be automatically clas-
sified as original projects, because they indicate sequential
progress on a project. Since App Inventor doesn’t have ver-
sion control, users save versions manually, which indicates
how a project progressed over time.

Cluster D is interesting because it includes the work of
four students from the third original project in the course,
which was an individual project. These students did not
work together, but their projects are lumped together be-
cause this particular original project was much more con-
strained than the others: students were required to imple-
ment an app that recorded voice memos and had an inter-
face for saving, displaying, playing, and deleting the voice
memos. While the apps had different interfaces and numbers
of screens, they ended up using many similar blocks and so
were clustered together by our Jaccard distance metric that
emphasizes block similarity. Because cluster D contains the
projects of many students, our approach would incorrectly
classify it as an unoriginal activity as opposed to a collec-
tion of similar original individual projects that it really is.

A Hybrid Approach: Classification through
Clustering
A project is unoriginal if it is very similar to one of the ex-
isting global or local tutorials. However, since often not all
these tutorials are known a priori, a project will be deemed
unoriginal if it is similar to projects from a large number
of different users. Thus, once a relatively tight cluster of
projects from different users has been created, all of the
projects can be classified as UNORIGINAL.

A project is original if it is not similar to any cluster of
known unoriginal projects. Such a project might often oc-
cur within a cluster of other original projects. Thus, if we
discover a cluster of many projects contributed by a small
number of users, we can classify all of them as ORIGINAL.

What makes this classification interesting and different



Figure 5: The accuracy for the ORIGINAL class is high-
est for small Jaccard distances and declines as this dis-
tance increases, because ORIGINAL projects get merged
into clusters where the majority is composed of UNORIG-
INAL projects.

from other classification problems is the fact that it relies
on meta-information outside the projects: the users, number
of users in a cluster, and similarity to other projects.

We implemented this hybrid two-step clustering and clas-
sification as follows: we performed hierarchical cluster-
ing using the generalized Jaccard distance metric and the
average linkage method. From our visual inspection of
several dendrograms depicting subsets of the data, we had
noticed that unoriginal projects tend to cluster together at
small distance values, while original projects were merged
only at large distances. We decided that all singleton projects
with a distance higher than 0.8 from all other projects are
ORIGINAL. Then, flattening the dendrogram at different cut-
off distances between 0.3 and 0.8 we applied (appropriately)
the classifications UNORIGINAL or ORIGINAL to clusters
based on the rules described above.

Results of Classification

Given that we know the real labels, we can estimate the ac-
curacy of such an automatic classification at different dis-
tance levels. Our labeled dataset is unbalanced: 280 origi-
nal projects and 596 unoriginal projects. Given that we care
more about correctly predicting the ORIGINAL class, we
will calculate the accuracy for each label separately. The re-
sults are represented by the two lines in Figure 5. At the
distance 0.4, the two accuracies are both at 89%. Further
increasing the distance means that some singleton, original
projects start getting merged into clusters where the major-
ity is UNORIGINAL. This result indicates that by cutting off
the hierarchical clustering at distance 0.4, we get a high ac-
curacy of labeling for both classes (89%). In future work,
we will consider different ways of performing this process
that takes into account other metadata about the projects, for
example, their timestamps.

Ongoing and Future Work
This work is based on data from students in a known class.
Is it possible for us to automatically discover other classes
of students in our App Inventor datasets? In other work (in
progress), we are exploring ways to discover which App In-
ventor users are likely to be students taking a class together
using creation timestamps for their projects. This is based
on the observation that two students in the same class will
be more likely to create projects at the same time (as part of
classroom activities) than two arbitrarily chosen users. Clus-
tering users based on this idea, we have been able to discover
candidate classes of students, including the exact members
of Wellesley’s Fall 2015 CS117 App Inventor course.

In other work, we are also: identifying projects “in the
wild” as being minor variations of particular global tutori-
als; determining which user projects appear to be a sequence
of versions of a single original app project; and investigat-
ing the components, blocks, and programming patterns that
users typically employ in their original projects.

One application of this line of work would be creating a
teacher dashboard for App Inventor instructors. Automati-
cally classifying all student projects as global tutorials, lo-
cal examples, and original projects would help teachers bet-
ter understand the participation and progress of their stu-
dents. And visualizing the concepts and misconceptions in
the original projects would provide detailed information for
highlighting areas in which students might need guidance.

Acknowledgments
This work was supported by Wellesley College Faculty
Grants and by NSF grant DUE-1226216.

References
Bau, D.; Gray, J.; Kelleher, C.; Sheldon, J. S.; and Turbak, F.
2017. Learnable programming: Blocks and beyond. Com-
munications of the ACM. To appear.
Piech, C.; Sahami, M.; Koller, D.; Cooper, S.; and Blikstein,
P. 2012. Modeling how students learn to program. In 43rd
ACM Technical Symposium on Computer Science Educa-
tion, 153–160. ACM.
Resnick, M.; Maloney, J.; Monroy-Hernández, A.; Rusk, N.;
Eastmond, E.; Brennan, K.; Millner, A.; Rosenbaum, E.; Sil-
ver, J.; and Silverman, B. 2009. Scratch: programming for
all. Communications of the ACM 52(11):60–67.
Sherman, M., and Martin, F. 2015. Learning analytics for
the assessment of interaction with App Inventor. In IEEE
Blocks and Beyond Workshop, 13–14.
Wolber, D.; Abelson, H.; and Friedman, M. 2015. Democ-
ratizing computing with App Inventor. GetMobile: Mobile
Computing and Communications 18(4):53–58.
Xie, B., and Abelson, H. 2016. Skill progression in MIT
App Inventor. In IEEE Symposium on Visual Languages and
Human-Centric Computing, 213–217.
Xie, B.; Shabir, I.; and Abelson, H. 2015. Measuring the
usability and capability of App Inventor to create mobile ap-
plications. In 3rd International Workshop on Programming
for Mobile and Touch, 1–8.


