Heaps

7/8/2012: (1) Fixed rank of S in leftist enqueue and dequeue examples; (2) removed confusing sentences about in-place sorting with min heaps; (3) added reference to Okasaki’s book.
12/9/2002: This is a revised version of the preliminary handout distributed on Tue. Dec. 3.

The Many Meanings of Heap

The word heap has several different common meanings in computer science:

1. It is used as a synonym for an abstract priority queue.

2. It is used to refer to a particular class of concrete implementations for a priority queue. In this interpretation, some priority queues are heaps and some are not, which is at odds with meaning #1.

3. In a very different interpretation, heap is commonly used to refer to the region of memory used for storing entities whose lifetime exceeds that of the execution frame in which they were created (a.k.a. heap = Object Land). This is in contrast to the stack, which is the region of memory used for storing entities whose lifetime is less than or equal to that of the execution frame in which they were created (a.k.a. stack = Execution Land).

Here we shall focus on interpretation #2, though #1 shall be implied in the term heapsort.

Heapsort

Heapsort is a sorting algorithm based on priority queues. Here is a generic form based on a max priority queue:

// Modify vector to contain sorted elements from low to hi public static void heapSortMax (Vector v) {
// Create a max pq
MaxPQ pq = new MaxPQZZZ(); // Any MaxPQ implementation will do.
// Insert all elements from vector into max pq
for (int i = 0; i < v.size(); i++) {
    pq.enq(v.get(i));
}
// Store all elements in sorted order from max pq into vector
for (int i = v.size() - 1; i >= 0; i--) { // Must go from highest index down
    v.set(i, pq.deq());
}
}

Notes:

• This is easy to adapt to min priority queues. How?

• In the above method, the vector is assumed to contain Comparable elements. However, it can be easily adapted to take an explicit Comparator as an argument. How?

• Later, we shall see that a particular implementation of heapsort with max priority queues is particularly efficient. Some people reserve the term heapsort for this particularly efficient version.
Efficiency of Max PQ Operations

What is the worst-case asymptotic running times of the following max pq operations for the specified implementations? Assume `enq()`, `deq()`, and `first()` are invoked on an n-element heap, and `heapSort()` is invoked on an n-element vector.

<table>
<thead>
<tr>
<th>Implementation</th>
<th>enq()</th>
<th>deq()</th>
<th>first()</th>
<th>heapSort()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector sorted low to high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector sorted high to low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary search tree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete heap (this handout)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leftist heap (this handout)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Heap Condition

For meaning #2 of heap, a binary tree is a max heap if it satisfies the following condition at every node in the tree.

**Max Heap Condition:** The value of a node is \( \geq \) the values of all values in both subtrees.

Similarly, a min heap satisfies at every node a min heap condition in which the node value is \( \leq \) the values of all values in both subtrees.

Max Heap Example

Consider the following integer tree T:

```
   6
  / \
 5   4
 / \ / \ /
4  6 1  2
/ \ / \ / \
3 1 1 2 2
```

<table>
<thead>
<tr>
<th>Tree</th>
<th>Max heap?</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>left(T)</td>
<td></td>
</tr>
<tr>
<td>right(T)</td>
<td></td>
</tr>
<tr>
<td>left(left(T))</td>
<td></td>
</tr>
<tr>
<td>right(left(T))</td>
<td></td>
</tr>
<tr>
<td>left(right(T))</td>
<td></td>
</tr>
<tr>
<td>right(right(T))</td>
<td></td>
</tr>
</tbody>
</table>
Running Times of Heap Operations

What is the worst-case time of \texttt{first()} on a heap?

It turns out that we can make the worst-case time for \texttt{enq()} and \texttt{deq()} proportional to the height of a heap. What is the worst-case height of a heap with \( n \) nodes?

We would like to guarantee the worst-case height of an \( n \)-node heap is \( \Theta(\log(n)) \). We shall study two restricted forms of heaps that satisfy this condition:

1. complete heaps (this lecture)
2. leftist heaps (next handout)

Binary Addresses

We want to define a notion of completeness for a binary tree. To do this, it is first helpful to define the binary address of a node in a binary tree:

- The address of the root of the tree is 1.
- The root of the left subtree of node with address \( a \) has address \( 2 \cdot a \).
- The root of the right subtree of node with address \( a \) has address \( (2 \cdot a) + 1 \).

Here are the nodes of \( T \) annotated with binary addresses:

```
6 1
5 2 4 3
4 4 6 5 1 6 2 7
3 8 1 9 2 10 2 14
```

Binary addresses are relative to the chosen root. Here are the nodes of the two subtrees of \( T \) annotated with binary addresses:

```
6
5 1
4 2
3 4 1 5 2 6
```

```
6
4 1
3 2 3
```

3
Complete Trees

An \( n \)-element binary tree is **complete** if the set of binary addresses of its nodes is the \( n \)-element set \( \{1, \ldots, n\} \).

*Example:* Reconsider the tree \( T \):

<table>
<thead>
<tr>
<th>Tree</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>( T )</td>
<td></td>
</tr>
<tr>
<td>left(( T ))</td>
<td></td>
</tr>
<tr>
<td>right(( T ))</td>
<td></td>
</tr>
<tr>
<td>left(left(( T ))</td>
<td></td>
</tr>
<tr>
<td>right(left(( T ))</td>
<td></td>
</tr>
<tr>
<td>left(right(( T ))</td>
<td></td>
</tr>
<tr>
<td>right(right(( T ))</td>
<td></td>
</tr>
<tr>
<td>left(left(left(( T )))</td>
<td></td>
</tr>
</tbody>
</table>

*Note:* An \( n \)-element binary tree is **full** if it is a complete tree of height \( h \) with \( 2^h - 1 \) nodes. Which subtrees of \( T \) are full?

What’s So Great About Complete Trees?

Complete trees have two important features:

1. The height of an \( n \)-node complete tree is \( \Theta(\log(n)) \) in the worst case.

2. Because the binary addresses cover the range 1 to \( n \), complete trees are easily represented as arrays/vectors. E.g., in languages with 1-based array indexing:

![Complete Tree Example](image)

 can be represented as the array

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 3 & 1 & 2
\end{array}
\]

*Note:* In languages with 0-based array indexing, the index is one less than the binary address.

Address Arithmetic For Complete Trees

<table>
<thead>
<tr>
<th>Operation</th>
<th>Name</th>
<th>Defn. (1-based indexing)</th>
<th>Defn. (0-based indexing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>left address</td>
<td>laddr(index)</td>
<td>2 * index</td>
<td>(2 * index) + 1</td>
</tr>
<tr>
<td>right address</td>
<td>raddr(index)</td>
<td>(2 * index) + 1</td>
<td>(2 * index) + 2</td>
</tr>
<tr>
<td>parent address</td>
<td>paddr(index)</td>
<td>index div 2</td>
<td>(index - 1) div 2</td>
</tr>
</tbody>
</table>
Complete Heaps

A complete (max) heap is a binary tree that is both complete and a max heap.

Example: Below are some sample complete max heaps containing the letters A L G O R I T H M S. A letter later in the alphabet is considered greater than a letter earlier in the alphabet. These are just some of the many possible complete heaps possible with this set of elements.

Complete Heap Enqueuing

We can enqueue an element $x$ onto a complete heap in time proportional to its height by:

1. inserting $x$ in the next “free” complete tree slot. This maintains completeness of the tree but can violate the heap condition.

2. “bubbling $x$ up” towards the root until the heap condition is restored. The result is a complete heap with one more element.

Step #1 takes constant time and step #2 takes worst-case time proportional to the height of the tree, which is $\Theta(\log(n))$. 
Complete Heap Enqueuing Example

Enqueue the letters A L G O R I T H M S into an initially empty complete max heap.
Complete Heap Enqueuing Code

Here is Java code for enqueuing onto a complete heap represented as a vector instance variable `elts` and comparator `comp`.

```java
public void enq (Object x) {
    elts.add(x); // Add x at next binary address
    bubbleUp(elts.size() - 1); // Bubble up from last binary address
}
```

```java
public void bubbleUp (int addr) {
    while ((addr > 0) && greaterThan(addr, paddr(addr))) {
        swap(addr, paddr(addr));
        addr = paddr(addr);
    }
}
```

```java
public boolean greaterThan (int addr1, int addr2) {
    return comp.compare(elts.get(addr1), elts.get(addr2)) > 0;
}
```

```java
public void swap (int addr1, int addr2) {
    Object temp = elts.get(addr1);
    elts.set(addr1, elts.get(addr2));
    elts.set(addr2, temp);
}
```

Complete Heap Dequeuing

We can dequeue the next element from a complete heap in time proportional to its height by:

1. remembering the top node value `first` (which will be returned later);
2. moving the value `last` from the last complete tree slot into the top node. This maintains completeness of the tree but can violate the heap condition;
3. “bubbling `last` down” by swapping it with the larger of its two children (if one is greater than `last`) until the heap condition is restored. The result is a complete heap with one less element;
4. returning the remembered value `first`.

Steps #1, #2, #4 take constant time and step #3 takes worst-case time proportional to the height of the tree, which is $\Theta(\log(n))$. 
Complete Heap Dequeuing Example

We will use the dequeuing algorithm specified above to dequeue all the elements from the complete heap that resulted from the enqueuing process:
Complete Heap Dequeuing Code

Here is Java code for dequeuing from a complete heap represented as a vector instance variable `elts` and comparator `comp`.

```java
public Object deq () {
    if (elts.size() == 0) {
        throw new CollectionException("Attempt to deq() empty queue.");
    } else {
        Object first = elts.get(0); // Remember top value in heap
        Object last = elts.remove(elts.size() - 1); // Name last value in heap
        if (elts.size() > 0) {
            elts.set(0, last); // Move last value to top of heap
            bubbleDown(0); // Bubble down from top of heap
        }
        return first;
    }
}

public void bubbleDown (int addr) {
    int largest = addrOfLargest(laddr(addr), addrOfLargest(raddr(addr), addr));
    if (largest != addr) {
        swap(addr, largest);
        bubbleDown(largest);
    }
}

// Given a known-valid complete heap index addr2 and a possibly invalid
// index addr1, returns the index associated with the largest value
// (if addr1 is valid) or addr2 (if addr1 is invalid).
public int addrOfLargest(int addr1, int addr2) {
    if ((addr1 < elts.size()) && greaterThan(addr1, addr2)) {
        return addr1;
    } else {
        return addr2;
    }
}
```
Building a Complete Heap From a Vector

It is often necessary to build a complete heap from a given collection of objects, such as a vector, array, list, etc. For concreteness, we will focus on building a complete heap from a vector. What’s an efficient way to do this?

A $\Theta(n \cdot \log(n))$ approach

An obvious approach is to simply enqueue all the elements from the vector one-by-one into an initially empty complete heap. Here’s the code for such an approach:

```java
public static MaxPQ fromVector (Vector v) {
    MaxPQ pq = new MaxPQCompleteHeap();
    Enumeration xs = v.elements();
    while (xs.hasMoreElements()) {
        pq.enq(xs.nextElement());
    }
    return pq;
}
```

You should convince yourself that this takes time $\Theta(n \cdot \log(n))$ for an $n$-element vector.

A $\Theta(n)$ approach

An alternative approach is to use a copy of the given vector as the vector representing the complete heap, and to “bubble down” elements starting at the next to last row of the heap and working up to the top row of the heap. This ordering guarantees that by the time the bubbling down process is invoked at a node, both subtrees are already guaranteed to be heaps. So after the final “bubble down” is performed at the root of the tree, the tree is guaranteed to be a heap.

Here is the code for this approach:

```java
public static MaxPQ fromVector (Vector v) {
    MaxPQCompleteHeap pq = new MaxPQCompleteHeap();
    pq.elts = (Vector) v.clone();
    // Note: (v.size() - 2) is the largest index of an
    // element in the next to last level of the tree.
    for (int i = ((v.size() - 2) / 2); i >= 0; i--) {
        pq.bubbleDown(i);
    }
    return pq;
}
```

It turns out that the running time of this algorithm is $\Theta(n)$, which is asymptotically faster than the “obvious” algorithm explored above.

Heapsort Revisited

When using heapSort to sort a vector $v$, it is possible to use $v$ itself for the elements of the complete heap rather than using a copy of $v$. This leads to a version of heapSort that is in-place, which means it uses only constant extra storage space in addition to the vector being sorted.
Leftist Trees

Let the rank\(^1\) of a binary tree be the length of its right spine – i.e., the length of the rightmost path from the root to a leaf.

Example: Nodes in the following tree are annotated with their ranks:

![Binary Tree Diagram]

Call a binary tree leftist iff it satisfies the following leftist condition for every subtree \(t\) of the tree: \(\text{rank}(\text{left}(t)) \geq \text{rank}(\text{right}(t))\)

In the above example, the subtrees rooted at T and S (and, necessarily, all of their subtrees) are leftist, but the subtree rooted at M is not leftist.

It is not difficult to show the following fact: Let \(n\) be the number of nodes in a leftist tree and \(r\) be its rank. Then \(r \leq \log(n + 1)\).

It turns out that the time taken to enqueue an element onto, dequeue an element from, and merge a leftist tree with a leftist tree depend on the length of its right spine and so are proportional to its rank \(r\). By the above fact, these operations on leftist trees are guaranteed to take only logarithmic time in the worst case.

Leftist Heaps

A leftist (max) heap is simply a binary tree that is both leftist and a (max) heap. Leftist min heaps are defined similarly.

Example: The following is one of the many leftist max heaps for the letters in the word ALGORITHMS. To save on space, explicit leaves have been omitted.

![Binary Tree Diagram]

---

\(^1\)The term “rank” is often used as a name for some relevant property of a data structure. Exactly which property it refers to depends on the particular data structure and what is trying to be proven.
Combining Leftist Heaps

Suppose that \( t_1 \) (with rank \( k_1 \)) and \( t_2 \) (with rank \( k_2 \)) are two leftist heaps and that \( v \) is a value that is \( \geq \) every value in \( t_1 \) and \( t_2 \). Then it is possible to glue \( t_1 \) and \( t_2 \) together with \( v \) to form a new leftist heap by choosing for \( v \)'s left subtree the tree with the larger rank.

This process is shown diagrammatically below via rules for a question mark operator, \(?\), that chooses the larger ranked tree for the left subtree:

\[
\begin{align*}
\text{?} & \quad \text{\( k_1 \geq k_2 \)} & \Rightarrow & \quad \text{?} \\
\begin{array}{c}
\text{?} \\
\text{?}
\end{array} & \quad \text{\( k_1 \geq k_2 \)} & \Rightarrow & \quad \text{?} \\
\begin{array}{c}
v \\
v
\end{array} & \quad \text{\( k_2 + 1 \)} & \Rightarrow & \quad \text{?} \\
t_1 & \quad \text{?} & \quad \text{?} & \quad t_2
\end{align*}
\]

Merging Leftist Heaps

The core of most leftist heap operations is a \texttt{merge} function that merges two heaps along their right spines. It is similar to the \texttt{merge} function used to merge sorted lists in mergesort. Below are the rules for merging two leftist max heaps:

\[
\begin{align*}
\text{merge} & \Rightarrow \triangle \\
\begin{array}{c}
\text{merge} \\
\text{merge}
\end{array} & \Rightarrow \triangle \\
\begin{array}{c}
v_1 \geq v_2 \\
v_2
\end{array} & \Rightarrow \triangle \\
\begin{array}{c}
v_1 \geq v_2 \\
v_2
\end{array} & \Rightarrow \triangle \\
\begin{array}{c}
v_1 \geq v_2 \\
v_2
\end{array} & \Rightarrow \triangle \\
\begin{array}{c}
v_1 \geq v_2 \\
v_2
\end{array} & \Rightarrow \triangle
\end{align*}
\]

Given leftist heaps of size \( m \) and \( n \), the worst-case running time is the right-spine-length(\( m \)) + right-spine-length(\( n \)) = \( \Theta(\log(m) + \log(n)) \).
Merging Example

Below we show the merging of two leftist heaps: one that contains the letters A L G O R and one that contains the letters I T H M S.

Note how the leftist condition guarantees that the trees are skewed toward the left, which means that the right spine tends to be short. In the above example, the result of merging two trees with a right spine length of 2 yields another tree with a right spine length of 2! Interestingly, leftist trees are particularly efficient when they are isomorphic to lists along the left spine and are least efficient when they are balanced!
Dequeuing From a Leftist Heap

Other priority queue operations are easy to implement with leftist heaps, often in terms of merge. For example, To dequeue an element from a leftist heap, remember the root value to return later and merge the two subtrees of the root node.

Example: Dequeueing an element from the result of the merge on the previous page returns T and yields the following leftist heap:

Enqueuing Onto a Leftist Heap

To enqueue an element $x$ onto a leftist heap $t$, merge a single tree containing $x$ with $t$:

Example: Enqueuing $Q$ onto the result of the previous dequeue step yields the following leftist heap:
Building a Leftist Heap

To build a leftist heap from a collection (vector/array/list/etc.) of \( n \) elements, they can be enqueued one-by-one onto an initially empty leftist heap. This takes time \( \Theta(n \cdot \log(n)) \) in the worst case.

But a bottom-up technique similar to that used in the efficient version of \texttt{fromVector} for complete heaps can be used to build a leftist heap in \( \Theta(n) \) time. Here we illustrate the technique with the letters \texttt{COMPUTER}:

Reference

For more on leftist trees and other clever tree data structures, see Chris Okasaki’s \textit{Purely Functional Data Structures}, Cambridge University Press, 1999.