Order Statistics

Reading: CLRS Ch. 9, CLR Ch. 10

Terminology

Let S be a set of n elements (necessarily distinct).

- The ith order statistic of S is the ith smallest element (i.e., the element that is larger than exactly $i - 1$ other elements in the set). Such an element is said to have rank i.
- The minimum of S is the first order statistic (element with rank 1).
- The maximum of S is the nth order statistic (element with rank n).
- The median(s) of S is (are) the element(s) with rank $\left\lfloor (n + 1)/2 \right\rfloor$ and $\left\lceil (n + 1)/2 \right\rceil$.

Example

$$B = \{43, 5, 17, 91, 2, 42, 19, 72, 37, 3\}$$

- minimum of $B =$
- maximum of $B =$
- medians of $B =$
- 3rd order statistic of $B =$
- rank of 17 in $B =$

The Selection Problem

List Selection

select i xs: Return the rank i element from a list xs of n distinct elements.

Array Selection (CLRS/CLR)

Select(A, i): Return the rank i element from an array A of n distinct elements.

In this handout, we focus on the list selection problem. Array selection is similar; see CLRS/CLR for details.
Trivial List Selection Algorithm

```haskell
select i xs = nth i (sort xs)
-- Returns the nth element (1-indexed) of the given list
nth 0 xs = error "nth: index out of range"
nth n [] = error "nth: index out of range"
nth 1 (x:xs) = x
nth n (x:xs) = nth (n-1) xs
```

What is the best worst-case running time for this algorithm?
The burning question: Can we do better?

Important Special Cases

- Can find minimum or maximum with \(n - 1 \) comparisons.

- Can find minimum and maximum with \(3\lceil n/2 \rceil \) comparisons.

- Can find two smallest elements with \(n + \lceil \lg n \rceil - 2 \) comparisons. (This is a problem on Problem Set 5).

- For any fixed \(k \geq 1 \), can select \(k \)th or \((n + 1 - k) \)th element in \(\Theta(n) \) time by \(k \) applications of minimum/maximum + deletion.
Partition-Based Selection

Key idea: Use quicksort-like partitioning, but only explore one partition.

```haskell
partitionSelect i [] = error "empty list"
partitionSelect 1 [x] = x
partitionSelect i (x:xs)
    | i <= length(ls) = partitionSelect i ls
    | i > length(ls) = partitionSelect (i - length(ls)) gs
    where (ls',gs') = partition x xs
        (ls,gs) = if null ls' then ([x],gs') else (ls',x:gs')
```

- What are the best-case inputs for `partitionSelect`? What is the running time for these inputs?

- What are the worst-case inputs for `partitionSelect`? What is the running time for these inputs?

- Sorted or nearly sorted lists are common in practice. What are some practical way to avoid the worst-case running times for these inputs?

- What is average-case running time `partitionSelect`?
Analysis: Partition Selection is Expected Linear Time

What are the possible lengths of the ls’?

Assuming that the list argument of partitionSelect is a random permutation of distinct elements, what is the probability that ls’ has any one of the possible lengths?

What are the possible lengths of the ls?

What is the probability that ls has any one of the possible lengths k, where k > 1?

What is the probability that ls has length 1, where k > 1?

Deriving a recurrence equation:

\[T(n) \leq \frac{1}{n} \left(T(\max(1, n - 1)) + \sum_{k=1}^{n-1} T(\max(k, n - k)) \right) + O(n) \]
\[\leq \frac{1}{n} \left(T(n - 1) + 2 \sum_{k=\lceil n/2 \rceil}^{n-1} T(k) \right) + O(n) \]
\[= \frac{2}{n} \left(\sum_{k=\lceil n/2 \rceil}^{n-1} T(k) \right) + O(n) \]

Using substitution method to show \(T(n) \leq cn \) is a solution to the above recurrence (for simplicity, assume \(n \) is even, but also works for odd case):

\[T(n) \leq \frac{2}{n} \left(\sum_{k=n/2}^{n-1} c k \right) + O(n) \]
\[= \frac{2c}{n} \left(\sum_{k=n/2}^{n-1} k \right) + O(n) \]
\[= \frac{2c}{n} \cdot \frac{n}{2} \cdot \frac{n/2+n-1}{2} + O(n) \]
\[= \frac{c}{4} \cdot 3n^2 - \frac{c}{4} + O(n) \]
\[= \frac{c}{4} \cdot 3n^2 + O(n) \]
\[\leq cn, \text{ for sufficiently large } c. \]

Note: \(T(n) \leq cn \) is not a solution to the average-case quicksort recurrence:

\[T(n) = \frac{2}{n} \left(\sum_{k=1}^{n-1} T(k) \right) + O(n). \]

(Try it and see!)
Selection in Worst-Case Linear Time

I find the presentation of this algorithm in CLRS/CLR confusing. I prefer the following explanation.

We will consider the median-of-medians-of-r algorithm, where r is an integer constant \(\geq 1 \).

The following is a sketch of the function \texttt{medianOfMedians \ r \ i \ xs}:

1. For simplicity, assume \(r \) evenly divides \(n = \text{length}(xs) \). If \(r \) does not evenly divide \(n \), can always create an extended list \(xs' \) that does by padding \(xs \) at the end with large elements that won’t affect results. Let \(c = n/r \), after any such padding.

2. View padded list \(xs' = [xs'_1, xs'_2, \ldots, xs'_n] \) as a two-dimensional array \(B[1..r, 1..c] \) with \(r \) rows and \(c \) columns:

\[
\begin{align*}
B[1,1] &= xs'_1 & B[1,2] &= xs'_{r+1} & \cdots & B[1,c] &= xs'_{n-r+1} \\
& \vdots & \vdots & \ddots & \vdots \\
B[r,1] &= xs'_r & B[r,2] &= xs'_{2r} & \cdots & B[r,c] &= xs'_n
\end{align*}
\]

Sort each column using any method (even a \(\Theta(n^2) \) one like insertion sort). Since each column contains \(r \) elements, this step is linear, not quadratic. After this step, the row \(B[[r+1]/2, 1..c] \) contains the (lower) medians of the \(c \) columns. Let \textit{meds} be the list of elements in this row.

3. Use \texttt{medianOfMedians \ r, meds, [(c+1)/2]} to find median of medians \(mm \).

4. Partition \(xs' \) around \(mm \) to yield the pair of lists \((ls, gs) \), guaranteeing that \(mm \) ends up in \(ls \). Let \(k \) be the number of elements in \(ls \) and \((n - k) \) the number of elements in \(gs \).

5. If \(i \leq k \), return \texttt{medianOfMedians \ r \ i \ ls}; if \(i > k \), return \texttt{medianOfMedians \ r \ (i - k) \ gs}.

Analysis:

- \(\text{mm} \) is the median of medians.

Analysis:

- \(\text{number of elements} \leq \text{mm} \) < \(\text{number of elements} \)
- \(\text{Recurrence for worst-case running time} \ T(n): \)
- Solution to recurrence: