MEMOIZATION AND DYNAMIC PROGRAMMING

Reading: CLR Chapter 16

Below is a recursive function Raise2 that computes 2^n.

```plaintext
Raise2(n)
  if n = 0 then
    return 1
  else
    return 2 * Raise2(n-1)
```

For any input, can draw a function call tree in which each node is labelled by Raise2(i) for some i, and each Raise(i-1) is a child of Raise(i). E.g. Draw Raise2(3):

Suppose we had a machine that didn't have a multiply operator. Then we might have

```plaintext
Raise2-Slow(n)
  if n = 0 then
    return 1
  else
    subresult <- Raise2(n-1)
    return subresult + subresult
```

What is the recurrence relation and solution for the running-time of Raise2-Slow?

Draw Raise2-Slow(3):

The reason Raise2-Slow is so slow is that it resolves the same subproblems many times. We can make it fast again by remembering the result of a subproblem once it is solved. This effectively "glues" together nodes with the same label in the function call tree to form a DAG (Directed Acyclic Graph). In this case, we can remember the subproblem result in a local variable:

```plaintext
Raise2-Fast1(n)
  if n = 0 then
    return 1
  else
    subresult <- Raise2(n-1)
    return subresult + subresult
```
More generally, we need an auxiliary table to remember results.

```plaintext
Raise2-Fast2(n)
  R <- new array[0..n]
  for i <- 0 to n do
    R[i] <- 0
  return Raise2-Memo(R,n)

Raise2-Memo(R,n)
  if R[n] = 0 then
    if n = 0 then
      return 1
    else
      R[n] <- Raise2-Memo(R,n-1) + Raise2-Memo(R,n-1)
    return R[n]

This strategy of remembering the results of subproblems in a table is called memoization (not memorization!)

Pascal's Triangle

Recall Pascal's triangle. Each element is the sum of the two elements above it, except for edge elements, which are 1:

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
```

The following Pascal function computes the kth element of the nth row (where both k and n are 0-based):

```plaintext
Pascal(n,k)
 if k = 0 or k = n then
 return 1
 else
 return Pascal(n-1,k-1) + Pascal(n-1,k)
```
Below is a function call tree for Pascal(6, 4) in which each call Pascal(n,k) has been abbreviated C(n,k).

In the worst case, C(n,k) can take time exponential in n. Note that the exponential nature is due to subproblem duplication, which can be removed by memoization. We use a two-dimensional table P(i,j) to store previously computed results:

```
Fast-Pascal(n,k)
P <- new array[0..n][0..n]
for i <- 1 to n do
 for j <- 1 to n do
 P[i,j] <- 0
Pascal-Memo(P, n, k)

Pascal-Memo(P,n,k)
if P[n,k] = 0 then
 if k = 0 or k = n then
 P(n,k) <- 1
 else
 P(n,k) <- Pascal-Memo(P,n-1,k-1) + Pascal-Memo(P,n-1,k)
return P(n,k)
```

An element is stored into each array element at most twice: once during initialization and at most once during Pascal-Memo. The running time of Fast-Pascal is therefore $\Theta(n^2)$. We can be cleverer by initializing the top and left edge to 1 to avoid the inner if within Pascal-Memo.

**Longest Common Subsequence**