
Improving App Inventor
Debugging Support

Johanna Okerlund

Submitted in Partial Fulfillment of the

Prerequisite for Honors in Computer Science

May 2014

c© 2014 Johanna Okerlund

Acknowledgements

I would first like to thank my advisor, Lyn Turbak, for his relentless support and encouragement.

Lyn is one of the most enthusiastic people I have ever met and gets very excited about everything.

And his excitement is infectious. After every meeting with Lyn, he has not only conveyed a great

amount of knowledge, but has gotten me excited as well.

I’d like to acknowledge the App Inventor development team at MIT, especially Jeff Schiller. Jeff

and the team answer questions tirelessly and their enthusiasm for App Inventor never runs out.

Thank you to Stella Kakavouli, Eni Mustafaraj, and Robbie Berg for taking genuine interest in

my work and for providing insightful and thoughtful feedback.

Thanks to my family for their investment in everything I do. Few are as lucky as I am to have

people who take such an invested interest. And thanks to my little brother for doing what he does.

I would also like to thank the Whiptails for everything. I can’t even describe how important the

team has been during my time here. I thank them all for being the amazing dynamic people they

are. They give me something to look forward to every day.

Lastly, thanks to all the professors I’ve had and the ones I haven’t. It is your energy that creates

this environment where we are inspired to pursue what interests us.

2

Abstract

MIT App Inventor 2 (AI2) is a visual environment where programs for Android mobile devices are

composed of blocks resembling puzzle pieces. App Inventor lowers barriers for novices by providing

visual guidance for understanding programs and by reducing common programming errors, but it

does not eliminate errors entirely. Preliminary analysis of the users’ runtime errors shows that better

debugging tools for AI2 are needed. People often encounter the same error or a series of errors before

they find a solution or give up.

I have implemented AI2 features to help programmers pinpoint the source of runtime errors.

In live development mode, AI2 users can test on their devices blocks programs written in a web

browser on their computer. Previously, often cryptic runtime error messages were displayed in a

dialogue box in the browser window. With my changes, more meaningful runtime error messages

are displayed on the block causing the error. I have also implemented a watch feature that allows

users to track values of variables and expressions. My version is an improved version of the watch

from App Inventor Classic.

I have also implemented the means to collect more meaningful data on users errors. Currently,

runtime error reports in live development mode are automatically stored in a cloud database. The

reports include only the error message, the time of the error, and the device on which it was gener-

ated. I have augmented the error reports to include the current program code and its author. This

extra information can be used to better understand who generates errors, why they are generated,

and how users try to fix them. This information will support better debugging and, in the future,

can be a basis for an intelligent debugging tutor.

3

Contents

1 Introduction 7

1.1 MIT App Inventor Background . 7

1.2 My Previous Work with App Inventor . 9

1.3 Errors on Blocks . 10

1.4 Watch . 11

1.5 Data Collection . 13

1.6 App Inventor Architecture . 14

1.7 Road Map . 15

2 Related Work 16

2.1 The State of Modern Debugging . 16

2.1.1 The Debugging Scandal . 16

2.1.2 Deterministic Replay Debuggers . 17

2.2 Debugging in Other Blocks Languages . 18

2.2.1 Scratch . 18

2.2.2 StarLogo TNG . 19

2.3 Debugging in AI1 . 20

2.3.1 Do It . 20

2.3.2 Watch . 20

3 Errors in App Inventor 23

3.1 Code-time Errors . 23

3.2 Logical Errors . 25

3.3 Runtime Errors . 25

4 My Previous Work Analyzing AI1 Errors 27

4

5 Error Messages On Blocks 31

5.1 When an Error Occurs . 31

5.2 Communication between the Blocks Editor and the Android Device 33

5.2.1 From the Blocks Editor to the Device . 33

5.2.2 From the Device to the Blocks Editor . 34

5.3 My solution: Errors on Blocks . 35

5.3.1 Augmented Code . 35

5.3.2 Quick-fire events . 36

5.3.3 More Helpful Error Messages . 37

5.3.4 Evaluation . 38

6 Watch 40

6.1 My Version of Watch . 40

6.2 User Study . 42

7 Error Reports 45

7.1 Attempted Solution: Saving Code . 45

7.2 Solution: Stored User Information . 46

8 Conclusion 49

8.1 Summary of work . 49

8.2 Future work . 50

A Errors on Blocks 55

A.1 Blocks converted to YAIL . 55

A.2 Define syntax for augment . 56

A.3 Helper functions for define syntax for augment . 56

A.4 Send error to Blocks Editor . 56

A.5 Blocks Editor process errors . 57

B Watch 59

B.1 Added watch tag during YAIL code generation . 59

B.2 Define syntax for watch . 60

B.3 Process . 60

5

C Extra Information to ACRA 62

C.1 Set up means to get User email and Project ID to JavaScript 62

C.2 Build user info into YAIL and send to device . 63

C.3 Device stores information . 64

C.4 Error Occurs and Device sends information with error report 65

C.5 ACRA sends extra information in error report . 65

6

Chapter 1

Introduction

App Inventor [Ai1] is an online blocks-based programming environment in which users create apps

for mobile Android devices. My work with App Inventor has been to improve debugging support for

people using the environment. I have been addressing the needs of people who encounter runtime

errors as well as unexpected behaviors in their apps. This work has been in three parts: (1) displaying

runtime error messages that (a) are on the block causing the error and (b) are more meaningful than

current messages; (2) a watch feature that allows users to track how the value of expressions change

over time; and (3) setting up the means to collect more data on runtime errors to better understand

what additional support users need.

1.1 MIT App Inventor Background

An App Inventor app is specified by a project consisting of a set of user interface components and

a program that describes the behavior of these components. The program consists of jigsaw puzzle

piece shaped blocks that fit together in ways that are syntactically accurate. Blocks languages like

App Inventor lower barriers for novices by providing visual guidance for understanding program

constructs and by reducing many common syntax errors.

An App Inventor user programs an app on her computer using the Designer and Blocks Editor.

The Designer window is where the user chooses which components to incorporate in her app and

arrange how they will be displayed on the phone (Fig. 1-1). Components include buttons, checkboxes,

textboxes, animation sprites, any sensors of the phone such as accelerometer and location, and other

nonvisible components such as timers and sound file players. Users also choose the initial properties

of these components. For example, the user can set the color, text, and size of a button, or the

7

sensitivity of a sensor.

Figure 1-1: The Designer window

The Blocks Editor is where the behavior of the components is specified by a blocks program

(Fig. 1-2). Blocks are organized by similar function and stored in drawers located on the left side of

the Blocks Editor. Users click the blocks they wish to use and drag them onto the workspace where

they fit together with other blocks to make a program.

When a user is programming an app, she has the choice to work in live development mode, where

communication between the Blocks Editor and the connected device is constant. The user runs an

app on the device called the Companion app. The Companion connects to the Blocks Editor either

through WiFi or with a USB cable and runs the application that the user is programming. As the

user programs, the Blocks Editor converts new blocks to executable code and sends it to the device,

where the code is run. Other communications between the Blocks Editor and the device include

requests for values and status updates from the Blocks Editor and responses to these requests as

well as error messages from the device (Fig. 1-3).

App Inventor Classic (AI1) refers to an early version of App Inventor. A beta version of App

Inventor 2 ([Ai2]) (AI2) was released to power users in July 2013 and to the public in December

2013. Both versions are currently running and available, but App Inventor 2 will soon be the primary

version. At the time that my research was conducted, App Inventor Classic had more users and

therefore more valuable data to collect, but I implemented new features in App Inventor 2 since that

will be more widely used in the future.

8

Figure 1-2: The blocks editor

Figure 1-3: Live development mode

1.2 My Previous Work with App Inventor

Some of my previous work included understanding the structure of the programs people have created.

While there was evidence that many people were using App Inventor and a handful of those people

were doing very interesting things with it, we had no idea what the rest of the people were doing. The

motivation of understanding the structure of programs was to get a sense of who the average App

Inventor user is. I collected statistics on the usage of blocks in App Inventor Classic and clustered

users based on their use of blocks. This resulted in some conclusions about confusions in the App

Inventor interface itself and how people use the environment [OT13].

This work lead to some more questions and a desire to understand users on a deeper level, so I

9

explored errors generated by App Inventor apps (Ch. 4). While the shape of blocks in AI reduces

the kinds of errors it is possible to encounter by not allowing users to connect certain blocks, AI

does not eliminate runtime errors entirely. Since many people use App Inventor unsupervised and

have no prior programming experience, App Inventor errors can be problematic. I collected data on

what runtime errors people encounter and how frequently they encounter the same errors. This data

led to the conclusion that the debugging support for App Inventor needs to be improved. People

generate multiple errors or the same error multiple times. When we stop getting a specific error from

a given user, it is because she has either fixed the error or has stopped running the program because

she has given up on finding the source of the error. The error messages are vague and provide little

instruction about where the user should look to find the source of the error.

1.3 Errors on Blocks

Although blocks eliminate many syntax errors, runtime errors, such as type errors and index-out-

of-bounds errors, are still possible. In the current version of App Inventor 2 (version nb132), when

a program generates a runtime error, an error message appears both on the device (Fig. 1-4) and in

a dismissible dialogue box in the browser (Fig. 1-5). However, this does not give much indication of

what generated the error and doesn’t allow the user to look at the error and the code at the same

time.

Figure 1-4: A runtime error generated by an app displayed on the screen of the device

My solution is to display the error message on the block causing the error (Fig. 1-6). Now the

10

Figure 1-5: A runtime error generated by an app displayed in the Blocks Editor

user has a much clearer point from which to start finding the source of the error. She can also view

the error and the code at the same time as she debugs and see multiple errors at the same time

(Fig. 1-7). When a block that previously generated an error executes without error, the message is

removed from the block. I have also changed the error messages so they are more descriptive, giving

users more insight into what exactly was wrong with their code.

Figure 1-6: Error displayed on block

1.4 Watch

As users program in any environment, it is important for them to understand the current state of

their program. The state of the program includes information about the code that is running and the

history of values of each variable. While the user can use print statements to gain an understanding

of the state, it would be better if there were tools to help towards a more complete understanding.

App Inventor Classic has a feature called watch, which users can use with any expression, including

variable references and procedure calls. Placing a watch on a block will cause the final value of that

expression to be displayed on the block after running the program (Fig. 1-8).

I have implemented a more extensive watch feature in App Inventor 2 that allows users to

see how values change over time. In my version, instead of just the last value of the expression,

11

Figure 1-7: Multiple errors displayed at the same time

Figure 1-8: Watch in App Inventor Classic

all intermediate values are shown (Fig. 1-9). When a user puts a watch on a block, every time

that block is evaluated, the result is displayed in a vertical list, with the most recent value on the

bottom. Like in App Inventor Classic, users can watch any expression, including variable references

and procedure calls that return values.

Figure 1-9: The result of watching the addition block during a loop that increments a variable

12

1.5 Data Collection

When a user is in live development mode and a runtime error occurs on the device, the device

sends an error report to a database in the cloud (Fig. 1-10). Currently, the helpful information in

recorded error reports includes the error message, the time of the error, and a unique ID of the

device generating it. Further details about the user and the project are not recorded. I designed the

means to trace the errors back to the users and projects generating them. My design is to send the

user email and project ID with the error report from the phone. This allows the error reports to

be traced back to the user and project that generated them. In addition, the design includes taking

a snapshot of the program at the time of the error and sending a report to the database from the

Blocks Editor that contains all the current code of the specific project (Fig. 1-11). The two entries

in the database would be connected by the user ID, project ID, and timestamp.

Figure 1-10: An error generated on the device while the user is in live development mode is sent to
a database on the cloud

Figure 1-11: When an error is generated, reports are sent from both the Blocks Editor and the
device.

13

1.6 App Inventor Architecture

App Inventor consists of several different parts that are implemented with different languages. Be-

cause my implementation was done in App Inventor 2, I will discuss the architecture of the recent

version.

The Companion app running on the phone is written in Kawa, a version of Scheme implemented

in Java that can access Java features, including the Android SDK. The Companion connects to the

Blocks Editor through WiFi or a USB cable and runs the app the user is programming as well as

communicates information back to the Blocks Editor.

The Blocks Editor is run in the browser and is implemented with Java and JavaScript. The

blocks, the behavior of the blocks, and communication between the Blocks Editor and the device

during live development are written in JavaScript. App Inventor 2 blocks are impemented in Blockly,

a JavaScript open source blocks language developed by Neil Fraser intended for people to use in any

blocks based environments they are developing.

App Inventor is deployed with Google App Engine, a platform where developers can upload and

run their applications without having to worry about maintaining a server. App Engine also allows

Google usernames to be used for authentication to the deployed app and provides the means for

storage of information for each user. For App Inventor, this means the users’ projects are stored on

the cloud with App Engine. Code in App Inventor that deals with loading and storing projects is

written in Java.

For storage, each project is represented by a few text files. One contains an XML representation

of the blocks in the Blocks Editor, including where the blocks are located. Another file contains a

JSON representation of the components the user has chosen in the Designer and the properties of

those components.

App Inventor is deployed for people to use, but it is also open source, which means anyone can

obtain a copy of the source code, make improvements, and run their own version. The source code

for App Inventor is stored on GitHub, a project storage and sharing service with revision control.

For a developer to get the source code on her own computer, she makes a clone of the main version

of the source code, the master branch, to her local machine and can make changes locally without

affecting the master. When a developer has made a change she wishes to incorporate into the master

branch, she submits a pull request and one of the main developers will test and review the code to

decide if it’s ready to be merged in with the master.

While a developer has a version of the source code on her local machine and she wants to run it,

14

she uses Apache Ant to build and launches App Inventor on a port on localhost. Making changes to

the Companion app requires building those files and downloading the new Companion to the device.

1.7 Road Map

The rest of this paper is organized as follows:

• Chapter 2 discusses related work on debugging as it relates to blocks languages.

• Chapter 3 gives details about errors in App Inventor.

• Chapter 4 describes my previous work collecting data on App Inventor errors and conclusions

drawn.

• Chapter 5 discusses my design and implementation of the mechanism that displays runtime

error messages on the block that generated them.

• Chapter 6 discusses my design and implementation of watch.

• Chapter 7 talks in detail about the design and implementation of sending extra information

in the error reports.

• Chapter 8 summarizes my work and discusses future work and extensions to my project.

• The appendices contain the relevant code for the implementations discussed in Chapters 5, 6,

and 7.

15

Chapter 2

Related Work

2.1 The State of Modern Debugging

2.1.1 The Debugging Scandal

Much work has been done to study and critique the current tools for debugging support in program-

ming environments and identify properties of successful debugging tools. The April, 1997, issue of

the Communications of the ACM focused on the state of debugging tools at the time hightlighted

the limits of existing tools and coined the term the Debugging Scandal. With all the work done to

make computers faster, more powerful, and more efficient, debugging tools have the potential to be

very powerful [Lie97].

An article from the same publication of CACM discusses how important the principle of imme-

diacy is when designing debugging tools. Temporally, this means that if a user has to wait for a

result, she loses her train of thought and the debugging process is interrupted. Spacial immediacy

is also important since it becomes frustrating if related pieces of information are far away. Semantic

immediacy means that visual and textual representations of data closely resemble the data itself.

The user should be able to see the representation and immediately know what it means. All of these

principles foster a more direct relationship between the user and the program and a more immediate

understanding of what is happening during execution. [ULF97]

Baecker, DiGiano, and Marcus discuss key principles of visualizations as debugging tools. A

program’s state is understood by its data and visualizations can be incredibly effective at expressing

state if they are able to clearly represent the data and how it changes over time. Animations that use

size, spacing, and color, as well as visual and audio cues can very accurately represent the execution

16

of a piece of code. [BDM97]

My work to implement debugging support for App Inventor draws upon these principles. Placing

error messages on the block that caused the error is an example of spacial immediacy [ULF97] since

the information is displayed where the user would be fixing the error. My improvements on the error

messages themselves is an improvement on semantic immediacy, making the error messages a more

accurate representation of what went wrong with the data. My implementation of watch is the first

step towards a system that allows users to fully understand the state of the data in their program.

2.1.2 Deterministic Replay Debuggers

Some of the most recent debugging research centers around the design and implementation of de-

terministic replay debuggers. These are debuggers that store everything that happens during the

execution of a program and present it afterward for the user to view. There is also a way for the user

to manipulate time and see how things changed and what else was happening at the time of that

change. Implementing such debuggers requires storing the required information in a way that won’t

affect the execution of the program or slow it down too much as well as displaying the information

to the user meaningfully.

Mugshot [MEH10] is a system for capturing the behavior of JavaScript applications. Mugshot

runs without using much storage and without slowing execution down by much and allows users

full access to everything that happened during execution [MEH10]. WaRR [AC11] and Jalangi

[Sen+13] are also systems for web application analysis. RERAN [Gom+13] is a replay system for

apps on Android devices. Replay debuggers for GUIs on phones had previously not provided enough

information about details of the users’ interactions to be particularly helpful. RERAN records a

more complete view of the actions performed by the user and the data taken from the phone’s

sensors to replay the app more accurately. While I am not implementing a deterministic replay

debugger, my work with watch is the first step towards one for App Inventor. Possible designs are

discussed in (Sec. 8.2) and my implementation of augmented code (Sec. 5.3) would be helpful in the

implementation of such designs.

17

2.2 Debugging in Other Blocks Languages

2.2.1 Scratch

Scratch 2.0 [Scr] is a blocks language for programming animations, games, and stories. The blocks

control the actions of sprites on a canvas. The programming environment consists of the blocks

canvas on the right, the canvas with the sprite(s) on the left, drawers of blocks to choose from in

the middle, and a list of all sprites on the bottom left (Fig. 2-1).

Figure 2-1: The Scratch Designer window

Variables in Scratch are either specific to a sprite or global across the whole project. In the

top left of the sprite canvas, all variables are displayed so the user can see them change during the

execution of the program (Fig. 2-2). The user can choose which variables to show and which to hide

in the variable drawer.

The Scratch language is designed to try to prevent the generation of runtime errors altogether.

If a user tries to perform math operations on a string, which would normally generate a runtime

error, it will substitute the number “0” for the string so the program runs without crashing. If a

program generates a list indexing error, the error-generating line of code is ignored and the rest of

the program continues.

For behavioral or logical errors, Scratch has a feature called single step mode, where users can

step through their code at various speeds. Users can also choose to have code outlined as it executes

so they can track when various blocks are called. Scratch 2.0 does not have this feature, but previous

versions did.

18

Figure 2-2: Variable watch in Scratch

2.2.2 StarLogo TNG

StarLogo TNG [Sta] is an environment for controlling 3D characters’ movement, appearance, and

sound with blocks programming (Fig. 2-3). Like Scratch, StarLogo TNG tries to completely eliminate

the existence of runtime errors. The language is statically typed, meaning that types are checked

during compilation. Block types are represented by shape, and when a variable is declared, all

references to that variable change shape as well (Fig. 2-4). This prevents type errors from occurring.

With other kinds of errors, such as list indexing, the program does not produce an error; rather, the

block causing the error simply doesn’t execute and the rest of the program carries on as usual, as it

does in Scratch.

Figure 2-3: StarLogo TNG blocks and 3D canvas

19

Figure 2-4: StarLogo variable declarations and references of different types

Roque’s thesis proposal [Roq06] outlines a design of improved debugging support for StarLogo

TNG. The plan is to implement a single stepping mode, similar to the one Scratch has (Sec. 2.2.1).

The design includes indicating which blocks are being executed and panels to show the current state

of variables. Users will also have the choice to step one block at a time, step into a procedure, or

return to exit the procedure they are in [Roq06].

App Inventor does not have a single stepping mode like StarLogo TNG or Scratch, but it would

be incredibly helpful for users to be able to better understand the flow of their running programs.

My implementation of augmented code (discussed Sec. 5.3) could be a step towards a single step

mode for App Inventor.

2.3 Debugging in AI1

2.3.1 Do It

Users can right-click a block and perform a Do It action. When selected, the block is immediately

compiled and sent to the device, where it is executed. The result is send back to the Blocks Editor

where it is displayed on the block. Users can perform Do Its on expressions (Fig. 2-5) or on

statements (Fig. 2-6). Statements don’t return values, so the result displayed on the block is empty.

This is a very useful feature because it allows users to isolate pieces of code to execute alone, which

helps track errors. It is the first step towards a single stepping mode like Scratch and StarLogo

TNG. Both App Inventor Classic and App Inventor 2 have a Do It feature.

2.3.2 Watch

App Inventor Classic has a basic implementation of watch. Users can put a watch on an expression

and, after the execution of the program, see the final value of that expression (Fig. 2-7). This is

20

Figure 2-5: A Do It on an expression

Figure 2-6: A Do It on a statement

helpful to an extent, but doesn’t show the user how the expression changes during the program

execution. If the expression is evaluated multiple times, only the value from the last evaluation is

displayed (Fig. 2-8). The current version of App Inventor 2 does not include a watch feature, giving

the perfect opportunity to improve on its design (Sec. B).

Figure 2-7: Watch in App Inventor Classic

21

Figure 2-8: A watched expression in a loop

22

Chapter 3

Errors in App Inventor

3.1 Code-time Errors

Code-time errors occur when the user tries to do something that is not allowed and the Blocks Editor

catches the mistake. Shapes of blocks are helpful and reduce the number of code-time errors that

can occur. For example, App Inventor does not allow a statement to be given as a parameter to

another statement. However, there are certain distinctions, such as type, that are not represented

by different blocks. The types of value blocks in App Inventor are number, string, boolean, and

color, all of which have the same connector shape (Fig. 3-1).

Figure 3-1: Example of number, string, boolean, and color blocks

Since App Inventor block shapes do not distinguish type, the shapes of the blocks imply that

an expression block of any type is syntactically allowed to go anywhere. This is not true, however,

and the App Inventor Blocks Editor alerts the user if she tries to do certain things that are not

allowed. For example, if she tries to plug a string into a math operator, the Blocks Editor prevents

23

the connection and moves the block with the plug away from the socket, giving it the appearance

of jumping out of the socket. In App Inventor Classic, a warning message appears (Fig. 3-2), but in

App Inventor 2, the block jumps out without an explanation.

App Inventor 2 introduces error and warning triangles that go on blocks. Warnings let the user

know of what might cause a problem, but not necessarily errors during execution. For example,

warnings alert the user to unfilled sockets and code that will not be executed (Fig. 3-3). Because

the user has blocks with unfilled sockets while she programs, all warnings can be toggled on and off

so she doesn’t get annoyed.

Figure 3-2: If a user tries to plug a block of the wrong type into a socket in AI Classic, an error
message appears.

Figure 3-3: Warnings appear on blocks in AI2.

Error triangles indicate more serious problems, such as when a variable is out of scope (Fig. 3-4)

or when there is a network connection error. If there is an error triangle on a block, this block is

not compiled and the relevant code is sent to the device until the user has fixed the error.

24

Figure 3-4: Error triangle in AI2 for out of scope variable

3.2 Logical Errors

Logical errors happen when a program behaves differently from how the user expects it to behave. A

value might be different from what the user expected it to be or certain events might be happening

when they aren’t expected to. Programmers use general techniques such as breakpoints and print

statements to pinpoint the source of the error. It is hard for the programming environment to

provide direct help to the user because it does not know what the user’s intention is. However, the

environment can provide tools to help the user understand the state of the variables in the program

and what happens during execution. App Inventor Classic has two features that do this (Sec. 2.3):

Do It (Sec. 2.3.1) and watch (Sec. 2.3.2). App Inventor 2 has Do It, but does not have a watch

feature yet (discussed in Sec. B).

3.3 Runtime Errors

Runtime errors are errors that are not caught by the Blocks Editor, but that are generated during

execution of the program. App Inventor does not check the types of all blocks in the Blocks Editor.

Thus, if a variable is an illegal type, it will cause a runtime error even though the Blocks Editor

allowed it (Fig. 3-5). This is an example of a Dynamic Type Error.

Figure 3-5: Error: The operation + cannot accept the arguments 0 hello

Dynamic Value Errors are another type of runtime error and occur when the programmer

uses a value incorrectly. An example of a dynamic value error is list index out of bounds errors

(Fig. 3-6).

25

Figure 3-6: Error: Select list item: Attempt to get list item number 3 of a list of length 2: (foo bar)

Syntax Errors can also occur in App Inventor. While blocks languages try to physically prevent

all syntax errors, some may still be possible. App Inventor Classic uses name and value blocks to

represent variables. The visual appearance of these blocks is similar (Fig. 3-7) and the difference in

how they are used is subtle to a novice programmer. Name blocks are used to declare parameters

to functions and event handlers. The value blocks are used in the body of the function or event

handler to refer to the value of the variable declared by the name block.

Figure 3-7: The difference between name and value blocks is subtle.

Because of the confusion between name and value blocks, users sometimes unplug the name

parameters from event handlers and try to use them in the body of the event (Fig. 3-8). They

receive a cryptic error message that the event has too many arguments. This is because App

Inventor successfully compiles code in the case where a required variable declaration socket is left

empty. This should be caught at code time, but for some reason is not.

Figure 3-8: Error: Call to ’AccelerometerSensor1 AccelerationChanged’ has too many arguments

26

Chapter 4

My Previous Work Analyzing AI1

Errors

My previous work with App Inventor related to this project was to understand the types of errors

users get and how they try to fix them. When a user is in live development mode and a runtime

error occurs on the device, the device sends an error report to a CouchDB database in the cloud via

ACRA (Application Crash Report for Android). I was given access to this database and performed

preliminary analysis on the types and frequencies of App Inventor Errors.

Figure 4-1: An error generated on the device is to a database.

The error reports I analyzed were the errors generated by 2,314 people during a 2.5 week period

in July 2013 and are all from App Inventor Classic. The most common type of error is a type

error, followed by the syntax error (Fig. 3-8) that is a result of unplugging name declaration blocks

(Fig. 4-2). The specifics of some of these errors are discussed in Sec. 3.3.

An analysis was also done of the average number of errors per user per day (Fig. 4-3). This

data was collected at a time when every error that occurred on the device was sent to the database

regardless of how many times it had already been sent. Quick-fire events are events that potentially

27

Figure 4-2: The most common errors in App Inventor Classic

fire many times per second such as acceleration changed, orientation changed, and clocks. This

means that if a quick-fire event generates an error, it does so hundreds or thousands of times and

they are all recorded in the database. This is why some people have thousands of errors; they might

just have one event firing one error many times before they can stop the execution of the program.

The users in the lower third, who only get a few errors per day, are able to fix their errors, or give

up. The ones who fix the error are not of concern, but we never know if some of the people give up

on App Inventor after encountering the error a few times without being able to figure it out. The

people in the middle range are the ones that are of real concern. Users who get more than 10 errors,

but less than about 100, per day aren’t getting enough for them to be quick-fire errors, but getting

enough to show that they need help finding the source of the errors. About a quarter of the 2,314

users fall into this category.

The last piece of information gathered from the error reports was how many times a user gets

the same error (Fig. 4-4). This count does not include the quick fire errors; it only includes errors

that users get by rerunning the program themselves. When an error occurs and the error message

appears on the device, the only option is to quit the app. The user can press the back button on

the phone and continue running the app, but not many people know about this. The error reports

28

Figure 4-3: Average Errors Per Day

have a field for the time the app was started at, so if two error reports by the same user have

different start dates, this means that the user closed the app between the time the two reports were

generated and so we know that they were not generated by a quick-fire event. The data collected

from counting repeated errors shows that people can’t figure out the source of their error or make

the same mistake in the program repeatedly. Somewhere, there exists a gap in understanding. It is

unknown whether these people eventually fix their error or give up on App Inventor. However, this

data shows that these people need help debugging their App Inventor apps.

The data reported in this section was collected from App Inventor Classic because, at the time,

it was the version most widely used and had the most data. However, because of the switch from

App Inventor Classic to App Inventor 2, my implementations discussed in Sec. A, Sec. B, and Sec. 7

are all done in App Inventor 2.

29

Figure 4-4: How many times users get the same errors (does not include quick-fire errors)

30

Chapter 5

Error Messages On Blocks

This chapter focuses on my work displaying error messages on the blocks that generated them. The

implementation first required understanding the communication between the Blocks Editor and the

connected device and what happens on both sides when a runtime error occurs.

5.1 When an Error Occurs

App Inventor Classic

In AI Classic, when a user is programming in live development mode and her program generates a

runtime error, a message appears on the phone with a single choice to end the application (Fig. 5-1).

The only way the user can get back to the application without reconnecting the device to the Blocks

Editor is by pressing the back button on the phone, but this not obvious and not many users are

aware of this feature.

Figure 5-1: In App Inventor Classic, a running app generates an error and a message appears on
the screen of the device.

31

App Inventor 2

In App Inventor 2, a message appears on both the device and the Blocks Editor. The message on

the device stays visible for only a few seconds. Its purpose is to direct the programmer’s attention

to the Blocks Editor, where the user has the single option to dismiss it. This is an improvement

over App Inventor Classic because it indicates that something in the blocks program is wrong and

the programmer needs to fix it. However, the issues remain that the message does not give much

insight into where the error is located, users can’t view their code and the error message at the same

time, and errors caused by quick-fire events still get in the way of the user coding.

Figure 5-2: Error message from App Inventor 2

Figure 5-3: The error message is displayed in the Blocks Editor in App Inventor 2

32

5.2 Communication between the Blocks Editor and the An-

droid Device

Any improvement in debugging support first requires understanding the communication between the

Blocks Editor, where the program is written, and the device where the program is executed and the

error occurs. The device has to successfully communicate relevant information to the Blocks Editor

about the error that will help the user pinpoint its source. The Blocks Editor needs to be able to

express the information about the error to the user as clearly as possible.

5.2.1 From the Blocks Editor to the Device

Figure 5-4: Blocks compiled and sent to the device

In App Inventor 2, without my changes, the blocks of the program are converted into YAIL

(Young Android Intermediate Language), a language that is very similar to Kawa, and sent to the

device (Fig. 5-4). Kawa is a version of Scheme implemented in Java, and in AI2 has access to all

Android libraries. The device has an application on it called the Companion. When the user is in

live development mode, she runs the Companion app on the device to connect to the Blocks Editor

and run the current version of the code.

The Companion runs a web server that the Blocks Editor can communicate with via HTTP

requests. These requests allow for an ongoing two-way connection between the Blocks Editor and

the device. The Companion is also running a YAIL interpreter written in Kawa that executes the

code that comes to the device from the Blocks Editor as part of the HTTP requests. The Blocks

Editor sends several types of information and requests to the device:

• Code to be executed: When new code is sent to the device, the device interprets the code.

• Request to perform a Do it : In the Blocks Editor in AI Classic and AI2, the user has the

option to request that a block is executed immediately. The response to this request is the

result of the code that was evaluated.

33

• Requests for information: The Blocks Editor periodically sends requests to the device to make

sure nothing has gone wrong. The device either responds with OK or an error message. This

simulates a TCP-like connection. Sometimes the device has information to send to the Blocks

Editor, but it cannot send it unless it is responding to a request. Therefore, the Blocks Editor

continually sends requests for information.

Each time the user changes or adds code in the Blocks Editor, all the code of the program is

recompiled. A hash map keeps track of the code for each of the top level blocks. If any of the code

within a top level block has been changed, the entire block of code is sent over to the device. Thus,

while the code for the entire program is recompiled to YAIL, only code that has been changed is

sent to the device. When the device receives new code, it updates the version of the user’s app

running on the phone. Events are remembered in the event registry and variables are stored in an

environment.

The Blocks Editor can also send requests for information to the device. App Inventor has a

feature called Do it, which can be accessed by right clicking on a block (Fig. 5-5).

Figure 5-5: Do It

The code from the selected block is sent to the phone to be executed. The result is returned to the

blocks editor and displayed in a comment on the block (Fig. 5-5).

5.2.2 From the Device to the Blocks Editor

The device puts together packets of information called retvals (return values). The retvals are sent

back to the Blocks Editor to be processed. Retvals are JSON strings that contain fields to indicate

the type of message and any other relevant information.

There are three different types of retvals:

34

• return: Every time a piece of code is sent to the phone, the phone sends a return message to

the Blocks Editor with a status of NOK or OK depending on whether there was a problem

or not. In particular, it returns NOK if there is a network connection error or if the code the

device received has empty sockets. When the Blocks Editor receives a return with anything

other than OK, it puts a warning on the top level block that the code corresponds to.

The return retval also has the option of an included value field. If the user selects Do It on a

block, the code is sent immediately to the Blocks Editor with the block ID to be executed. The

result of the execution is sent back to the Blocks Editor in the value field of the return retval

and the result of the Do It is placed on the correct block in a comment bubble (Fig. 5-5).

• error : If a runtime error occurs while the app is running, a retval of type error sends the error

message back to the Blocks Editor.

• change screens: If the user changes screens on the app on her phone, a change screens retval

is sent to the Blocks Editor so it can redisplay the blocks of the correct screen.

5.3 My solution: Errors on Blocks

5.3.1 Augmented Code

The previous mechanism for converting blocks to YAIL did not include any information about block

identities for general code updates, so there was no way to associate errors with particular blocks.

When the code was evaluated, neither the device nor the Blocks Editor knew which block was

being executed. Blocks in an App Inventor have a unique ID for a given app screen. With my

implementation (Appendix A), when the blocks are converted to YAIL, the code is wrapped in a tag

that has the word augment and the block ID (Fig. 5-6). When the interpreter evaluates the YAIL

code, it keeps track of the block ID for the current expression in such a way that if an error occurs

within that expression, it can associate the error with the block ID.

Figure 5-6: Blocks compiled to augmented YAIL and sent to device

35

With my changes, when an error occurs, because of the augmented code, the device knows which

block generated the error and sends its ID back to the Blocks Editor when it sends the error message.

When the Blocks Editor receives an error message and a block ID, it puts the error on the correct

block. If that block is collapsed or is in a group of blocks that is collapsed, it expands the block and

all blocks in the group group so the user sees the message. It does this by recursively walking down

the tree of blocks.

Figure 5-7: If the block that is generating an error is collapsed, the entire group of blocks is expanded.

5.3.2 Quick-fire events

A user might have an error generated by a quick-fire event, such as an accelerometer sensor or a

timer with a short interval. (Quick-fire events defined in Ch. 4.) This code will execute multiple

times per second, perhaps even thousands, generating the same error repeatedly unless it is stopped.

The current version of App Inventor 2 addresses this problem by not sending any information back

to the Blocks Editor for five seconds after a block generates an error. Even though the block might

still be executing, the error message is only sent once every 5 seconds. This is so the Blocks Editor

doesn’t get backed up processing error messages. However, 5 seconds is not a very long time for

the user to fix the error and she likely does not need the error to appear again so soon. After she

dismisses the error, there is not much time before another dialogue box appears, making it hard to

change the code behind the error message.

With my implementation of sending errors to blocks, the message does not block the user from

continuing to program. When errors are generated, the device keeps track of how many times that

block has generated that specific error and only sends it back to the Blocks Editor at certain points.

It sends it every time for the first 10 times the error is generated, then the 50th, and then again for

every hundred times it happens. It appends the error message to the user with a note about how

many times the error has occurred (Fig. 5-8). If it were to send the error back every time it was

generated, the Blocks Editor would get backed up dealing with all the retvals containing the error

messages. However, it is also important to convey to the user that the error is being generated many

36

times. The error message on the block is appended with a message to reflect how many times the

error has been generated.

Before my changes, the message that appears on the device was also throttled so that it wouldn’t

appear constantly if an error was continually firing. The message would stay visible for five seconds

and wouldn’t appear again for ten. The purpose of the message on the device is to alert the user

that something has gone wrong and that she should divert her attention to the blocks editor. I

did not change the behavior of the message on the device because the throttling that existed before

gave sufficient information to the user while being non-intrusive since the user’s attention would be

directed to the Blocks Editor.

Figure 5-8: An error that is firing rapidly

5.3.3 More Helpful Error Messages

I also changed the error messages that are displayed to the user. I made several improvements to

the existing error messages (Fig. 5.1):

• Lists are now represented with square brackets and elements are separated by commas, as

they are in Python. Since Python is a popular language for novice programmers to learn, it is

helpful for elements of the language to look similar to things they have seen before.

• Strings are now represented with quotation marks, as they are in most text-based languages.

• A clause about type was added to the end of the message to indicate to the user what was

wrong about the arguments.

These improvements help in situations where the nature of the data makes the error message

hard to understand. For example, the last row of Fig. 5.1 shows a list of lists represented as strings

with comma separated values. This is confusing because it just looks like a single list of integers.

The improved representation makes it clear that it is a list of strings.

37

Before After
Strings represented as: Hello "Hello"

Lists represented as: (0 2 3 4) [0, 2, 3, 4]

The operation + cannot accept the

arguments: 0 hello

The operation + cannot accept the

arguments: [0, "hello"]. ’+’ requires

two numbers as input and at least one of

yours is the wrong type.

Select list item: Attempt to get list

item number 3 of a list of length 2:

(foo bar)

Select list item: Attempt to get list

item number 3 of a list of length 2:

["foo", "bar"]

(1,2,3,4 2,3,4,5 3,4,5,6 4,5,6,7) ["1,2,3,4", "2,3,4,5", "3,4,5,6",

"4,5,6,7"]

Table 5.1: Improvements made to error messages

5.3.4 Evaluation

My implementation of errors on blocks slows down processes running on the device in certain sit-

uations. Quick-fire events cause the app to become unresponsive to the phone. Because of the

augmented code, the time it takes for each piece of code to execute is slightly longer. While a

quick-fire event runs, there is evidence that the app is still executing the code, but the behavior on

the screen does not reflect what the app is doing. The bit of code in Fig. 5-9 would be expected to

cause a label to increment at a constant rate. However, the display doesn’t update often enough to

show every value, but rather increments in random intervals. The device will eventually display a

message that the running app has become unresponsive. This shows that the app is able to keep

up and execute the code, but it doesn’t have time to communicate changes to the device’s display.

On every device, there is a watchdog app that makes sure everything is running smoothly. The

watchdog app sends requests to the running App Inventor app and expects responses. The app

is not actually unresponsive, but doesn’t have time to respond to the watchdog app on the phone

that it is still running because it is too busy evaluating the augmented code. Possible solutions are

lengthening the amount of time between the firing of quick-fire events or changing the sensitivity

settings of the device so the event doesn’t fire as often. It also might just have to be a compromise

that sacrifices performance for desired features.

Another unresolved issue with the current implementation occurs when a user has a quick-fire

event that toggles between firing two or more different errors. Because it is never the same error

multiple times in a row, the device will think it is a new error each time and send it to the Blocks

Editor each time the event fires. This is problematic for two reasons: (1) if the errors being sent

back to the Blocks Editor are not throttled, the Blocks Editor won’t have time to process them all

38

Figure 5-9: A quick-fire event

and will get backed up and (2) the user is unaware of how many times the error has been generated.

Solving this problem requires keeping track of more information about which blocks generate errors

on the device.

The goal with the error counts was to give the user as clear an idea as possible of what is hap-

pening without directly processing every detail. The count on the block conveys that the errors are

still generating without directly processing each error. This model doesn’t work with the throttling,

however, because it does not accurately represent what is going on. It fails to represent the fact that

the toggled errors are being generated multiple times.

39

Chapter 6

Watch

Logic errors occur when a user’s program behaves differently from how she expects it to. Possible

scenarios include an event not happening when she expects or something displaying an unexpected

value. It is hard to implement features to detect logic errors because it is hard to know what the

intention of the user is. However, it is possible to provide tools to help the user find the source of

her logic errors. A standard tool in any programming language is a feature that allows users to print

information to a console during execution. In App Inventor, while there is no built in console for the

user to print to, a user can create her own feedback mechanism by including a label in the interface

of her app that she can use to display any information from the code she wishes to view. However,

this requires using an extra component to display the information and extra blocks to specify the

information to be displayed. It is also not likely that a novice programmer would think to do this.

My solution is an extension of the watch feature in App Inventor Classic that allows users to see the

values of their variables during execution.

6.1 My Version of Watch

My implementation of the watch feature in App Inventor 2 is similar to watch in App Inventor

Classic (Sec. 2.3.2), but it shows the user all the values of the expression, as opposed to just the last

value (Fig. 6-1). Now, if the user is debugging her program, she can see how the expression changed.

This is helpful in debugging scenarios in which an unexpected value occurs. If the watched block is

in a loop, it would also give an indication of how many times the loop is iterating, which might be

helpful information. An educator might also use a watch to explain to a student how the program

is executing. The feature is much more helpful than using a label to show this information because

40

the user can get the information faster. It also makes more sense than using a label because the

information is displayed near the code, rather than as part of the interface of the app she is writing.

The values from the expression are displayed with the most recent values at the bottom. A

survey of programmers and non-programmers revealed that this is the favored way to represent the

output in the available space (Sec. 6.2). My work done so far is the simplest implementation of a

better designed watch, discussed further in Sec. 8.2.

My implementation of watch (Appendix B) is very similar to my implementation of augmented

code for putting errors on blocks, discussed in Sec. 5.3. If a user watches a block, the block is

wrapped with a watch tag along with the block ID (Fig. 6-2, Fig. 6-3). When the interpreter on the

device executes the watched code, it sends the result of the expression back to the Blocks Editor.

When the Blocks Editor receives the result of a watched expression, it appends the result to the list

of returned values and displays it in the comment square on the block in order.

The implementation of watch is similar to the implementation of augmented code, but the two

are orthogonal. They do not need the other to be implemented to work, but they could work at the

same time.

Figure 6-1: The result of watching the addition block during a loop that increments a variable

Figure 6-2: Code from Fig. 6-1 without watch tag

41

Figure 6-3: Code from Fig. 6-1 with watch tag

6.2 User Study

When displaying information to users, it is important to consider the way the information is pre-

sented. There are a number of different ways the result of a watched expression could be shown to

the user. The values could be displayed horizontally or vertically and in different orders. The values

could be separated by commas, lines, or just by space.

Fig. 6-4 shows a vertical display of values with the most recent value at the top. The advantage

of this is that when the user looks at the watch bubble, she reads the most recent value first and then

proceed to read the others. If all the values occur during one execution, this makes sense for the

user. The disadvantage is that it doesn’t match what happens when output from print statements

is printed to a console. The expectation among programmers is that time goes down in a sequence

of printed commands.

Fig. 6-5 shows a vertical display of values with the most recent value at the bottom. This is

intuitive because it behaves similarly to a console that contains the output of print statements. The

most recent values appear below the previous values. The disadvantage of this is that users have to

scroll down to see the recent values rather than just having them on top.

Figure 6-4: Displayed vertically with most recent at the top

Fig. 6-6 and Fig. 6-7 show horizontal lists. Horizontal display raises the same question as vertical

display of what order the values should be in. There is also the question of how to separate the values

(Fig. 6-8). The values might be strings that contain commas or semicolons themselves, in which

42

Figure 6-5: Displayed vertically with most recent at the bottom

Figure 6-6: Displayed horizontally with most recent on the right

Figure 6-7: Displayed horizontally with most recent on the left

Figure 6-8: Alternate ways to represent values horizontally

43

Model No programming experience Programming experience
Vertical, most recent at top 3 1
Vertical, most recent at bottom 4 4
Horizontal, most recent on right 2 0
Horizontal, most recent on left 1 0
Other 0 0

Table 6.1: Results of User Study

case this would be confusing. Lists are also often displayed with commas separating the values, so

if an expression was returning a list, the elements in the list might not be clear.

An informal survey was done to gain insight into how users feel about these different represen-

tations. A total of 15 students were surveyed: five who had some programming background, and

10 who had not (Fig. 6.1). They were given the above figures (Fig. 6-4, Fig. 6-5, Fig. 6-6, Fig. 6-7,

Fig. 6-8) as well as a blank box for if they had other ideas. They were asked which was the most

intuitive or if they had a better way they would like the data represented. Both groups, with and

without a programming background, lean towards vertical with the most recent value at the bottom.

Several people said that there must be a better way, but they weren’t sure what it would look like.

44

Chapter 7

Error Reports

When a user is in live development mode, error messages are recorded using ACRA error reporting.

Error reports are automatically sent to a cloud database, via an HTTP POST or PUT request from

the phone. Such a report includes the error message, the time of the error, and the device on which

it was generated, identified by a unique ID. I have access to the ACRA database and have done

preliminary analysis of the types and frequencies of error messages in App Inventor, discussed in

Sec. 4.

The error reports contain a field for a unique ID, which is generated upon installation of the app

and functions as a user ID within the error database. However, is not linked to the user ID in the

cloud where the projects are stored. Thus, the stored error reports currently cannot be linked back

to the App Inventor user who generated them or the project from which they were generated.

7.1 Attempted Solution: Saving Code

My first solution was to have the phone send the YAIL code for the current screen to the error

database with the error report. The goal was to add the augmented code of the program (discussed

in Sec. 5.3) to the error report along with the block ID of the block causing the error. Then, when

analyzing the error reports, we would know what sort of program the error came from. We would

also be able to track what the user does if she generates the same error multiple times. She may

change the code, or she might just be running the code that is generating the same error repeatedly.

Since the app is always running the most recent YAIL code, it makes sense for the device to

send the augmented code when it sends the error report. However, when the YAIL code is sent from

the Blocks Editor to the device, the device does not save a readable version of the code. When the

45

device receives YAIL code from the Blocks Editor, it distributes it among various environments and

event registries. The code is stored as objects, rather than human-readable code. Thus, if I want to

send the most recent version of the code with the error report, I have to save it somewhere else on

the device.

I implemented the means to save all code that gets sent to the device in a human-readable format.

Every time blocks in the Blocks Editor are added or changed, all the blocks are compiled to YAIL.

For every top level block, if any blocks within that block were added or changed, that top level block

is sent to the device. My implementation includes storing a list of tuples on the device, where the

first element is the block ID of a top level block and the second element is a string version of the

YAIL code that corresponds to that block. When the device receives any code, it creates the block

ID and code tuple and appends it to the list. The list of tuples then not only shows the current

state of the code, but also shows what the user did to get to that state. This entire list of tuples

is then sent with the error report. This allows us to analyze changes users make and gives valuable

insight into how they understand the language. Since we see everything they tried to do, it shows

us where they may need additional support. The problem with this implementation is that the list

of tuples gets long very quickly and there is only a limited amount of space on the device. Kawa

also does not have a quick way to convert a list to a string, so when the error report is sent with

the list of tuples, it takes too long to convert the tuple list to a format that can be sent.

Because storing all the changed code was taking up too much space on the device, I decided to

store only the most recent version of the code. My second design still used the list of tuples. In

this implementation, every time new code comes to the device, it walks down the list of tuples and

replaces the tuple that corresponds to the changed block and replaces its code. This makes the list

much shorter than if we were to store every change the user makes. However, if the user has a large

project, the list will still get very long and will have to be limited at some point. Simply counting

the number of tuples in the list is not enough because the user might have lots of blocks under one

top level block. Another problem with this design is that searching through the list for the correct

tuple takes a long time. Environments containing the top level block IDs and the associated YAIL

code could have been implemented, but instead I opted for a better design.

7.2 Solution: Stored User Information

My improved and implemented design (Appendix C) is to send the user email and project ID from

the device with the error report (Fig. 7-1). Email addresses and project IDs are unique, so these

46

two pieces of information are enough to link an error with the project. The implementation of this

involved sending the user email and project ID to the device when the app is first loaded. The part

of App Inventor that runs in the browser is implemented with Java and JavaScript. The Blocks

Editor, the blocks themselves, and the communications between the Blocks Editor and device are

written in JavaScript. The Java side takes care of the project storage for App Inventor. The user

email and project ID are stored on the Java side, but the Blocks Editor needs to access them with

JavaScript to send them to the device. To allow these variables to be accessed from JavaScript

involved defining a function that exports the desired information from Java to JavaScript.

Having the user email and project ID is helpful because we can go to where App Inventor projects

are stored and find out everything about that user. We could test hypotheses about which type of

App Inventor users get errors: beginner, intermediate, or advanced. We have survey data from

many App Inventor 2 users that includes information about their background and there might be a

correlation. I also previously did work to understand how people use App Inventor blocks [OT13].

For each project and each user, I counted the number of blocks, number of components, number

of projects, how many programming constructs such as procedures and global variables they use,

and how they use them. I then used clustering to break users into groups based on programming

experience and App Inventor proficiency. Matching a user who was not included in the clustering

to a cluster will give an idea of their level as a programmer and we can test hypotheses about how

programming level corresponds to runtime errors.

However, App Inventor only stores the current state of the program. If we go to the App

Inventor database to look for the project that generated the error, it is likely to have changed since

the error was generated. To solve this, there is another component to the design that has not been

implemented yet. The proposed solution is to send a snapshot of the block code in an error report

from the Blocks Editor along with the user email, project ID, and time stamp. For every error,

there will be two entries in the error database that can be linked by a common user email, project

ID, and time stamp. This will once again allow us to see what the user changes in between times

the error is generated, but will not take up storage or execution time on the device since the block

code is sent from the Blocks Editor.

An important consideration when sending data is the privacy of that data. The user emails

and project IDs are sensitive because they can be used to uniquely identify a user. The projects

themselves also might contain sensitive information if, for example, the user wrote a navigation app

that uses her home address. This has not been implemented yet, but all data being sent to ACRA

should be encrypted to prevent information leaks.

47

Figure 7-1: When an error is generated, reports are sent from both the Blocks Editor and the device.

48

Chapter 8

Conclusion

8.1 Summary of work

App Inventor programs generate runtime and behavioral errors, but the environment does not pro-

vide much support for the users to debug them. My previous work lead to the conclusion that many

users get stuck on one particular error for a while before finally fixing it or giving up. My work has

been to implement tools to help the users find the source of runtime errors and understand the state

of variables and expressions over time, as well as implement the means for App Inventor developers

to better understand what users do when they encounter errors.

Previously, when a user encountered a runtime error, a dialogue box would appear on the screen

in front of the code, which the user would have to dismiss before debugging the error. The flaw with

this model was that the user couldn’t see the error and the code at the same time. My solution is

to display the error on the block that generated the error. This not only allows the user to see the

error and debug at the same time, but also gives her more insight into the source of the error. I

also improved the error messages themselves, changing the way data is represented and giving more

information about why the error occurred. Implementing the mechanism that puts errors on blocks

required understanding the communication between the Blocks Editor and the connected device and

augmenting the YAIL code sent from the Blocks Editor to the device with augment tags and block

IDs. (Ch. A)

My help for users’ behavioral errors centered around trying to help them understand the state

of their program. App Inventor Classic had a feature called watch that allowed a user to view the

most recent value of an expression after the execution of the program. App Inventor 2 did not have

49

such a feature, so I implemented and extended what App Inventor Classic had. In my version, not

only is the most recent value displayed, but all intermediate values of that expression. This is more

helpful than just the most recent value because it allows the user to see when something unexpected

may have happened. Implementing watch involved adding a watch tag to the YAIL code for blocks

the user is watching when the YAIL code is sent from the Blocks Editor to the device. (Ch. B)

I also implemented the means to collect more detailed information when errors are generated.

Previously, reports containing the error message, information about the device it was generated

on, and the time were sent to a database, but there was no way to link the errors with the users

or projects who generated them. I implemented the means to send the user and project ID with

the error reports, allowing future work to be done to make corrolations between types of users and

errors. (Ch. 7)

8.2 Future work

There are a few ways my work needs to be finished. It would be nice to clean watch up so that

users are only allowed to watch blocks that it makes sense to watch because some blocks do not

return values. For example, a statement such as setting the text of a label is executed without

returning anything. If a novice user is allowed to put a watch on this block, she may be confused

about why no value is returned. One solution would be to not allow users to watch statement blocks.

Another option is to allow statement blocks to be watched, but have them return something that

indicates they were executed, such as the word ”done”. I also need to implement a new icon for

watched blocks. Currently, the icon is a comment block and the result of the watch is displayed in

a comment block. This prevents the user from putting an actual comment on the block and from

looking at the Blocks Editor, it is not clear whether a block has a comment or is being watched.

Better user studies are necessary to understand to measure the how my debugging features help

users. Studies with beginner, intermediate, and advanced users would give insight to who needs the

most support and whether they need different types of help. And of course, performance costs need

to be assessed and determined if the desired features are worth the compromise. A project could be

to measure the exact extent to which augmented code slows down execution.

My project lays the groundwork for future development of smarter and more complex debugging

support. A feature that would be very helpful for finding behavioral errors would be having the

block that is being executed outlined while the app is running. There could also be a single stepping

mode like Scratch and StarLogo TNG (Sec. 2.2) where users can execute one block at a time. The

50

implementation of augment would make these features possible because the code executing on the

device is now linked to the source block during runtime.

The current implementation of watch is only the first step towards a more helpful way to keep

track of and display the values of variables and expressions. Rather than displaying a static list of

the history of the variable, the user could be given control over time. As the user slides over the

history of the variable, the code that changed the variable to that value could be outlined (Fig. 8-1).

Figure 8-1: The designer window

It would also be useful to keep track of all variables without the user having to ask or specify

what she wants recorded, like Scratch (Sec. 2.2.1). This could be extended so that when a runtime

error occurs, any information about the execution of the program and the state of variables and

values of expression blocks that might be useful to the user would already be available. Otherwise,

the user has to specify which variables she wants to watch and rerun the program, making it crash

in the same place. A future project could be to implement the means to store all information while

the program executes and display it to the user effectively (Sec. 2.1.2). Rather than a time slider

for an individual variable, it could be global and show how all the variables change and what blocks

are being executed. As the user manipulates the time slider, the blocks that were being executed at

that time would be outlined, like a Deterministic Replay Debugger (Sec. 2.1.2).

There is also room for work to understand how users construct their programs. We understand

the current state of projects, but haven’t looked into how users create them. This would involve

setting up the means to store every action the user performs in the Blocks Editor and Designer.

51

We’d be interested in seeing the common things people do wrong. Many people use App Inventor

as an introduction to computer programming, and every language has common mistakes that are

especially easy for novices to make. Knowing what these mistakes are in App Inventor would help

educators know what they need to explain and also might give insight into ways the App Inventor

language could be clarified or where some provided guidance is necessary for new users. Benjamin

Xie has submitted a proposal to implement the means of collecting more fine grained data of program

construction and using this data to understand user errors and the use of blocks [Xie14]. There is

also a proposal for an extended version of this that records all actions an App Inventor user takes

and provides an interface for them to replay the execution of the program [TM14]. Users will also

be able to share the steps they have taken for someone else to look at and provide help.

More data could also be collected when error reports are sent to ACRA. We know the error and

we can track how the code changes in between iterations of that error, but we don’t know if the user

ever fixes the error. If the error doesn’t show up in the reports anymore, it means that either the

user fixed it, or she gave up and just isn’t running the program anymore. The later is much more

concerning than the former and would indicate the need for more debugging support. We don’t

want users getting frustrated with their errors to the point of giving up on App Inventor.

In both App Inventor Classic and App Inventor 2, if a user plugs a block of the wrong type into

a socket, the block immediately jumps out. In App Inventor Classic, a message is also displayed,

but not in App Inventor 2. Some sort of support should be provided to users in App Inventor 2 who

get code-time errors.

Fine grained tracking of App Inventor program construction would also provide data that could be

used to implement an intelligent tutor for App Inventor. When users encounter code time or runtime

errors, the next steps they take could be recorded. We have a notion of the users’ proficiency level

from the clustering done on data from all the programs. We could run machine learning algorithms

on the steps done after encountering these problems, favoring more advanced users’ solutions, and

learn how to solve common issues. Then when someone encounters the same issue and can’t seem

to figure it out, the intelligent tutor could give suggestions based on what other people did. This

would be helpful for code-time errors. If a user repeatedly tries to do something wrong, support

would be provided.

52

Bibliography

[AC11] S. Andrica and G. Candea. “WaRR: A tool for high-fidelity web application record and

replay”. In: Dependable Systems Networks (DSN), 2011 IEEE/IFIP 41st International

Conference on. 2011, pp. 403–410. doi: 10.1109/DSN.2011.5958253.

[Ai1] MIT Center for Mobile Learning, App Inventor Classic home page, http://explore.

appinventor.mit.edu/classic, accessed Feb. 24, 2014.

[Ai2] MIT Center for Mobile Learning, App Inventor 2 home page, http://appinventor.

mit.edu, accessed Feb. 24, 2014.

[BDM97] Ron Baecker, Chris DiGiano, and Aaron Marcus. “Software Visualization for Debug-

ging”. In: Commun. ACM 40.4 (Apr. 1997), pp. 44–54.

[Gom+13] Lorenzo Gomez et al. “RERAN: Timing- and Touch-sensitive Record and Replay for An-

droid”. In: Proceedings of the 2013 International Conference on Software Engineering.

ICSE ’13. San Francisco, CA, USA: IEEE Press, 2013, pp. 72–81. isbn: 978-1-4673-

3076-3. url: http://dl.acm.org/citation.cfm?id=2486788.2486799.

[Lie97] Henry Lieberman. “The Debugging Scandal and What to Do About It”. In: Commun.

ACM 40.4 (Apr. 1997), pp. 27–29.

[MEH10] James Mickens, Jeremy Elson, and Jon Howell. “Mugshot: Deterministic Capture and

Replay for JavaScript Applications”. In: Symp. on Networked Systems Design and Im-

plementation. 2010.

[OT13] Johanna Okerlund and Franklyn Turbak. A Preliminary Analysis of App Inventor

Blocks Programs. Poster presented at Visual Languages and Human Centric Computing

(VLHCC), Sept. 15-19, San Jose, California, http://cs.wellesley.edu/ tinkerblocks/VLHCC13-

abstract.pdf, http://cs.wellesley.edu/ tinkerblocks/VLHCC13-poster.pdf. 2013.

53

[Roq06] Ricarose Roque. “A Debugger for Starlogo TNG: Detecting and Removing Bugs in a

Visual Programming Language”. Thesis proposal. 2006.

[Scr] Scratch project, MIT Lifelong Kindergarten Group, http://scratch.mit.edu/, ac-

cessed Feb 24, 2014.

[Sen+13] Koushik Sen et al. “Jalangi: A Selective Record-replay and Dynamic Analysis Frame-

work for JavaScript”. In: Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering. ESEC/FSE 2013. Saint Petersburg, Russia: ACM, 2013, pp. 488–

498. isbn: 978-1-4503-2237-9. doi: 10.1145/2491411.2491447. url: http://doi.acm.

org/10.1145/2491411.2491447.

[Sta] StarLogo TNG project, MIT Scheller Teacher Education Program, http://education.

mit.edu/projects/starlogo-tng, accessed Feb 24, 2014.

[TM14] Franklyn Turbak and Eni Mustafaraj. Codelines: Replaying, Sharing, and Annotating

App Inventor Project Histories. April, 2014 Google Research Awards proposal. 2014.

[ULF97] David Ungar, Henry Lieberman, and Christopher Fry. “Debugging and the Experience

of Immediacy”. In: Commun. ACM 40.4 (Apr. 1997), pp. 38–43.

[Xie14] Benjamin Xie. Request for SuperUROP Support of Blocks-Level Analytics with App

Inventor. Proposal for SuperUROP at MIT. 2014.

54

Appendix A

Errors on Blocks

A.1 Blocks converted to YAIL

/∗∗
∗ appinventor / l i b / b l o ck ly / s r c / core / genera to r . j s
∗ Generate code f o r the s p e c i f i e d block (and attached b locks) .
∗ @param {Block ly . Block} block The block to generate code f o r .
∗ @return { s t r i n g | ! Array} For statement blocks , the generated code .
∗ For value blocks , an array conta in ing the generated code and an
∗ operator order va lue . Returns ’ ’ i f b lock i s nu l l .
∗ Johanna : added augment tag and block ID
∗/

Block ly . CodeGenerator . prototype . blockToCode = func t i on (block) {
i f (! b lock) {

re turn ’ ’ ;
}
i f (b lock . d i s ab l ed) {

// Skip past t h i s b lock i f i t i s d i s ab l ed .
var nextBlock = block . nextConnection && block . nextConnection . ta rge tB lock () ;
r e turn t h i s . blockToCode (nextBlock) ;

}

var func = th i s [b lock . type] ;
i f (! func) {

throw ’ Language ” ’ + t h i s . name + ’” does not know how to generate code ’ +
’ f o r b lock type ” ’ + block . type + ’ ” . ’ ;

}
var code = func . c a l l (b lock) ;
i f (code i n s t an c e o f Array) {

// Value b locks re turn tup l e s o f code and operator order .
/ / [1 2 . 2 . 1 3] added augment tag to keep track o f b lock id when y a i l i s s ent to dev i c e
var r e s u l t = [t h i s . s c rub (block , ”(augment ” + block . id + ” ” + code [0] + ”)”) , code [1]] ;
r e turn r e s u l t ;

} e l s e {
var r e s u l t = t h i s . s c rub (block , ”(augment ” + block . id + ” ” + code + ”) ”) ;
r e turn r e s u l t ;

}

55

} ;

A.2 Define syntax for augment

; ; appinventor / bu i l d s e r v e r / s r c /com/ goog l e / appinventor / bu i l d s e r v e r / r e s ou r c e s / runtime . scm
; ; (On the dev i c e)
; ; Augment : keep track o f b lock ID o f cu r r en t l y executed block
(de f ine−syntax augment

(syntax−r u l e s ()
((i n f o exp)

(l e t ((ans (with−current−block−id i n f o (lambda () exp))))
(a f t e r−execut ion i n f o)
ans))))

A.3 Helper functions for define syntax for augment

; ; appinventor / bu i l d s e r v e r / s r c /com/ goog l e / appinventor / bu i l d s e r v e r / r e s ou r c e s / runtime . scm
; ; (On the dev i c e)
; ; Check to see i f b lock had p r ev i ou s l y generated e r r o r
; ; I f so , remove e r r o r .
(d e f i n e (a f t e r−execut ion block−id)

(i f (member block−id (∗ : get−blocks−with−e r r o r s ∗ th i s−form ∗))
(begin (send−to−block block−id (l i s t ”OK” ”noError ”)) ; ; A le r t Blocks Editor that the e r r o r has been f i x ed

(∗ : remove−from−l a s t−block−with−e r r o r ∗ th i s−form∗ block−id) ; ; No longe r has to count how many times block gene ra t e s e r r o r
(∗ : remove−from−e r r o r s ∗ th i s−form∗ block−id))) ; ; Block i s no l onge r f l a gg ed f o r having an e r r o r

)

; ; appinventor / bu i l d s e r v e r / s r c /com/ goog l e / appinventor / bu i l d s e r v e r / r e s ou r c e s / runtime . scm
; ; (On the dev i c e)
; ; Keep track o f b lock id o f cu r r en t l y executed code
(d e f i n e (with−current−block−id block−id thunk)

(l e t ((old−block−id (∗ : get−current−block−id ∗ th i s−form ∗)))
(∗ : set−current−block−id ∗ th i s−form∗ block−id)
(l e t ((r e s u l t (thunk)))

(∗ : set−current−block−id ∗ th i s−form∗ old−block−id) ; ; Reset block−id to remembered value
r e s u l t)))

A.4 Send error to Blocks Editor

// appinventor /components/ s r c /com/ goog l e / appinventor /components/ runtime/ u t i l /RetValManager . java
//On Blocks ed i t o r s i d e :
//Add argument to sendError func t i on f o r app on dev i ce to c a l l
// Creates r e t v a l f o r type e r r o r
pub l i c s t a t i c void sendError (S t r ing er ror , S t r ing b lock id) {

synchron ized (semaphore) {
JSONObject r e t v a l = new JSONObject () ;
t ry {

r e t v a l . put (” s t a tu s ” , ”OK”) ;

56

r e t v a l . put (” type ” , ” e r r o r ”) ;
r e t v a l . put (” value ” , e r r o r) ;
r e t v a l . put (” b lock id ” , b l o ck id) ;

} catch (JSONException e) {
Log . e (LOG TAG, ”Error bu i l d i ng r e t v a l ” , e) ;
r e turn ;

}
boolean sendNot i fy = currentArray . isEmpty () ;
currentArray . add (r e t v a l) ;
i f (sendNot i fy) {

semaphore . n o t i f yA l l () ;
}

}
}

; ; appinventor / bu i l d s e r v e r / s r c /com/ goog l e / appinventor / bu i l d s e r v e r / r e s ou r c e s / runtime . scm
; ; Send e r r o r and block ID to Blocks Editor when e r r o r occurs
; ; Ca l l s sendError (S t r ing er ror , S t r ing b lock id)
(d e f i n e (send−e r r o r e r r o r)

(add−to−blocks−with−e r r o r s current−block−id)
(l e t ((ans (add−to−blocks−plus−e r r o r s current−block−id e r r o r blocks−plus−e r r o r s)))

(i f (or (equal ? ans ”newError ”) (equal ? ans ”newBlock ”)) ; ; only send e r r o r to b locks ed i t o r i f e r r o r i s new
(com . goog l e . appinventor . components . runtime . u t i l . RetValManager : sendError e r r o r current−block−id)
(l e t ((count (cadr ans)))

(i f (or (equal ? count 50) (equal ? (modulo count 100) 0)) ; ; send i f equal to 50 and mu l t i p l e s o f 100 .
(com . goog le . appinventor . components . runtime . u t i l . RetValManager : sendError

(s t r i ng−append e r r o r ” (This e r r o r has occured ” (number−>s t r i n g count) ”+ times .) ”) current−block−id))))))

A.5 Blocks Editor process errors

// appinventor / b l o c k l y e d i t o r / s r c / replmgr . j s
Block ly . ReplMgr . p roce s sRetva l s = func t i on (r e sponse s) {

var block ;
f o r (var i = 0 ; i < r e sponse s . l ength ; i++) {

var r = re sponse s [i] ;
c on so l e . l og (” processRetVals : ” + JSON. s t r i n g i f y (r)) ;
switch (r . type) {
case ” re turn ” :

i f (r . b l o ck id != ”−1”) {
block = Block ly . mainWorkspace . getBlockById (r . b l o ck id) ;
i f (r . s t a tu s == ”OK”) {

block . r ep lEr ro r = nu l l ;
i f (r . va lue && ((r . va lue != ’∗ nothing ∗ ’) && (r . va lue != ”noError ”))) { //Added case f o r ”noError ”
t h i s . s e tDo i tResu l t (block , r . va lue) ;
}

} e l s e {
i f (r . va lue) {

block . r ep lEr ro r = ”Error from Companion : ” + r . va lue ;
} e l s e {

block . r ep lEr ro r = ”Error from Companion ” ;
}

}
}

57

break ;
case ”pushScreen ” :

var su c c e s s = window . parent . Block lyPane l pushScreen (r . s c r e en) ;
i f (! s u c c e s s) {

conso l e . l og (” processRetVals : I nva l i d Screen : ” + r . s c r e en) ;
}
break ;

case ”popScreen ” :
window . parent . Block lyPanel popScreen () ;
break ;

case ” e r r o r ” :
con so l e . l og (” Block ly . ReplMgr . p roce s sRetva l s : e r r o r f o r b lock ” + r . b l ock id) ; //JOHANNA
i f (r . b l o ck id != −1) {

block = Block ly . mainWorkspace . getBlockById (r . b l o ck id) ;
b lock . r ep lEr ro r = ”Error from Companion : ” + r . va lue ;

b lock . se tError IconText (” Error from Companion ” + r . va lue) ;
var rootBlock ;
var cur rent = block ;
do {

// unco l l ap s e c o l l ap s ed b locks
i f (cur rent . c o l l a p s ed){

cur rent . s e tCo l l ap s ed (f a l s e) ;
}
rootBlock = current ;
cur r ent = rootBlock . parentBlock ;

} whi le (cur rent) ;

b lock . e r r o r I c on . s e tV i s i b l e (t rue) ;

} e l s e { // Not a s s o c i a t ed with p a r t i c u l a r b lock ; put up Je f f ’ s d i a l o g
i f (! t h i s . runtimeError) {

t h i s . runtimeError = new goog . u i . Dia log (nu l l , t rue) ;
}
i f (t h i s . runtimeError . i s V i s i b l e ()) {

t h i s . runtimeError . s e tV i s i b l e (f a l s e) ;
}
t h i s . runtimeError . s e tT i t l e (”Runtime Error ”) ;
t h i s . runtimeError . setButtonSet (new goog . u i . Dia log . ButtonSet () .

addButton ({ capt ion : ” Dismiss ”} , f a l s e , t rue)) ;
t h i s . runtimeError . setContent (r . va lue + ”
<i>Note:</ i> ;You w i l l not see another e r r o r repor ted f o r 5 seconds . ”) ;
t h i s . runtimeError . s e tV i s i b l e (t rue) ;

}
}

}
Block ly . WarningHandler . checkAllBlocksForWarningsAndErrors () ;

} ;

58

Appendix B

Watch

B.1 Added watch tag during YAIL code generation

/∗∗
∗ /Users / johannaokerlund /app−inventor−g e r r i t / appinventor / b l o c k l y e d i t o r / s r c / replmgr . j s :
∗ Generate code f o r the s p e c i f i e d block (and attached b locks) .
∗ @param {Block ly . Block} block The block to generate code f o r .
∗ @return { s t r i n g | ! Array} For statement blocks , the generated code .
∗ For value blocks , an array conta in ing the generated code and an
∗ operator order va lue . Returns ’ ’ i f b lock i s nu l l .
∗ Johanna : added watch tag (in add i t i on to augment tag)
∗/

Block ly . CodeGenerator . prototype . blockToCode = func t i on (block) {
i f (! b lock) {

re turn ’ ’ ;
}
i f (b lock . d i s ab l ed) {

// Skip past t h i s b lock i f i t i s d i s ab l ed .
var nextBlock = block . nextConnection && block . nextConnection . ta rge tB lock () ;
r e turn t h i s . blockToCode (nextBlock) ;

}

var func = th i s [b lock . type] ;
i f (! func) {

throw ’ Language ” ’ + t h i s . name + ’” does not know how to generate code ’ +
’ f o r b lock type ” ’ + block . type + ’ ” . ’ ;

}
var code = func . c a l l (b lock) ;
i f (code i n s t an c e o f Array) {

i f (b lock . watch){
var r e s u l t = [t h i s . s c rub (block , ”(augment ” + block . id + ” (watch ” + block . id + ” ” + code [0] + ”)) ”) ,
code [1]] ;
r e turn r e s u l t ;

} e l s e {
// Value b locks re turn tup l e s o f code and operator order .
var r e s u l t = [t h i s . s c rub (block , ”(augment ” + block . id + ” ” + code [0] + ”)”) , code [1]] ;

59

re turn r e s u l t ;
}
} e l s e {

r e s u l t = t h i s . s c rub (block , ”(augment ” + block . id + ” ” + code + ”) ”) ;
r e turn r e s u l t ;

}
} ;

B.2 Define syntax for watch

; ; appinventor / bu i l d s e r v e r / s r c /com/ goog l e / appinventor / bu i l d s e r v e r / r e s ou r c e s / runtime . scm
; ; Execute the block and send r e s u l t back to the Blocks Editor
(de f ine−syntax watch

(syntax−r u l e s ()
((i n f o exp)

(l e t ((r e s u l t exp))
(send−to−block i n f o (l i s t ”OK” r e s u l t)) ; ; Send r e s u l t to Blocks Editor
r e s u l t)))) ; ; Return the r e s u l t

B.3 Process

\\ appinventor / b l o c k l y e d i t o r / s r c / replmgr . j s
\\Added case to check i f b lock i s be ing watched
\\ I f i t i s , then p lace returned value on the block
Block ly . ReplMgr . p roce s sRetva l s = func t i on (r e sponse s) {

var block ;
f o r (var i = 0 ; i < r e sponse s . l ength ; i++) {

var r = re sponse s [i] ;
c on so l e . l og (” processRetVals : ” + JSON. s t r i n g i f y (r)) ;
switch (r . type) {
case ” re turn ” :

i f (r . b l o ck id != ”−1”) {
block = Block ly . mainWorkspace . getBlockById (r . b l o ck id) ;
i f (r . s t a tu s == ”OK”) {

block . r ep lEr ro r = nu l l ;
i f (r . va lue && (r . va lue != ’∗ nothing ∗ ’)) {

i f (b lock . watch){
t h i s . appendToWatchResult (block , r . va lue) ;

} e l s e {
t h i s . s e tDo i tResu l t (block , r . va lue) ;
}

}
} e l s e {

i f (r . va lue) {
block . r ep lEr ro r = ”Error from Companion : ” + r . va lue ;

} e l s e {
block . r ep lEr ro r = ”Error from Companion ” ;

}
}

}
break ;

case ”pushScreen ” :
var su c c e s s = window . parent . Block lyPane l pushScreen (r . s c r e en) ;

60

i f (! s u c c e s s) {
conso l e . l og (” processRetVals : I nva l i d Screen : ” + r . s c r e en) ;

}
break ;

case ”popScreen ” :
window . parent . Block lyPanel popScreen () ;
break ;

case ” e r r o r ” :
i f (! t h i s . runtimeError) {

t h i s . runtimeError = new goog . u i . Dia log (nu l l , t rue) ;
}
i f (t h i s . runtimeError . i s V i s i b l e ()) {

t h i s . runtimeError . s e tV i s i b l e (f a l s e) ;
}
t h i s . runtimeError . s e tT i t l e (”Runtime Error ”) ;
t h i s . runtimeError . setButtonSet (new goog . u i . Dia log . ButtonSet () .

addButton ({ capt ion : ” Dismiss ”} , f a l s e , t rue)) ;
t h i s . runtimeError . setContent (r . va lue + ”
<i>Note:</ i> ;You w i l l not see another e r r o r repor ted f o r 5 seconds . ”) ;
t h i s . runtimeError . s e tV i s i b l e (t rue) ;

}
}
Block ly . WarningHandler . checkAllBlocksForWarningsAndErrors () ;

} ;

B lock ly . ReplMgr . appendToWatchResult = func t i on (block , va lue) {
var comment = ”” ;
i f (b lock . comment) {

comment = block . comment . getText () ;
}
comment = value + ”\n” + comment ;
i f (b lock . comment) {

block . comment . s e tV i s i b l e (f a l s e) ;
}
block . setCommentText (comment) ;
b lock . comment . s e tV i s i b l e (t rue) ;

}

61

Appendix C

Extra Information to ACRA

C.1 Set up means to get User email and Project ID to JavaScript

// appinventor / appengine / s r c /com/ goog le / appinventor / c l i e n t / ed i t o r /youngandroid/BlocklyPanel . java
// Methods to export code from Java to JavaScr ipt .
// Added code to re turn user email , ID , and p r o j e c t ID
pub l i c s t a t i c S t r ing getCurrentUserEmail (){

re turn Ode . g e t In s tance () . getUser () . getUserEmail () ;
}

pub l i c s t a t i c S t r ing getCurrentUserId (){
re turn Ode . g e t In s tance () . getUser () . getUserId () ;

}

pub l i c s t a t i c S t r ing getCurrentPro j ec t Id (){
re turn ”” + Ode . g e t In s tance () . getCurrentYoungAndroidProjectId () ;

}

pr i va t e s t a t i c nat ive void exportMethodsToJavascr ipt () /∗−{
$wnd . Block lyPane l sendError =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : sendError (Ljava/ lang / St r ing ;)) ;
$wnd . BlocklyPanel getCurrentUserEmai l =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : getCurrentUserEmail ()) ;
$wnd . Block lyPane l getCurrentUser Id =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : getCurrentUserId ()) ;
$wnd . B lock lyPane l ge tCurrentPro j ec t Id =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : g e tCurrentPro j ec t Id ()) ;
$wnd . B lock lyPane l in i tB locksArea =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : i n i tB locksArea (Ljava/ lang / St r ing ;)) ;
$wnd . BlocklyPanel blocklyWorkspaceChanged =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : blocklyWorkspaceChanged (Ljava/ lang / St r ing ;)) ;
$wnd . BlocklyPanel checkWarningState =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : checkWarningState (Ljava/ lang / St r ing ;)) ;
$wnd . Block lyPane l ca l lTogg leWarning =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : ca l lToggleWarning ()) ;
$wnd . BlocklyPanel checkIsAdmin =

62

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : checkIsAdmin ()) ;
$wnd . B lock lyPane l i nd i ca t eD i s connec t =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : i nd i ca t eD i s connec t ()) ;
// Note : above l i n e s are l onge r than 100 chars but I ’m not sure whether they can be s p l i t
$wnd . Block lyPane l pushScreen =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : pushScreen (Ljava/ lang / St r ing ;)) ;
$wnd . Block lyPane l popScreen =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : popScreen ()) ;
$wnd . B lock lyPane l c r ea t eD ia l og =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : c r ea t eD ia l og (Ljava/ lang / St r ing ; Ljava/ lang / St r ing ; Ljava/ lang / St r ing ; Ljava/ lang / St r ing ; ILcom/ goog l e /gwt/ core / c l i e n t / JavaScr iptObject ;)) ;
$wnd . B lock lyPane l h ideDia log =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : HideDialog (Lcom/ goog l e /gwt/ user / c l i e n t / u i /DialogBox ;)) ;
$wnd . Block lyPane l se tDia logContent =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : SetDialogContent (Lcom/ goog l e /gwt/ user / c l i e n t / u i /DialogBox ; Ljava/ lang / St r ing ;)) ;
$wnd . BlocklyPanel getComponentInstanceTypeName =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : getComponentInstanceTypeName (Ljava/ lang / St r ing ; Ljava/ lang / St r ing ;)) ;
$wnd . BlocklyPanel getComponentInfo =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : getComponentInfo (Ljava/ lang / St r ing ;)) ;
$wnd . BlocklyPanel getComponentsJSONString =

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : getComponentsJSONString ()) ;
$wnd . Block lyPane l getYaVers ion=

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : getYaVersion ()) ;
$wnd . Block lyPane l getBlocksLanguageVers ion=

$entry (@com. goog l e . appinventor . c l i e n t . e d i t o r . youngandroid . BlocklyPanel : : getBlocksLanguageVers ion ()) ;

}−∗/;

C.2 Build user info into YAIL and send to device

// appinventor / b l o c k l y e d i t o r / s r c / replmgr . j s
Block ly . ReplMgr . bu i l dYa i l = func t i on () {

conso l e . l og (”BUILD YAIL”) ; //JOHANNA
var phoneState ;
var code = [] ;
var b locks ;
var b lock ;
var n e e d i n i t i a l i z e = f a l s e ;
i f (! window . parent . ReplState . phoneState) { // I f the re i s no phone s tate , make some !

window . parent . ReplState . phoneState = {} ;
}
phoneState = window . parent . ReplState . phoneState ;
i f (! phoneState . formJson | | ! phoneState . packageName)

re turn ; // Nothing we can do without these
i f (! phoneState . i n i t i a l i z e d) {

phoneState . i n i t i a l i z e d = true ;
phoneState . b lockYa i l = {} ;
phoneState . componentYail = ”” ;

}

var j sonObject = JSON. parse (phoneState . formJson) ;
var fo rmProper t i e s ;
var formName ;
i f (j sonObject . P rope r t i e s) {

f o rmProper t i e s = jsonObject . P rope r t i e s ;
formName = formProper t i e s . $Name ;

63

}
var componentMap = Block ly . Component . buildComponentMap ([] , [] , f a l s e , f a l s e) ;
var componentNames = [] ;
f o r (var comp in componentMap . components)

componentNames . push (comp) ;
i f (f o rmProper t i e s) {

i f (formName != ’ Screen1 ’)
code . push (Block ly . Yai l . getComponentRenameString (” Screen1 ” , formName)) ;

var sourceType = jsonObject . Source ;
i f (sourceType == ”Form”) {

code = code . concat (Block ly . Yai l . getComponentLines (formName , formPropert i e s , nu l l /∗ parent ∗/ , componentMap , t rue /∗ f o rRep l ∗ /)) ;
} e l s e {

throw ”Source type ” + sourceType + ” i s i n v a l i d . ” ;
}

// Fetch a l l o f the components in the form , t h i s may r e s u l t in dup l i c a t e s
componentNames = Block ly . Yai l . getDeepNames (formPropert i e s , componentNames) ;
// Remove the dup l i c a t e s
var uniqueNames = componentNames . f i l t e r (func t i on (elem , pos) {

re turn componentNames . indexOf (elem) == pos ; }) ;
componentNames = uniqueNames ;

code = code . j o i n (’\n ’) ;

i f (phoneState . componentYail != code) {
// We need to send a l l o f the comonent c r u f t (so r ry)
n e e d i n i t i a l i z e = true ;
phoneState . b lockYa i l = {} ; // Sorry , have to send the b locks again .
t h i s . putYai l (Block ly . Yai l .YAIL CLEAR FORM) ;
t h i s . putYai l (code) ;
t h i s . putYai l (” (user−emai l ” + window . parent . BlocklyPanel getCurrentUserEmai l () + ”) ”) ;
t h i s . putYai l (” (user−id ” + window . parent . BlocklyPanel getCurrentUserID () + ”) ”) ;
t h i s . putYai l (” (pro j e c t−id ” + window . parent . B lock lyPane l getCurrentPro ject ID () + ”) ”) ;
t h i s . putYai l (Block ly . Yai l .YAIL INIT RUNTIME) ;
conso l e . l og (code) ;
c on so l e . l og (window . parent . BlocklyPanel getCurrentUserEmai l ()) ;
phoneState . componentYail = code ;

}
}

C.3 Device stores information

; ; appinventor / bu i l d s e r v e r / s r c /com/ goog l e / appinventor / bu i l d s e r v e r / r e s ou r c e s / runtime . scm
(de f ine−syntax user−emai l

(syntax−r u l e s ()
((emai l)

(∗ : set−userEmail ∗ th i s−form∗ emai l)
)))

(de f ine−syntax user−id
(syntax−r u l e s ()

((emai l)
(∗ : set−userEmail ∗ th i s−form∗ emai l)
)))

(de f ine−syntax pro j e c t−id

64

(syntax−r u l e s ()
((emai l)

(∗ : set−userEmail ∗ th i s−form∗ emai l)
)))

C.4 Error Occurs and Device sends information with error

report

; ; appinventor / bu i l d s e r v e r / s r c /com/ goog l e / appinventor / bu i l d s e r v e r / r e s ou r c e s / runtime . scm
(de f i n e (process−except ion ex)

(de f ine−a l i a s YailRuntimeError <com . goog l e . appinventor . components . runtime . e r r o r s . YailRuntimeError>)
; ; The c a l l below i s a no−op un l e s s we are in the w i r e l e s s r ep l
(com . goog le . appinventor . components . runtime . ReplAppl icat ion : r epor tEr ro r ex get−userEmail get−userID get−pro jec t ID)
(i f i s r e p l

(when ((t h i s) : toastAl lowed)
(begin (send−e r r o r (ex : getMessage))

((android . widget . Toast : makeText (t h i s) (ex : getMessage) 5) : show)))

(com . goog le . appinventor . components . runtime . u t i l . RuntimeErrorAlert : a l e r t
(t h i s)
(ex : getMessage)
(i f (i n s t ance ? ex YailRuntimeError) ((as YailRuntimeError ex) : getErrorType) ”Runtime Error ”)
”End Appl i ca t ion ”)))

C.5 ACRA sends extra information in error report

// appinventor /components/ s r c /com/ goog l e / appinventor /components/ runtime/ReplAppl icat ion . java
pub l i c s t a t i c void r epor tEr ro r (Throwable ex , S t r ing email , S t r ing userId , S t r ing p r o j e c t I d) {

i f (t h i s I n s t an c e != nu l l && th i s I n s t an c e . a c t i v e)
ACRA. getErrorReporter () . putCustomData (” userEmail ” , emai l) ;
ACRA. getErrorReporter () . putCustomData (” use r Id ” , use r Id) ;
ACRA. getErrorReporter () . putCustomData (” p r o j e c t I d ” , p r o j e c t I d) ;
ACRA. getErrorReporter () . handleException (ex) ;

}

65

