Priority Queues

Reading: CLRS Chapter 6/CLR Chapter 7

Priority Queue Contract

Given a set of elements with a priority ordering (which we will denote by $>$), a mutable priority queue is a collection of such elements supporting the following key operations:

- **PQ-Empty()**
 Returns an empty priority queue.

- **PQ-Insert(P, elt)**
 Modifies P by inserting elt into priority queue P.

- **PQ-Delete-Max(P)**
 Deletes from P and returns the largest element (by the priority ordering) of priority queue P.

- **Array-To-PQ(A)**
 Constructs and returns a priority queue containing the n elements of array A. May mutate A.

Priority Queue Implementations

What are the running times of the priority queue operations for an n-element priority queue P using the following representations?

<table>
<thead>
<tr>
<th>Representation</th>
<th>PQ-Insert(P,elt)</th>
<th>PQ-Delete-Max(P)</th>
<th>Array-To-PQ(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted list</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>list sorted high to low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search tree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heap (this lecture)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heap Sort

Given heap operations with the above running times, it’s easy to construct a guaranteed $O(n \lg(n))$ sorting algorithm:

```plaintext
HeapSort(A)
H ← Array-To-PQ(A)
for i ← length[A] downto 1 do
    A[i] ← PQ-Delete-Max(H)
```

We will see below that when priority queues are represented as heaps, the priority queue used by HeapSort can be stored within the argument array A, so that HeapSort can be an in-place sorting algorithm.
Complete Binary Trees

The binary address of a node in a binary tree specifies the order in which it would be visited in a breadth first traversal. For example:

Operations on binary addresses:

- \(\text{Left(address)} = 2 \times \text{address} \)
- \(\text{Right(address)} = (2 \times \text{address}) + 1 \)
- \(\text{Parent(address)} = \text{address} \text{ div} 2 \)

An \(n \)-element binary tree is **complete** if the set of binary addresses of its nodes is \{1, 2, \ldots , n\}. For example:

An \(n \)-element binary tree is **full** if it a complete tree of height \(h \) with \(2^h - 1 \) nodes.

Important implementation detail: The elements of a complete binary tree can be represented as an array. In this representation, tree navigation is performed by pointer arithmetic.

Heaps

A **heap** is a complete binary tree satisfying the following heap condition:

At every node in a heap, the node value is greater than or equal to all the values in both of its subtrees.

Example:
Representing Priority Queues as Heaps

We can represent a priority queue as a record (object) with two slots:

1. a size slot holding the number of elements in the priority queue
2. an elts slot holding an array representing the heap of elements in the priority queue.

Example:

Heap Insertion

PQ-Insert(H, elt)
 size[H] ← size[H] + 1
 A ← elts[H]
 A[size[H]] ← elt ▷ Assume A is big enough to hold new element.
 ▷ In practice, might need to increase size of array.
 Bubble-Up(A, size[H])

Bubble-Up(A, address)
 while address > 1 and lt(A[Parent(address)], A[address]) do
 swap(A, address, Parent(address))
 ▷ Can get by with fewer assignments; See CLR
 address ← Parent(address)

Example:

Analysis:
Heap Deletion

PQ-Delete-Max(H)
if size[H] < 1 then
 error "heap underflow"
A ← elts[H]
max ← A[1]
size[H] ← size[H] - 1
BubbleDown(A, 1)
return max

Bubble-Down(A, address)
 \(\triangleright\) This function is called Heapify in CLR
if Left(address) ≤ heap_size[A]
 and lt(A[address], A[Left(address)]) then
 largest ← Left(address)
else
 largest ← address
if Right(address) ≤ heap_size[A]
 and lt(A[largest], A[Right(address)]) then
 largest ← Right(address)
if largest ≠ address then
 swap(A, address, largest)
Bubble-Down(A, largest)

Analysis:
Constructing a Heap

Naive version of Array-To-PQ:

Array-To-PQ(A)
H ← PQ-Empty
for i ← 1 to length[A] do
▷ Uses array slots for heap storage!
 PQ-Insert(H, A[i])
return H

Analysis:

Clever version of Array-To-PQ:

Array-To-PQ(A)
H ← PQ-Empty
size[H] ← length[A]
for i ← (length[A] div 2) downto 1 do
 Bubble-Down(A, i)
return H

Analysis: