Leftist Heaps

Note: This material on leftist trees will eventually be integrated into a revised Handout #32 on priority queues.

Leftist Trees

Let the **rank** of a binary tree be the length of its right spine – i.e., the length of the rightmost path from the root to a leaf.

Example: Nodes in the following tree are annotated with their ranks:

Call a binary tree **leftist** iff it satisfies the following **leftist condition** for every subtree \(t \) of the tree: \(\text{rank}(\text{left}(t)) \geq \text{rank}(\text{right}(t)) \).

In the above example, the subtrees rooted at \(L \) and \(G \) (and, necessarily, all of their subtrees) are leftist, but the subtree rooted at \(A \) is not leftist.

It is not difficult to show the following facts. Let \(n \) be the number of nodes in a binary tree and \(r \) be its rank.

1. \(n \geq 2^r - 1 \). Show this by induction:

2. \(r \leq \log(n + 1) \).

1 The term “rank” is often used as a name for some relevant property of a data structure. Exactly which property it refers to depends on the particular data structure and what is trying to be proven.
Leftist Heaps

Recall that a binary tree is a heap if it satisfies the following heap condition at every subtree t: value(t) has a higher priority than all values in left(t) and all values in right(t).

A leftist heap is simply a binary tree that is both leftist and a heap.

Example: The following is one of the many leftist heaps for the letters in the word ALGORITHMS (assuming letters earlier in the alphabet have a higher priority than later ones).

Leftist Trees in Haskell

Here is a datatype for manipulating leftist trees in Haskell:

```haskell
data LH a =
    Leaf
  | Node Int -- rank
      (LH a) -- left subtree
      a -- node value
      (LH a) -- right subtree

-- Return the rank of a tree
rank Leaf = 0
rank (Node k _ _ _) = k
```
Merging Leftist Trees

The core of most leftist tree operations is the following `merge` function. It is similar to the `merge` function used to merge sorted lists in mergesort:

```haskell
-- Merge leftist trees t1 and t2 into one leftist tree.
merge t Leaf = t
merge Leaf t = t
merge (t1 @ (Node k1 l1 v1 r1))
  (t2 @ (Node k2 l2 v2 r2))
  | v1 >= v2 = make l1 v1 (merge r1 t2)
  | otherwise = make l2 v2 (merge t1 r2)
where make t1 v t2
  | r1 >= r2 = Node (r2 + 1) t1 v t2
  | otherwise = Node (r1 + 1) t2 v t1
where r1 = rank(t1)
  r2 = rank(t2)
```

Example:

Given leftist heaps of size \(m \) and \(n \), what is the running time of `merge`?
Other Operations

-- Make a leftist heap with one node.
singleton x = Node 1 Leaf x Leaf

-- Insert an element into a leftist heap.
insert x t = merge (singleton x) t

-- Return maximum element of heap.
maxElt Leaf = error "maxElt of Leaf"
maxElt (Node _ _ v _) = v

-- Return pair of:
-- (1) maximum element of heap
-- (2) heap without maximum element.
deleteMax Leaf = error "deleteMax of Leaf"
deleteMax (Node _ l v r) = (v, merge l r)

-- Create a leftist heap from a list of values.
fromList [] = Leaf
fromList (x:xs) = insert x (fromList xs)

-- Return a list (sorted high priority to low) of elements in heap.
toList Leaf = []
toList t = v:(toList t')
 where (v,t') = deleteMax t

What are the running times of the above operations?
A Cleverer fromList

The above version of fromList is not as efficient as it could be. As with building a complete heap, a leftist heap can be constructed in linear time if build from “the bottom up”:

```haskell
-- Linear time construction of a leftist heap from a list of elements
fromList [] = Leaf
fromList xs = mergeLoop (map singleton xs)
  where
    mergeLoop [] = error "shouldnt: mergeLoop []"
    mergeLoop [t] = t
    mergeLoop ts = mergeLoop(mergePairs ts)

    mergePairs [] = []
    mergePairs [t] = [t]
    mergePairs (t1:t2:ts) = (merge t1 t2):(mergePairs ts)
```