ASYMPTOTICS AND FUNCTIONS

Note: This handout summarizes highlights of CLR Chapter 2. See the book for more details.

Motivation

Fine-grained bean counting exposes too much detail for comparing functions.

Want a course-grained way to compare functions that ignores constant factors and focuses on their relative growth in the limit as input sizes get large.

For example, consider:

<table>
<thead>
<tr>
<th></th>
<th>n = 1</th>
<th>n = 1,000</th>
<th>n = 1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(n)</td>
<td>100n + 1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q(n)</td>
<td>3n^2 + 2n + 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r(n)</td>
<td>0.1n^2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How Do Your Functions Grow?

Asymptotic notation is a way of characterizing functions that facilitates comparing their growth in the limit of large inputs. Here is an informal summary of the notation:

<table>
<thead>
<tr>
<th>Notation</th>
<th>Pronunciation</th>
<th>Loosely</th>
</tr>
</thead>
<tbody>
<tr>
<td>f ∈ ω(g)</td>
<td>f is way bigger than g</td>
<td>f > g</td>
</tr>
<tr>
<td>f ∈ Ω(g)</td>
<td>f is at least as big as g</td>
<td>f ≥ g</td>
</tr>
<tr>
<td>f ∈ Θ(g)</td>
<td>f is about the same as g</td>
<td>f = g</td>
</tr>
<tr>
<td>f ∈ O(g)</td>
<td>f is at most as big as g</td>
<td>f ≤ g</td>
</tr>
<tr>
<td>f ∈ o(g)</td>
<td>f is way smaller than g</td>
<td>f < g</td>
</tr>
</tbody>
</table>

Notes:
- Each of ω(g), Ω(g), Θ(g), O(g), o(g) denotes a set of functions. Thus, ω(g) is the set of all functions way bigger than g, Ω(g) is the set of all functions at least as big as g, etc.
- The notation f = ω(g) is really shorthand for f ∈ ω(g).
- The phrases “is at least O(...)” and “is at most Ω(...)” are non-sensical. “Is at least” should be written Ω, and “is at most” should be written O.
Relating the Notations

Here are some of the relationships between the notations:

If \(f \in \omega(g) \), then \(f \in \Omega(g) \).
If \(f \in o(g) \), then \(f \in O(g) \).
\(\Omega(g) \supset \omega(g) \cup \Theta(g) \)
\(O(g) \supset o(g) \cup \Theta(g) \)
\(\Theta(g) = \Omega(g) \cap O(g) \)
\(f \in \omega(g) \) if and only if \(g \in o(f) \)
\(f \in \Omega(g) \) if and only if \(g \in O(f) \)
\(f \in \Theta(g) \) if and only if \(g \in \Theta(f) \)

Warning: unlike numbers, not every pair of functions is comparable!

The following diagram depicts some of these relationships:
Formalizing the Non-tight Bounds (o and ω)

\[f \in o(g) \text{ if } \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0 \]

\[f \in \omega(g) \text{ if } \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \infty \]

Formalizing the Tight Bounds (O, Ω, and Θ)

\[O(g) = \{ f \mid \text{there exist positive constants } c, n_0 \text{ such that} \]
\[0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

Think of this as a game. Suppose you claim that $f \in O(g)$. Then you select c and n_0, but I try to find a particular n that defeats your claim.

\[\Omega(g) = \{ f \mid \text{there exist positive constants } c, n_0 \text{ such that} \]
\[0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} \]

\[\Theta(g) = \{ f \mid \text{there exist positive constants } c_1, c_2, n_0 \text{ such that} \]
\[0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \} \]
Exponentials

Notation:
• a^n = the product of n copies of a.
• $a^{-n} = \frac{1}{a^n}$

Key Identities:
• $a^m a^n = a^{m+n}$ \{Special case: $a^0 = 1$.\}
• $(a^m)^n = a^{mn} = (a^n)^m$

Examples:
$$(5^2)^3 =$$
$5^2 \cdot 5^3 =$
$$5^2 \cdot 5^3 =$$
$$25^3 =$$

Logarithms

Notation:
• $\log_b a$ = the power to which b must be raised to equal a. (More loosely, it is the number of times that a can be divided by b to reach 1.)
• $\log b ! = -\log Error! a$
• $\lg n = \log_2 n$
• $\ln n = \log_e n$
• $\lg^k(n) = (\lg n)^k$

Key Identities (duals of exponential identities):
• $\log_c(ab) = \log_c(a) + \log_c(b)$ \{Special case: $\log_c 1 = 0$\}
• $\log_c(a^n) = n \cdot \log_c a$

Examples:
$\lg(2n^3) =$
$\ln(32) =$
Relating Exponentials and Logarithms

Key Identities:
• \(b^{(\log_b a)} = a = \log_b(b^a) \)

Examples:
\[
\text{lg Error!} = \\
32^{(\text{lg } n)} =
\]

Asymptotics Involving Exponentials and Logarithms

How do \(\log_2 n \) and \(\log_3 n \) compare?

How do \(2^n \) and \(3^n \) compare?

Fact 1: if \(a > 0 \), \(\lim_{n \to \infty} \frac{a^n}{n^b} = \infty \)

Fact 1 implies \(a^n \in \omega(n^b) \).
In other words: Any positive exponential grows faster than any polynomial.

Substituting \(\text{lg } n \) for \(n \) and \(2^a \) for \(a \) in Fact 1 yields:

Fact 2: if \(a > 0 \), \(\lim_{n \to \infty} \frac{n^a}{\text{lg }^b n} = \infty \)

Fact 2 implies \(n^a \in \omega(\text{lg }^b n) \).
In other words: Any positive polynomial grows faster than any polylogarithmic function.

Factorials

Definition: \(n! = 1 \cdot 2 \cdot 3 \cdots n \)

Stirling’s approximation: \(n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \)

Asymptotics derivable from Stirling’s approximation:
• \(n! = o(n^n) \)
• \(n! = \omega(2^n) \)
• \(\lg(n!) = \Theta(n \lg n) \)