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We present a model for recovering the direction of heading of an observer who is moving relative to 
a scene that may contain self-moving objects. The model builds upon an algorithm proposed by Rieger 
and Lawton, based on earlier work by Longuet-Higgins and Prazdny. The algorithm uses velocity 
differences computed in regions of high depth variation to locate thefocus of expansion, which indicates 
the observer’s heading direction. We relate the behavior of the model to psychophysical observations 
regarding the ability of human observers to judge heading direction, and show how the model copes 
with self-moving objects in the environment. 

Visual motion processing Egomotion Visually-guided navigation Motion perception Computational 
vision 

INTRODUCTION 

Relative movement in the changing visual image 
provides a primary cue to the three-dimensional (3-D) 
structure and motion of object surfaces, and the move- 
ment of the observer relative to the scene, allowing 
biological systems to navigate quickly and efficiently 
through the environment. This paper considers two 
aspects of the moving observer and environment that are 
critical to navigation: the recovery of the 3-D direction 
of heading of the observer relative to the scene and the 
segmentation of the scene into distinct objects on the 
basis of spatial discontinuities in motion. With regard 
to segmentation, we focus on the task of distinguishing 
between objects that are stationary with respect to 
the environment and those that undergo their own 
self-movement. 

To motivate this work, consider an observer moving 
rapidly through a cluttered scene toward a moving or 
stationary target, while avoiding obstacles in his path. 
The observer must continually assess his 3-D direction 
of translation relative to the target, in order to make 
constant, correct adjustments of his heading direction to 
maintain a trajectory toward the target. In principle, 
either the absolute or relative directions of translation of 
the observer and target could be computed, but for the 
purpose of tracking, the observer must at least judge 
reliably whether he is heading to the left or right of 
the target. The observer must also monitor his heading 
relative to object surfaces in order to detect potential 
collisions with stationary or moving objects in the scene. 

The judgment of relative 3-D heading alone is not 
sufficient to support navigation. It is also necessary to 
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locate object boundaries from discontinuities in motion 
or other visual properties. Such boundaries are used 
in many ways. First, the rapid detection of motion 
discontinuities quickly draws the observer’s attention to 
regions of the image containing objects that could collide 
with the observer and allows the segmentation of a target 
from a moving background. Second, the localization of 
object boundaries allows an assessment of the size and 
shape of relevant objects in the scene. If an object is 
moving directly toward the observer, this information 
is needed to determine an appropriate avoidance move- 
ment that steers the observer clear of the approaching 
object. If the object is a target being tracked, knowledge 
of its size and shape allows an assessment of its center of 
mass, which can serve as the focus of the observer’s 
approach. 

Finally, segmentation is essential for computing 
relative heading reliably and accurately, as it allows the 
observer to integrate only those motion measurements 
contained within single objects to compute their proper- 
ties of motion. Without segmentation, the computation 
of 3-D motion parameters can be degraded by the 
inclusion of motion measurements from adjacent object 
surfaces undergoing different motions. Patterns of move- 
ment created by multiple objects undergoing self-motion 
can mimic velocity patterns that normally arise in critical 
situations such as a directly approaching object. For 
example, a set of objects positioned around a circle and 
moving away from the center of the circle mimic the pure 
expansion that is characteristic of an approaching object. 
The detection of object boundaries from motion dis- 
continuities allows the distinction of these situations. 
For obstacle avoidance, it is further useful to distinguish 
whether an approaching surface is stationary relative to 
the background, or undergoing its own motion, because 
self-moving objects may undergo accelerative components 
of motion. 
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This paper focuses on the computation of the 3-D 
direction of translation of an observer relative to object 
surfaces. After presenting some theoretical preliminaries, 
we review existing perceptual literature regarding the 
ability of human observers to judge heading direction. 
We then consider existing algorithms for performing this 
computation in light of these perceptual observations. 
This analysis leads us to focus on a model proposed by 
Rieger and Lawton (1985) that exhibits some of the 
behavior observed in human judgments of heading. 
We present some modifications to Rieger and Lawton’s 
model aimed at impro~ng its performance in the presence 
of image noise and allowing it to cope with self-moving 
objects in the scene. The new model provides a partial 
segmentation of the image as a by-product of the 3-D 
heading computation. The results of computer simula- 
tions address the behavior of this model when applied to 
visual patterns similar to those used in perceptual studies 
and synthetic images of scenes containing self-moving 
objects. Finally, we list a number of questions that 
arise from this work that could form the basis for 
further perceptual experiments in this area. A more 
extended discussion of the relevance of this work to 
visually-guided navigation can be found in Hildreth 

The projected velocities in the image plane f.Q) are then 
given by: 

i= - t, + xt, 

z + WXXY - w,Ax2 + 1) + w,y 

- ty + Y4 3= z -t- w,(y2 f 1) - w,xy - w,x. 

The iirst term represents the component of image 
velocity due to the translation of the observer and 
depends on the depth Z to each point in the scene. 
The remaining terms represent the component of vel- 
ocity due to the observer’s rotatiun and depend only 
on the rotation parameters and image location. The 
translational component alone yields a radial pattern 
of veiocity, which in the case of forward translation, 
emanates from a single location in the image referred to 
as the focus of expansion (FOE), corresponding to the 
observer’s direction of heading. This translational com- 
ponent depends on the ratios of the three translation 
parameters to depth 2, so it is not possible from motion 
information alone to recover the absolute translation 
and depth parameters. 

(1990). THE PlWXI’TION OF ORSERVEX TRANSLATION 

DERIVING 3-D DIRECTION OF TRANSLATION 
--THw)RETICAL PRELIMINARIES 

This section presents the equations relating image 
motion m~su~ments to the parameters of t~n~ation 
and rotation of the observer relative to the scene. We 
assume that the observer is moving relative to a stationary 
scene, but the same geometric relationships hold locally 
for the case where an object is moving rigidly relative to 
the observer. We assume that a coordinate system is fixed 
with respect to the observer, with the Z-axis directed 
along the optical axis. The translation of the observer 
can be expressed in terms of translation along three 
orthogonal directions, which we denote by the vector 
t = (tx,t,,tJr, and the rotation of the observer can be 
expressed in terms of rotation around three orthogonal 
axes, which we denote by the vector w = (w,,w, ,w~)‘. 
Let the position of a point P in space be given by the 
coordinate vector r = (X, Y,Z)r. Then the 3-D velocity of 
P in the observer’s coordinate frame is given by: 

V~=(it,i,,2)~= -t-w xr 

where 

*z-t,.- wuz + w,Y 

P= -t,-wJ+w,Z 

i=-t,-w,Y+w,X. 

If we assume perspective projection of velocity V onto 
the image plane, with a focal length for the projection 
of I, the projection of P onto the image (x,y) is given 
by: 

Although the image velocity field contains components 
of motion due to the observer’s rotation and translation, 
psychophysical studies have concentra&d on our ability 
to judge direction of translation. Navigation tasks 
impose severe demands on our ability to perform this 
computation. Cutting (1986) showed that under reason- 
able assumptions, we require an accuracy of about 1’ of 
visual arc in our judgment of heading in order to avoid 
obstacles sucoessfully while running and driving, as well 
as performing more challenging tasks such as downhill 
skiing and aircraft landing. This- section reviews per- 
ceptnal studies of the ability of human observers to judge 
their direction of translation, which suggest that the 
human system can achieve this degree of accuracy under 
the best conditions. We summarize some of these studies 
in detail, as they form the basis for computer ~~~~0~s 
described later. 

A series of experiments by Warren and his colleagues 
(Warren & Hannon, 1988, 1990; Warren, Morris & 
Kalish, 1988) measured the accuracy with which observers 
judge their heading direction in computer displays that 
simulate movement toward a planar surface or 3-D 
cloud of random dots. The first experiments simulated 
movement along a ground plane ex@znding to a visible 
horizon, A target vertical line segment was located on 
the horizon and the subjects’ task was to judge whether 
their direction of heading was to the lefi or right of 
the vertical target. In the initial experiments, the target 
was visible throughout the motion of the points, but in 
subsequent experiments, the target only appeared after 
the points stopped moving. Factors that were varied in 
these experiments include the orientation of the plane 
relative to the viewer, the observer’s speed and direction 
of heading, dot density and the temporal extent of 
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the motion. In later studies, movement was simulated 
relative to a 3-D volume of random dots. 

The general conclusion of the studies by Warren and 
his colleagues is that human observers can judge their 
heading direction with an accuracy of l-2” Of visual 
angle, for a variety of surface types and under a range 
of experimental conditions. Performance is the same, 
regardless of whether the vertical target line is visible 
during the movement of the points. Observers perform 
better with higher speeds of translation, consistent with 
earlier observations by Johnston, White and Gumming 
(1973) and Care1 (1961). 

Warren and Hannon (1988, 1990) compared perform- 
ance under three conditions: (1) the observer fixated a 
stationary marker and the displays only simulated pure 
translation of the observer; (2) the observer tracked a 
moving point, introducing a rotational component of 
motion; and (3) the display itself contained both trans- 
lational and rotational components of motion and the 
observer maintained stationary fixation. For conditions 
(2) and (3) the same flow pattern appears on the surface 
of the eye, but in condition (2), rotational information 
could be derived from extraretinal eye movement signals, 
while in condition (3), such information must be derived 
from visual input alone. Subjectively, observers cannot 
distinguish between conditions (2) and (3), and in the 
latter case, there was a strong illusion of the eye actually 
moving. For the case of movement toward a ground 
plane or movement toward a cloud of random dots, there 
was essentially no difference in performance between 
these three conditions. When simulating translation 
perpendicular to a plane, however, performance still 
reached a high level of accuracy in the first two condi- 
tions, but was at chance for the third condition. Subjec- 
tively, observers perceived themselves as moving toward 
the point of fixation, which corresponds to a center of 
outflowing motion in this case. Similar observations 
regarding movement toward a frontoparallel plane were 
made in other studies (Llewellyn, 1971; Johnston et al., 

1973; Regan & Beverley, 1982; Rieger & Toet, 1985; 
Cutting, 1986). This observation suggests that extra- 
retinal information regarding eye rotation is used in the 
analysis of heading direction, and that the passive de- 
coupling of the rotational and translational components 
of motion from visual input alone requires differential 
motion produced by elements at different depths. 

Warren and Hannon (1990) also examined the 
influence of dot density for simulated movement toward 
a 3-D cloud of dots. When the added rotational flow 
was generated by the subject tracking a dot on the 
display, there was no change in performance with dot 
density [confirming earlier observations by Warren 
et al. (1988)], but when rotational flow was added to 
the movements of the points, there was some degrad- 
ation of performance with lower densities. Thus, 
observers could accurately judge heading direction when 
presented with a relatively sparse, discontinuous flow 

field. 
The experiments by Warren and Hannon (1988, 1990) 

and Warren ef al. (1988) used a total viewing time of 

about 3 set, with image sequences of about 50 frames. It 
was later found that for pure translation of the observer, 
there is no deterioration in performance if the number 
of frames is reduced, until only 2-3 frames are presented 
(Warren, Blackwell, Kurtz, Hatsopoulos & Kalish, 
1991). There is about 3” of accuracy for only two frames, 
with significant improvement when a third frame is 
added. When a rotational component is added to the 
motions of the points, more extended time may be needed 
to recover observer heading accurately (W. Warren, 
personal communication). 

The visual system can also tolerate significant noise, 
with performance degrading smoothly with increased 
amounts of noise. Warren et al. (1991) found, for 
example, that in the case of pure translation of the 
observer, subjects could still judge heading direction 
with an average error of 2.6” when the directions of 
motion of individual points were randomly perturbed 
within an envelope of 90”. This result suggests that the 
heading computation may involve significant spatial 
pooling of image motion measurements. 

Cutting (1986) examined observers’ ability to determine 
their direction of translation toward a field of vertical 
lines placed on three frontoparallel planes whose separ- 
ation in depth was varied. When the planes were at the 
same depth, subjects performed at chance, and heading 
accuracy improved with an increased separation of the 
planes in depth. The best accuracy achieved corresponds 
to a relative heading angle of about 1.25”. 

Rieger and Toet (1985) measured subjects’ ability to 
judge their heading direction relative to two fronto- 
parallel planes of dense random dots placed at different 
depths. Translational and rotational components of 
motion were combined in the movements of the 
points on the display. The parameters that were varied 
in these experiments include the direction of translation, 
the separation in depth between the two planes, the 
magnitude of the rotational component of observer 
motion, and the size of the field of view. For the case of 
a single plane, performance degraded rapidly as the 
magnitude of simulated rotation was increased, similar 
to previous studies. When the points were placed at 
different depths, however, subjects could reliably judge 
heading direction over the range of angular rotations 
tested, with little degradation with the size of the field of 
view. 

To summarize the perceptual experiments, we make 
the following observations regarding the human recovery 
of direction of translation: 

l Human observers can achieve an accuracy of 
about l-2” of visual angle at judging heading 
direction, with or without the presence of a target 
in the environment. 

l Performance improves with higher speeds of 
translation. 

l Performance improves when surfaces span a 
greater range of depth. 

l Extraretinal information regarding eye rotation 
is used in the recovery of heading direction. 
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0 Heading direction can be judged reliably in the 
presence of significant amounts of noise in the 
image motion measurements. 

0 For the case of pure translation, heading direction 
can be recovered accurately in a relatively short 
time of 2 or 3 frames, with accuracy increasing 
with time. 

l Heading direction can also be recovered in a 
context where the rotational and translational 
flows must be passively decoupled from visual 
input alone. This decomposition 

(1) requires differential motion produced by 
elements at different depths, 

(2) can be performed successfully with sparse, 
discontinuous flow fields, and 

(3) requires only a relatively small field of view, 
at least as small as 10”. 

The next section examines computational models for 
the recovery of observer motion in light of the above 
o~ervations. 

TI+E COMPUTATION OF DIIlECTiON 
OF TRANSLATION 

Computational methods for recovering the direction 
of translation of an observer can be divided into two 
classes, depending on whether they use discrete or con- 
tinuous image motion m~s~ments. In the discrete 
approach, a set of isolated image features are tracked 
over time and their sequence of positions forms the input 
to a system of equations whose solution yields the 
parameters of 3-D structure and motion. The continuous 
approach uses an instantaneous 2-D velocity field at one 
or more instants of time, which together with spatial or 
temporal derivatives, are used to solve for 3-D structure 
and motion. 

Many examples of the discrete approach present 
theoretical results regarding the minimal number of 
motion measurements required to compute 3-D 
structure and motion parameters uniquely (e.g. Ullman, 
1979; Prazdny, 1980; Longuet-Higgins, 198 1, 1984; Tsai 
& Huang, 1984a, b; Faugeras, Lustman & Toscani, 
1987; Aloimonos & Brown, 1989; Weng, Huang & 
Ahuja, 1989). The direct application of the mathematical 
results su&Iests possible algorithms for recovering 
these parameters, but computer experiments indicate 
that they may be vulnerable to error in the image motion 
measurements, The ability of the human system to judge 
heading direction accurately for a few, sparse features 
in motion suggests that the un~rl~ng ~ompu~tion 
can derive movement parameters from discrete motion 
measurements, but unlike existing algorithms, the 
human system can tolerate large amounts of noise in 
these measurements. Algorithms that use discrete 
motion measurements over an extended time period 
exhibit better performance (Ullman, 1984; Broida 8c 
Challappa, 1986; Shariat, 1986; Faugeras et al., 
1987). Extended time appears to be necessary for the 
human system to decouple rotational and transiational 

components of motion on the basis of visual input 
alone. 

Approaches that use spatial derivatives of velocity 
require a locally continuous velocity field, or one that 
is sufficiently dense that interpolation can be used to 
approximate the continuous field (onset-Hig~ns 
& Prazdny, 1981; Koenderink & Van Doom, 1976: 
Waxman & Ullman, 1985; Subbarao, 1988; Waxman & 
Wohn, 1988). Another approach based on the theory of 
planar dynamical systems uses the time evolution of the 
structure of the flow field in the vicinity of singularities 
(such as the FOE) to recover motion parameters (Verri, 

Girosi & Torre, 1989). This method may have difficulty 
with the sparse and discontinuous velocity fields used in 
perceptual studies. Some of these techniques also require 
accurate velocity measurements. Methods that rely 
directly on spatial and temporal derivatives of image 
intensity (Negahdaripour & Horn, 1987, 1989; Horn & 
Weldon, 1988; Heel, 199Oa, b) may have difficulty coping 
with the impoverished displays of isolated dots used in 
perceptual studies. 

Other velocity based approaches do not require a 
continuous velocity field (for example, Bruss & Horn, 
1983; Ballard & Kimball, 1983; Jain, 1983; Lawton, 
1983; Adiv, 1985; Burger & Bhanu, 1990; Heeger & 
Jepson, 1990). Some of these methods use an optimiz- 
ation approach, in which 3-D motion parameters are 
computed that yield a velocity field that best fits the 
observed image velocities in the least-squares sense, and 
integrate a large number of image motion measurements, 
yielding less sensitivity to error. The human system, 
however, does not require extensive spatial integration 
to compute heading direction accurately; in contrast, it 
copes with a small number of motion measurements and 
a relatively small field of view. 

Finally, some methods make direct use of info~ation 
about motion parallax, that is, the relative motion of 
features at different depths, to derive 3-D motion and 
structure (Longuet-Higgins & Prazdny, 1981; Bieger & 
Lawton, 1985; Cutting, 1986). The difference in velocity 
between two points that are nearby in the image, but 
separated in depth, depends largely on the translational 
parameters of observer motion and can be used directly 
to infer the direction of translation. The explicit reliance 
of these methods on depth variation in the scene makes 
them appealing from the perspective of the human 
system, which fails for the case of the perpendicular 
approach to a plane. 

To summarize, it appears that most existing models do 
not exhibit the basic properties of the human recovery 
of direction of transfation. None of these models 
have been shown to yield the accuracy of l-2” of visuaf 
angle seen in human judgments of heading, over a range 
of viewing conditions, Some models could be modified 
to cope with some of the conditions considered in 
perceptual studies, but the need to cope with sparse, 
noisy and discontinuous motion fields, and the failure 
of the human system with the frontoparailel pIane, 
seems to rule out many models on more fundam~tal 
grounds. 
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THE RIEGER AND LAWTON MODEL 

This section describes the algorithm proposed by 
Rigger and Lawton (1985), which is based on earlier 
work by Longuet-Higgins and Prazdny (1981). This class 
of models begins with the observation that at the 
location of a discontinuity in depth, there will be a 
discontinuity in the translational component of the 
image velocity field because of the dependence of this 
component on depth, while the rotational component 
will be roughly constant across the boundary. Further- 
more, if we construct a field of vectors that represent 
the differences in velocity across these boundaries, 
these vectors will be oriented approximately along the 
lines connecting their image location with the focus of 
expansion (the translational field lines), and therefore 
should all point to the FOE. 

Longuet-Higgins and Prazdny suggested an algorithm 
based on the above observations that uses instantaneous 
spatial derivatives of velocity to recover the FOE. This 
original algorithm proved to be quite sensitive to error 
in the image velocity measurements. A robust algorithm 
that uses this observation to extract the FOE must take 
into account the fact that accurate velocity measure- 
ments may not be available immediately to either side 
of a depth discontinuity. Rieger and Lawton (1985) 
presented an algorithm that addresses this problem. 
The steps of the algorithm are as follows. First, the 
differences between each local image velocity and other 
velocities measured within a restricted neighborhood are 
computed. From the resulting dist~bution of velocity 
difference vectors, the dominant orientation of the 
vectors is computed and preserved only at locations 
where the dist~bution of velocity differences is strongly 
anisotropic. Such points typically arise where there is 
a strong depth variation in some direction. The result of 
this first stage is a set of directions at a number of points 
in the image that are all roughly aligned with the 
translational field lines. The FOE is then calculated as 
the best-fit intersection point for all the resulting vector 
directions. Once the FOE is determined, the direction of 
the translational component of motion is known at every 
location in the image, so that any motion in the original 
flow field that is perpendicular to this direction must 
be due to the rotation of the observer. From these 
perpendicular motions, the best rotational parameters 
are inferred (see also Burger & Bhanu, 1990). The full 
rotational flow field is then computed and subtracted 
from the original flow field to obtain the full trans- 
lational component of the fiow field. Finally, the relative 
depth at every point is computed from knowledge of the 
FOE and magnitude of the translational component of 
motion at each location. 

The algorithm proposed by Rieger and Lawton is 
appealing for a number of reasons. First, it provides 
an initial estimate of the direction of translation with 
minimal compu~tion, independent of the rotation par- 
ameters and 3-D shape. Heading direction is a critical 
property of observer motion for navigation that must 
be computed with high accuracy and speed. It is also 

important to detect object boundaries from motion dis- 
continuities as soon as possible, and these are precisely 
the locations that provide the best information for this 
a)go&hm. Another appealing aspect is its simplicity and 
reliance on primitive image motion information, such as 
velocity differences, that require little computation. The 
fact that it does not rely critically on the solution Of 
optimization problems is also an advantage. Optimiz- 
ation can be used at each step of the algorithm, but the 
information being computed can be obtained to a close 
approximation with non-iterative techniques. 

One question that arises regarding the Rieger and 
Lawton algorithm as it stands is whether it can achieve 
the degree of accuracy of human performance measured 
across the range of conditions used in perceptual studies. 
Simulations presented by Rieger and Lawton (1985) 
suggest that the resulting heading accuracy may be 
within a factor of 2 or 3 of the needed accuracy. An 
especially challenging aspect of human performance is its 
ability to cope with sparse displays. The average angular 
separation between points in Warren and Hannon’s 
(1990) study is large compared to the neighborhood sizes 
used in Rieger and Lawton’s simulations. Over farger 
distances, the assumptions of the model become less 
valid. Computer simulations presented later suggest that 
this algorithm can yield the desired accuracy for the 
particular conditions of the perceptual experiments, with 
reasonable assumptions about the available precision of 
image motion measurements. 

BUILDING UPON THE RIEGER AND LAWTON 
MODEL 

From a computational standpoint, the most severe 
limitation of Rieger and Lawton’s model is that it does 
not cope with self-moving objects in the environment. 
The difference in velocity across the boundary between a 
self-moving object and stationary back~ound, or between 
two self-moving objects, in general does not yield vectors 
that are oriented along the translational field lines that 
emanate from the true FOE. Combining these differ- 
ences with those obtained along the boundaries between 
stationary surfaces can yield significant error in the com- 
puted FOE location, especially if self-moving objects 
cover a large part of the visual field. It is necessary to 
detect self-moving objects explicitly or to remove their in- 
fluence on the FOE computation by some implicit means, 

This section considers a different method for perform- 
ing the FOE computation in Rieger and Lawton’s model 
that allows self-moving objects to be present in the scene 
and helps to isolate the boundaries of such objects. 
We also discuss some additional modifications to other 
stages of the algo~thm that improve its performance in 
the presence of error in the image motion measurements. 
The results of computer simulations with the algorithm 
described here are presented in the next section. 

Previous methods for coping with self-moving objects 

We first consider existing methods for detecting 
and coping with self-moving objects in the scene. One 
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approach assumes that the camera is stationary, so that 
significant image motion indicates self-moving objects 
(Jain, Militzer & Nagel, 1977; Jain, Martin & Aggarwal, 
1979; Anderson, Burt & van der Wal, 1985; Dinstein, 
1988; Bouthemy L Lelande, 1990). A variation on 
this approach considered by Burt, Bergen, Hingorani, 
Kolczinski, Lee, Leung, Lubin and Schvaytser (1989) 
recovers global camera motion parameters by stabilizing 
regions of the image, analogous to eye tracking in the 
human system. Once the image motion due to the actual 
camera motion is largely removed, any significant 
motions that remain are likely to be due to self-moving 
objects. A second approach assumes that the camera 
undergoes pure translation, so that any self-moving 
objects violate the expected pure expansion of the image 
(e.g. Jain, 1984). If 3-D depth data is available, then 
inconsistency between image velocities, estimated ob- 
server motion and depth data can also signal self-moving 
objects (e.g. Thompson & Pong, 1990). Nelson (1990) 
shows that it is possible to detect such inconsistencies 
from partial info~ation about image and observer 
motion. Nelson also notes that the motion of objects due 
to the observer’s motion tends to change slowly over 
time, while self-moving objects can generate rapidly 
changing patterns of motion that can be used to detect 
their presence. 

A more general strategy is to compute an initial set 
of observer motion parameters, either by combining all 
available data or by ~rfo~~g separate computations 
within limited image regions, and then to fmd areas of 
the scene that move relative to the observer in a way 
that is inconsistent with the global motion parameters 
(Heeger & Hager, 1988; Zhang, Faugeras & Ayache, 
1988). If all motion information is used initially, the 
recovery of observer motion parameters can be degraded 
by the inconsistent motions of self-moving objects. 
On the other hand, the use of spatially local info~at~on 
can yield inaccuracy due to the limited field of view. 
Thompson, Lechleider and Stuck (1992) present a vari- 
ation on this approach that uses a technique from robust 
statistics (Huber, 1981) to compute global motion 
parameters in the presence of “outliers”, which are data 
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that deviate significantly from consistency with the true 
parameters. Imap motions resulting from self-moving 
objects are treated as outliers and the ieast median 
squares algorithm (Roussecuw & Leroy, 1987; Meer, 
Mintz, Kim & Rosenfeld, 1991) is used to compute 
motion parameters in a way that detects potential outliers. 
Thompson et al. (1992) note that self-moving objects 
whose projected image motion is close to the motion that 
is expected from the observer’s global translation and 
rotation are difficult to detect with this technique. 

Modifving the Rieger and Lawton model to cope with 
self-moving objects 

We present a strategy for detecting and coping with 
self-moving objects that builds on the Rieger and Lawton 
algorithm. We first summarize the strategy in general 
terms and then elaborate on the motivation and details. 
The scheme first computes local velocity differences and 
determines the dominant orientation of the distribution 
of velocity differences within a small neighborhood of 
each point, as in the Rieger and Lawton model. The 
o~entations, Si, are preserved for the next stage of the 
computation only at points where the distribution of 
velocity differences is strongly anisotropic. Most of the 
8, measurements preserved at this stage arise from points 
on or near depth discontinuities, or along surfaces such 
as the ground plane, whose angle of slant relative to the 
image plane is large. 

Some portion of the 0, measurements will point 
roughly toward the true FOE, while 0, measurements 
obtained in the vicinity of self-moving objects or those 
with high error will be oriented in arbitrary directions. 
Assuming that self-moving objects do not cover a 
large part of the visual field, we can obtain a good initial 
guess of the location of the FOE by looking for limited 
image regions for which a large percentage of the @[ 
measurements point toward locations within the region. 
In particular, we consider how much evidence exists 
to support the FOE being located within each of a 
large set of image regions, choose the region (or regions) 
with maximum support and use the 8i measurements 
that provide this maximum support to derive an FOE 

FIGURE I. (a) A set of overlapping circular patches that reprezicnt rc@ons of the image that could cantain the FOE. 
(b) Positive evidence for the FOE being located within Pj is given by a meas urement 8, if a Iine from the point that ~~~~ 

the vector de&cd by 8, intersects Pi. 
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estimate. [This strategy is based on the Hough transform 
used in computer vision (Ballard & Brown, 19W.l 

In more detail, after the 8, measurements are derived, 
the visual image is divided into a set of overlapping, 
circular patches that represent possible regions within 
which the FOE may be located, as shown in Fig. l(a). 
For each patch Pj, all of the positive evidence for 
the FOE being located within Pi is collected. Positive 
evidence comes from points whose orientation 8, lies 
along a line that intersects Pj, as shown in Fig. l(b). If 
the true FOE is located within the patch Pj, then velocity 
differences computed within or along the boundaries of 
stationary objects should yield positive evidence. Points 
at which the orientation di does not yield positive 
evidence either lie within or near the boundaries of self- 
moving objects, or they yield large error in the compu- 
tation of ei. If the true FOE is not located within P,, 
there may be points that yield an orientation 0, that 
incorrectly provides positive evidence for an FOE in Pj, 
but the percentage of points yielding such false positive 
evidence should be substantially reduced. For each patch 
P,, if a large percentage of the available ei yield positive 
evidence for the FOE being located within P,, then the 
set of 8, estimates yielding this positive evidence is used 
to generate a hypothesized FOE location. If multiple 
FOE hypotheses remain after this stage, they are recon- 
ciled to obtain a single FOE location by considering the 
extent of the positive evidence in their support, their 
goodness-of-fit to the computed Bi, and the proximity 
of the multiple hypotheses. 

The reasoning behind this strategy is that by com- 
bining only those Bi measurements that yield positive 
evidence for an FOE being located within restricted 
patches, we reduce the degradation in the FOE com- 
putation that results from the presence of self-moving 
objects and large errors in the ei estimates. When patches 
that contain the true FOE are considered, self-moving 
objects and large errors in the 19~ are likely to result in 0; 
estimates that do not yield positive evidence and hence 
do not enter into the FOE computation. Patches that do 
not contain the true FOE are likely to yield significantly 
less positive evidence and therefore do not lead to an FOE 
hypothesis. The remainder of this section elaborates on 
details of the individual steps of the algorithm. 

As shown in Fig. la, the circular patches may increase 
in size with distance from the center of the image. This 
serves to minimize the total number of patches needed 
to cover the image and to allow the FOE to be computed 
more accurately when it is located toward the center of 
the image. Reducing the total number of patches reduces 
the amount of computation required to test the set of 
patches for possible FOE locations. The desire to com- 
pute the FOE more accurately toward the center of the 
image arises in part from properties of human vision. 
Human observers judge heading direction most accurately 
when their eyes are pointed in the direction of heading, 
and the spatial resolution of processing increases toward 
the center of the eye. Thus heading direction is derived 
most accurately when the FOE lies near the center of the 
visual image. 

The determination of whether a particular measure- 
ment ei is consistent with the FOE being located within 
a patch Pi requires a simple computation. One can either 
determine whether the orientation ei falls within a cone 
of directions defined by the two lines running through 
the underlying point and tangent to the circular bound- 
ary of Pj, or whether the perpendicular distance from 
the center of Pj to the line containing the vector in the 
direction ei is less than the radius of Pj- The measure- 
ments of ei obtained from points within Pj are not 
included in the positive evidence for P,, because the size 
of the translational component of velocity is small in the 
vicinity of the FOE, yielding unreliable velocity differ- 
ences. We also limit the overall extent of the region from 
which 8, measurements are considered for Pi, because the 
range of consistent orientations ei becomes too small for 
points distant from Pi, requiring too much accuracy in 
their estimate. 

After the set of ei that yield positive evidence for a 
given patch are computed, we determine whether there 
is sufficient evidence to combine these t$ measurements 
to derive an FOE hypothesis. The percentage of all ei 
measurements that yield positive evidence is compared 
to a threshold. This threshold must be large enough to 
minimize the number of false hypotheses generated from 
patches that do not contain the true FOE, while allowing 
a significant portion of the visual field to contain self- 
moving objects. The choice of threshold here is governed 
in part by what percentage of points yielding 19~ measure- 
ments are expected to be within or near the boundaries 
of self-moving objects, and in part by what percentage 
of points from stationary regions of the scene are 
expected to yield false positive evidence for inappropriate 
FOE locations. With regard to the first factor, we note 
that if too much of the visual field contains self-moving 
surfaces, human observers do not judge their heading 
correctly. 

Figure 2 addresses the second factor mentioned above. 
We consider a patch P at the center of the image, as 
shown in Fig. 2(a), and determine the positive evidence 
that could be obtained for FOE locations within P, 
for different true locations of the FOE. Evidence is 
considered from all points lying within a circular region 
surrounding P, and we assume that every point in the 
image yields a measurement of 8, that is directed along 
translational field lines emanating from the true FOE. 
The graph in Fig. 2(b) shows the percentage of 8, 
measurements that represent positive evidence for FOE 
locations within P for the true FOE locations indicated 
with solid circles in Fig. 2(a). When the true FOE is 

located within P, 100% of all ei measurements yield 
positive evidence, but as the true FOE moves outside P, 
the percentage of points that could yield positive evidence 
for FOE locations inside P drops rapidly. (For the 
simulations presented later, we required that 40-50% of 
the Bi measurements yield positive evidence for a patch 
Pj, in order to generate an FOE hypothesis from P,.) 
Figure 2(c) shows a map of the points that could yield 
positive evidence for the FOE being located within p 
when the true FOE is located outside P, as described 
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in the figure legend. If, in a particular scene, all of the 
available @i measurements fall in the regions shown in 
black in Fig. 2(c), it would appear that there is significant 
positive evidence for an FOE within P and the set of 
0, measurements would be used to generate an FOE 
hypothesis. If the true FOE is located outside P, the 
estimate obtained may not have as good a fit to the 8, 
measurements as the FOE hypothesis generated from a 
correct patch. In general, however, a skewed spatial 
distribution of the available Bi measurements can yield 
an inappropriate FOE estimate. 

Self-moving objects can also yield false positive 
evidence for an FOE being located within a given patch 
Pj, especially if an object undergoes a si~i~cant trans- 
lation toward or away from P,. If the true FOE is not 
located within P,, then the added Bi measurements from 
self-moving objects are likely to yield an FOE hypothesis 
that does not yield a good fit to the oi measurements. 
Even for the patch that contains the true FOE, self- 
moving objects with significant translation near but not 
along the true translational field lines can distort the 
computation of the FOE location. We assume that this 
situation is rare, and note that when it does occur, it is 

(a) 

(b) 

unlikely to persist for an extended period of time, or over 
an extended region of the image. 

Due in part to the overlap of adjacent patches [see 
Fig. l(a)J, valid FOE hypotheses may emerge from 
multiple patches. If there is a single FOE location that 
both accounts for a si~ifi~ntly larger percentage of 
the 13~ measurements and yields a significantly better 
goodness-of-fit to these measurements, then this FOE 
location is considered to be the best current guess (the 
simulations presented later required a 20% difference in 
these two properties). Multiple FOE locations that are 
close to one another can be averaged together to yield 
a current estimate. If there are multiple FOE hypotheses 
with strong support that are distant from one another, 
it may be possible to resolve the global FOE through an 
analysis of self-moving objects in the scene, which we 
consider next. 

If there is significant positive evidence for the FOE 
being located within a patch P,, then points that do not 
yield positive evidence can be used to detect self-moving 
objects. In particular, extended, connected groups of such 
points can signal a self-moving object. Isolated points 
or small groups of points yielding negative evidence are 

0 10 20 30 40 60 60 

true FOE looalion 

FIGURE 2. (a) We consider the positive evidence for the FOE being located within the central patch P from @, measurements 
that could be obtained within the larger annular region .S, for the set of true FOE locations indicated by the solid dots. The 
radius of P is 16 pixels, and radius of Sis 64 pixels. (b) Cimph of the percentage of t$ measurements that would provide positive 
evidence for the FOE being iocated within P as a fmetiM Of tht trtm ligation of the FOE. (c) Gin the pat& P with radhs 
16, and a true FOE located 32 pixcis to the right of&e CM&&F of P, &C points that co&d yi&d positive cvidtna for the FOE 

being located within P are shown in black. 
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likely to be the consequence of error in the Bi compu- 
tation. SOme points within or near the boundaries of 
self-moving objects will yield false positive evidence for 
an FOE within Pi, but if these points are connected to 
an extended region of points yielding negative evidence, 
we assume that they represent a continuation of a self- 
moving object and generate a new FOE hypothesis with 
these points removed. 

Finally, we note that a coarse-to-fine strategy can be 
used, in which larger patch sizes are used first to obtain 
a rough estimate of the region (or regions) likely to 
contain the global FOE, and the size of the patches 
is successively reduced to refine the estimated FOE 
location. At each scale, a current estimate could be 
obtained and smaller patches could then be centered 
on the current estimate. Such a coarse-to-fine strategy 
provides a rapid assessment of the rough FOE location 
and reduces the total amount of computation required 
to obtain a more precise estimate. 

Work in the area of robust statistics provides tech- 
niques for deriving global parameters in the presence 
of significant outliers in the data (Rousseeuw & Leroy, 
1987; Meer et al., 1991). Similar to the scheme proposed 
by Thompson et al. (1992), the Bi measurements derived 
from self-moving objects could be considered outliers 
and techniques such as least median squares could be 
applied to the full set of Sj measurements to compute an 
FOE estimate and detect the “outlying” self-moving 
objects. The approach presented here takes better 
advantage of the geometrical relationship between 8, 
measurements obtained from stationary and self-moving 
objects and requires much less computation. 

Other modiftcations of the Rieger and Lawton model 

This section considers additional modifications aimed 
at improving the performance of the Rieger and Lawton 
algorithm in the presence of error in the image motion 
measurements. These modifications include temporal 
smoothing of the image velocities, a different strategy for 
computing the dominant orientations, &, that filters the 

local distributions of velocity differences, and a method 
for refining the Bi measurements at a later stage. 

If the errors in the 2-D velocities of moving features 
are uncorrelated from one moment to the next, then 
smoothing or averaging of the velocity measurements 
over time can improve their quality. T%is temporal 
smoothing should be limited in time, as the observer’s 
heading can change over a long time interval. In the 
simulations presented later, velocity measurements with 
added noise that were obtained at two different times 
were averaged together. This smoothing took place 
prior to the computation of velocity differences and 
signi~cantly improved the quality of these difference 
estimates. 

The local distribution of velocity differences can be 
computed in one of two ways. First, the difference 
between the velocity of a point pi and that of each 
neighboring point pj within some distance of pi can be 
computed to obtain a set of velocity differences associ- 
ated with pi. If pi has n neighbors, then the distribution 
will contain at most n differences. A second option is to 
consider fixed neighborhoods distributed over the image 
and to compute the difference in velocity between every 
pair of points that falls within each neighborhood. In 
this case, if there are n points within a given neighbor- 
hood, then there will be at most n(n - 1)/2 velocity 
differences computed. Both strategies were used in the 
simulations described later. For the simulations with 
sparse dot patterns, all pairs of points within fixed 
neighborhoods were used to obtain the local distribu- 
tions of velocity differences, while the simulations with 
images on dense grids used only the differences between 
single locations and their neighbors. 

To obtain estimates of the dominant orientations, 
ei, note that the distribution of velocity differences 
computed at a point or within a neighborhood that lies 
in the vicinity of a depth discontinuity or on a surface 
with a substantial slant in depth will typically cover a 
range of directions, as shown in Fig. 3(a). Differences 
between the velocity of two points that lie at significantly 

FIGURE 3. (a) A typical distribution of velocity differences obtained at a point that is near a depth discontinuity or located 
on a highly slanted surface!. The larger vectors represent the difference in velocity between this point and other points lying 
at significantIy different depths, and are directed roughly along the translational field line. Other vectors represent the difference 
between the velocity at this point and that of other points located at similar depths. The aim is to compute the dominant 
direction of these differences. (b) We find two opposite 90” ranges of o~en~tions that separate the differences in a way that 
maximizes the ratio between the sum of the lengths of the velocity differences lying within and outside of these ranges. 



1186 ELLEN C. HILDRETH 

different depths will be larger and oriented roughly along 
the translational field line directed toward the FOE. 
There will be some deviation from the true translational 
field line, due to error in the velocity measurements or 
to the spatial separation between the two points, yielding 
added differences in velocity due to the rotation of the 
observer. Differences obtained from pairs of points at a 
similar depth will be smaller and have directions that are 
randomly distributed over a 360” range. These latter 
difference measurements can degrade the computation of 
the dominant orientation if all of the difference measure- 
ments are considered together. To reduce this degrad- 
ation, we only combine velocity differences within two 
opposite ranges of 90”, as shown in Fig. 3(b), and choose 
the particular ranges that yield the largest ratio between 
the overall weight of the differences obtained within and 
outside of these ranges. Estimates of 8, are preserved 
only at locations at which this ratio is above a threshold, 
indicated a strong anisotropy in the directions of the 
velocity differences. The fi, themselves are computed by 
finding a line that represents a best least-squares fit to the 
set of difference vectors. 

Finally, the 6, estimates can be improved after an 
initial FOE estimate is obtained. An initial FOE 
estimate yields a set of predicted translational field 
lines, along which local velocity differences should lie. 
The local dist~butions of velocity differences can then 
be filtered to emphasize differences whose direction is 
closer to the orientation of the translational field lines. 
A new FOE location can be computed based on 
the computation of new dominant orientations of the 
filtered local velocity differences. In principle, the same 
strategy can be applied over time. The location of the 
FOE can change over time, so it is necessary to estimate 
the rotational component of motion as well, in order to 
predict the displacement of the FOE in the image due to 
the observer’s rotation. This can be done, for example, 
in the way that Rieger and Lawton (1985) propose. At 
each new moment in time, the current estimate of the 
location of the FOE can be used to weigh local velocity 
differences in the computation of a new FOE. A better 
estimate of the FOE should then result in a better 
estimate of the rotational component of motion, yielding 
progressive improvement over an extended sequence of 
images. 

COMPUTER SIMULATIONS 

This section presents the results of computer 
simulations that consider aspects of the human recovery 
of heading direction and the use of the algorithm for 
computer vision systems. 

~~rnulut~o~ with the model applied to perceptual displays 

This section summariz.es the results of simulations with 
our extension of the Rieger and Lawton (1985) model, 
applied to visual patterns similar to those used in the 
perceptual studies described earlier. We used synthetic 
image data corresponding to displays of discrete points 
whose image motion is determined by the translation 

and rotation of an observer relative to a random-dot 
surface in space. The motions of the dots on the image 
plane were computed analytically and these movements, 
with or without added noise, formed the input to the 
model for heading recovery. 

The following conditions of the perceptual exper- 
iments by Warren and his colleagues were approximately 
simulated here: 

Observer’s translation : the observer translates in 
the horizontal plane, with a heading direction 
spanning a range within 6” to the left and right 
of straight ahead. For most experiments, trans- 
lational speed was 1.9 m/set. 
Observer’s rotation: the typical range of simu- 
lated angular velocity of the eye was 0%0.7”/sec, 
covering the full range of 2-D directions. 
Field of view: 40” horizontal x 32” vertical. 
Temporal extent: most experiments used a total 
viewing time of about 3 set, with a frame rate of 
15 frames/set. The simulations presented here, 
however, used average displacements computed 
from only the first three image frames. 
~roundpl~ne: the observer’s simulated eye height 
was 1.6 m and points covered. a plane extending 
37.3 m in front of the observer. The spatial 
distribution of the points was uniform on the 
plane, creating a non-uniform distribution in the 
image, due to perspective projection. 
3-D cloud: points were placed randomly within a 
depth range of 6.9-37.3 m. 
Frontoparalfel plane: a plane was placed at a 
distance of 9.3 m in front of the observer. 
Number qf dors: in most experiments, there was 
an average of 63 dots at the ~~nning of the 
movement. 

In these experiments, observers were asked to judge only 
the horizontai component of motion. Additional error 
in the perception of the vertical component of head- 
ing would indicate a larger overall heading error. The 
accuracy of l-2” measured in perceptual experiments 
refers to the horizontal component alone. 

The simulations also considered the following 
conditions: (1) points placed on two frontoparallel 
planes, whose absolute and relative depths were varied; 
(2) variation in the absolute and relative range of depth 
for the 3-D cloud; (3) wider heading angles ranging up 
to 30” to the left and right of straight ahead; (4) larger 
rotational components, corresponding to an angular 
velocity of the eye up to IO”/sec; and (5) a smaller field 
of view of 20”. Some of these issues were motivated by 
the studies of Rieger and Toet (1985) and Cutting (19&(i). 
Note that with a very large rotational component, 
the relative difference between the velocities at nearby 
locations due to the translational component becomes 
small, reducing the signal available for recovering the 
direction of heading. 

Thresholds were imposed on the absolute image 
velocity and on the velocity differences that were 
considered detectable. The threshold used for absolute 
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velocity was l”/sec and the threshold on velocity differ- 
ences was 10% (Nakayama, 1985). Values falling below 
these thresholds did not enter into the computation 
of heading direction. There will be noise in the velocity 
estimates, but it is not clear what is a reasonable level Of 
noise to expect for the visual system. In the simulations, 
we first determined the level of noise in the velocity 
measurements that yields a heading accuracy of about 
2-3”, for the case of translation relative to the ground 
plane and the overall conditions of the perceptual exper- 
iments summarized above. (It is expected that the greater 
heading accuracy of l-2” measured for the human 
system could be obtained by extending the heading 
compu~tion further in time.) We found that this 
accuracy could be achieved with an average error in 
speed of about 25% and average error in the direction 
of velocity of about 25”. Error was introduced as 
Gaussian distributed perturbations of the direction and 
speed of velocity. An average error in speed of 25% and 
in velocity direction of 25” was then used throughout 
the remaining simulations. Limited temporal smoothing 
was performed to reduce the overall sensitivity of the 
algorithm to error in the initial velocities. 

Although the scene consisted of a single rigid surface, 
we used the strategy described in the previous section 
for computing the FOE location in the presence of 
self-moving objects, to reduce the sensitivity of the FOE 
computation to error in the 0, estimates. Three circular 
and overlapping patches representing possibfe locations 
of the FOE were centered on heading directions located 
at 6, 0 and -6” from straight ahead, and each covered 
an area of radius 6”. Thus heading angles computed 
by the algorithm could cover a range from - 12 to 12” 
in the horizontal direction. Preliminary simulations 
suggested that image patches outside of the regions 
covered by these three patches yield signi~cantly less 
positive evidence, and therefore need not be included 
in this analysis. If more than one patch yielded a 
predicted FOE location, we first checked whether one 
estimate was significantly better than the others, in 
that it had significantly more positive evidence and 
better fit to the Bi measurements (about 20% difference 
in both cases). If this was not the case, then the multiple 
predictions were averaged together to yield a final 
estimate. 

TABLE 1. The results of simulations with the Rieger and Lawton 
model, applied to images generated by an observer moving along a 
ground plane. Average errors, in deg, are given for the horizontal 
component of heading. The top entry gives results for the following 
parameters: observer speed of 1.9 m/set; 40” field of view; 60 points; 6” 
heading range; 0.3-0.7”/sec rotation range; 25% average error in image 

speed; and 25” average error in the dire&on of image velocity 

Parameters Horizontal 

Initial parameters 2.5 
7.6 m/set 2.2 
20; field of view, 60 points 2.6 
40’ field of view, 30 points 4.0 
20” field of view, 30 points 2.7 
40% average speed error, 40” average direction error 3.9 
S-lO”/sec rotation range 4.4 

The results of simulations with the ground plane are 
summarized in Table 1. Each data point represents 
an average of the results from 100 different random 
configurations of points. The full set of parameters used 
for the first example (top entry in Table I) is given in 
the legend; other entries indicate only the value of the 
parameter that differed from the first example. A ground 
speed for the observer of 1.9 m/set and presentation 
rate of 15 frames/set corresponds to 0.127 m/frame of 
observer translation. Similarly, an angular velocity 
range of 0.3-0.7”/sec for the simulated eye rotation 
corresponds to a range of 0.02-0.05” per frame. This 
range of angular velocities used in perceptual studies 
is small. We also conducted simulations with rotations 
in the range from 5-lo”/sec. The field of view is 
defined as the total width of the field in the horizontal 
direction, For each configuration of points, a simulated 
heading direction was chosen randomly from the 
range of 6” to the left and right of straight ahead. 
Velocity differences were computed for any pair of 
velocity measurements falling within a neighborhood 
of 6” of one another. 

From this initial set of simulations, it can be seen 
that direction judgments improve with higher speed of 
observer translation and higher density of points, and 
degrade with higher error in the velocity differences 
and a higher angular velocity of the eye. If the density 
of points is kept relatively constant, the field of view has 
little effect on heading accuracy. These factors interact 
with one another. For example, with the limited field of 
view, higher angular rotations yield significant degrad- 
ation in the direction computation, but if the field of 
view and number of points is increased, a more accurate 
heading direction can be obtained for higher rotation 
speeds. Most simulation results reported in the literature 
use fairly large rotational components, which often 
yields significant error; such rotations may also yield 
larger error in human judgments of heading. Overall, 
the heading accuracy remains high for the range of 
conditions explored here. 

In general, as the velocity difference errors increase, 
there can be substantial error in the local computations 
of the dominant orientation of the distribution of 
velocity differences within image neighborhoods. If 
these measurements are distributed over a large field, 
however, the overall computation of the FOE can 
still be accurate. There is a characteristic asymmetry 
in the pattern of errors obtained over the visual field. 
The directions of the dominant orientation of local 
velocity differences usually point to the right of the 
FOE in the right half of the visual field and to the left 
of the FOE in the left half of the visual field, With a 
roughly uniform distribution of points in the horizontal 
direction, these errors effectively cancel one another 
out in the overall computation of the FOE. The same 
observation holds true in the vertical direction. An 
implication of this observation is that if the distribution 
of & measurements is strongty skewed within the visual 
field, a characteristic error in the heading computation 
can result. 
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TABLE 2. The results of sim~atio~ with the Rieger and ~awton 
model, applied to images generated by a’n observer moving toward a 
3-D cloud of points or two frontoparallel planes separated in depth. 
Unless specified above, parameters were as follows: observer speed 
I.9 ml%% 40” field of view; 80 points; 6” heading range; 0.3-0.7”jsec 
rotation range; 25% average error in image speed; and 25” average 

error in the direction of image velocity 

Parameters Horizontai 

3-D cfoud, depth range 7-40 m 2.3 
3-D cloud, depth range 15-32 m 4.0 
3-D cloud, depth range 7-40 m, 10 points 5.0 
Two planes, 5 and 25 m 1.5 
Two planes, 10 and 20 m 2.6 
Two planes, 20 and 40 m 3.7 
Two planes, 5 and 25 m, 6-12” heading range 1.8 

The results of some additional s~rn~a~ons with the 
3-D cloud and two planes of dots are shown in Table 2. 
For all of these simulations, the field of view was a 
square of size 40”, which is somewhat larger than the 
40 x 32” field of view used in the perceptual experiments. 
The results of simulations with the ground plane suggest 
that the density of points is a critical factor in deter- 
mining the accuracy of recovered heading. Because of 
the somewhat larger field of view used in the simulations 
here, we used displays of 80 points, rather than 60, in 
order to keep the density of points similar to that used 
in the perceptual experiments. Other parameters used in 
these simulations are listed in the legend for Table 2. 
Overall, similar heading accuracy can be obtained for the 
3-D cloud and two planes. Accuracy degrades as absolute 
depth is increased, but improves as the overali range of 
depth is increased. Errors increase slightly for more 
oblique heading directions. In general, heading direction 
is unde~s~mated, in that it is closer to straight ahead 
relative to the trUe direction of heading. An increased 
field of view can reduce the errors for more oblique 
headings. Errors increase significantly for sparse patterns 
~on~ning only 10 points, largely because the image 
neighborhoods over which the velocity difikences are 
computed contain very few pairs of points from which 

ia1 

FIGURE 4. A synthetically generated depth map, with brightness 
encoding depth (a dithered image is shown, so that the density of black 
and white dots conveys different brightness levels). Depths range from 

7.5 to 250 units 

to compute the 6, measurements. For the case of the 
frontoparallef plane, the errors were very large. For 
headings chosen within a 6” range of directions around 
straight ahead, the average heading error in this case was 
5.0” in the horizontat direction. 

Simulations with self-moving objects 

This section presents the results of simulations with 
the algorithm applied to synthetic image sequences 
containing multiple objects, some of which undergo their 
own self-motion. For each example, a known velocity 
field was first generated from a known depth map and 
movement parameters for the observer and objects. 
Noise was added to the image velacities, in the furm of 
Gaussian distributed perturbations of their speed and 
direction. The algorithm was then applied to the noisy 
velocity field to recover the location of the FOE and to 
detect self-moving objects. 

fbf 

FIGURE 5. (a) An ideal velocity field obtained from the known depth map shown in Fig. 4 and known observer motion 
parameters. (bj The velocity field with added noise. 
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A depth map for the scene that formed the basis of 
these experiments is shown in Fig. 4. Brightness encodes 
depth, with darker objects located further from the 
observer. (A dithered image is shown, so that the density 
of black and white dots conveys different brightness 
levels.) The scene consists of planar surface patches of 
different 3-D orientations positioned over a distance 
of 75-250 units from the observer. From this known 
depth map and a set of known parameters for the 
observer’s rotation and translation, an image velocity 
field was computed. An original velocity field is shown 

(a) 

in Fig. 5(a). The velocities are sampled from an array of 
size 128 x 128. Noise was then added to yield velocity 
fields such as that shown in Fig. 5(b). Before computing 
the velocity differences, the velocities were averaged 
spatially over a neighborhood of size 3 x 3 pixels, to 
reduce the sensitivity to noise of the subsequent velocity 
differences. 

The distribution of velocity differences was then 
computed for each image location. The distribution at 
a given location consisted of the differences in velocity 
between this location and every other location within a 

(b) 

‘OE 

(d) 

0 
cl 

(e) 

cl 

FIGURE 6. (a) A map of all the locations where 0, were derived from local velocity difference distributions with strong 
anisotropy. (b) Isolated 0, measurements are removed. (c) A sampling of the dominant orientations, 0,. The true FOE is located 
in the upper right corner. (d) The locations of two objects in the scene that are self-moving. (e) Locations where 0, measurements 

were obtained that indicate self-moving objects. 
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FIGURE 7. True FOE locations (solid circles) are compared to the 
FOE locations derived from the algorithm (open circles) for six choices 
of the observer transIation parameters. The f&I extent of the horizontal 
and vertical axes corresponds to an image distance of 128 pixels. 

neighborhood of radius 4 pixels. The dominant orien- 
tation, Bi, of this distribution was computed using the 
scheme described in the previous section, and these ei 
measurements were preserved at locations where the 
distribution of local velocity differences was strongly 
anisotropic. For one set of observer and object motion 
parameters, a map of the locations at which the 0, were 
initially preserved is shown in Fig. 6(a). Isolated 0, 
measurements that do not belong to a connected patch 
of at least 10 pixels were then removed, assuming that 
the most appropriate oi estimates to use for the FOE 
computation would occur along extended boundaries. 
The locations of the 8, that remain after this filtering step 
are shown in Fig. 6(b). These measurements are con- 
centrated around the locations of boundaries and over 
the surface of the object in the upper right corner of 
the image, which has a large slant. Figure 6(c) shows the 
dominant orientations computed at a sample of the 
image locations. The true FOE is located near the upper 
right corner of the image, and the two objects high- 
lighted in Fig. 6(d) are self-moving. There is significant 
error in the 81 measurements, as those vectors in Fig. 6(c) 
that are not located in the vicinity of the two self-moving 
objects should all point toward the FOE. 

To compute the location of the FOE, the image was 
carved up into overlapping circular patches with a radius 
of 24 pixels, centered at locations spaced by 24 pixels. 
For each patch Pi, the set of oi measurements yielding 
positive evidence for the FOE being located within Pj 
was then determined. If at least SO% of the t$ measure- 
ments yielded positive evidence, a hypothesized FOE 
was computed. If multiple FOE Hyatt emerged, 
they were reconciled to obtain a single FOE location by 
considering the extent of the positive evidence in their 
support, their goodness-of-fit to the curnp@ &, and 
the proximity of the multiple hypotheses. Figure 7 shbws 

the true (solid circles) and computed (open circles) FOE 
locations for 6 different choices of the observer transla- 
tion parameters, and for rotation parameters, (w, , w?, wz ) 

= @0,2.0,0.0) (these rotation parameters were used to 
generate the velocity fields shown in Fig, 5). The error 
in the final FOE estimates is small, given the large error 
in the input velocity fields and the @# estimates. 

Once an initial estimate for the FOE location was 
obtained, extended regions yielding negative evident 
were isolated as indicating self-moving objects. For the 
example shown in Fig. 6, the patch that yielded the most 
positive evidence is located in the upper right corner of 
the image. The 8, measurements that were not directed 
toward this patch were isolated, and extended, connected 
groups of such measurements were hypothesized to 

correspond to self-moving objects. Figure 6(e) shows the 
fmal self-moving objects detected, which correspond 
correctly to the two self-moving objects in the scene. 

SUMMARY AND CONCLUHQNS 

This paper addressed the compu~tion of the 3-D 
direction of translation of an observer relative to object 
surfaces. Consideration of perceptual observations 
regarding the human recovery of heading direction 
and existing computational models led us to examine 
the model proposed by Rieger and Lawton (1985) in 
more detail. We explored some extensions to the Rieger 
and Lawton mode1 that yield improvement of its per- 
formance in the presence of error in the image motion 
measurements and allow it to cope with scenes contain- 
ing multiple moving surfaces. The results of computer 
simulations with this modified model applied to visual 
patterns similar to those used in perceptual studies 
suggest that it exhibits much of the basic behavior of the 
human system. 

Some navigational tasks require rapid sensing and 
response by the moving observer. The demands of 
such tasks may compel the human visual system to use 
specialized routines that use only partial or qualitative 
information regarding motion in the image or in the 
scene that can be computed reliably with minimal com- 
putation, and which is critical to performing a specific 
task. In the model presented here, simple measurements 
of velocity differences within iocaf image neighborhoods 
are used to compute only the direction of observer 
heading, independent of the observer’s rotation or scene 
layout. Velocity differences in regions of significant depth 
variation provide a direct cue to the observer’s heading 
that can be exploited with relatively little ~ompu~tion* 
This partial information about heading direction can 
then be used directly by routines that detect potentiai 
collisions or track objects in the scene. Furthermore, 
because velocity differences will be significant along 
&continuities in depth that occur along the boundaries 
of stationary and self-moving objects, they can also be 
used to detect these boundaries. We have shown that the 
heading computation itself can embody a strategy for 
detecting the boundaries of self-moving objects. This 
boundary information can also be used by routines that 



detect potential collisions, to determine the overall size 
and shape of relevant objects. 

A number of additional questions regarding the 
human perception of heading direction arise from the 
analysis of the model presented here, which can be 
explored through further perceptual experiments. 
Among these are the following: 

Does accuracy in judging heading direction 
decrease with more oblique headings, and is there 
a general tendency to underestimate oblique 
headings? Is the size of the field of view more 
critical for the accurate judgment of oblique 
headings? 
Is there degradation of heading judgments when 
larger angular rotations are simulated, and is the 
size of the field of view critical in this case? 
Does an asymmetric spatial distribution of 
points yield characteristic errors in heading 
judgments, as suggested by the simulations? 

l Is there a systematic degradation in heading 
accuracy with a smaller depth range and larger 
absolute depth? 

It would be useful to examine the accuracy of our 
judgment of the vertical component of heading direction, 
to assess our overall precision at performing the heading 
computation. Other experimental questions arise regard- 
ing the recovery of observer heading in the presence of 
motion discontinuities and self-moving objects: 

l What is the effect of self-moving objects in 
the field of view on the accuracy of heading 
judgments? 

l Is there any difference in performance, depend- 
ing on whether the boundaries of a self-moving 
object yield immediately perceptable motion 
discontinuities? 

l How much of the image must contain significant 
depth vacation? Suppose, for example, that the 
image contains a single object (a small fronto- 
parallel plane) in front of a larger frontoparallel 
plane in the background. How large must the 
closer object be, and how much does it need to 
be separated in depth from its background, in 
order to yield accurate heading judgments? 

l How much deviation in direction of image 
motion must a self-moving object undergo, 
relative to the motion direction expected from 
the observer’s motion alone, in order to detect 
its presence? 

Further experimental work that addresses these 
questions is critical to assessing the appropriateness of 
a model of the type explored here as a description of 
the recovery of heading direction by the human system. 
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